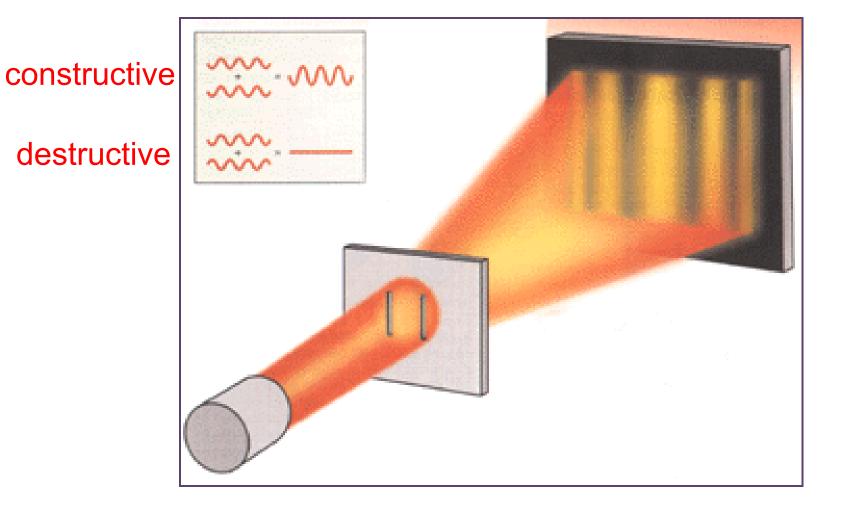
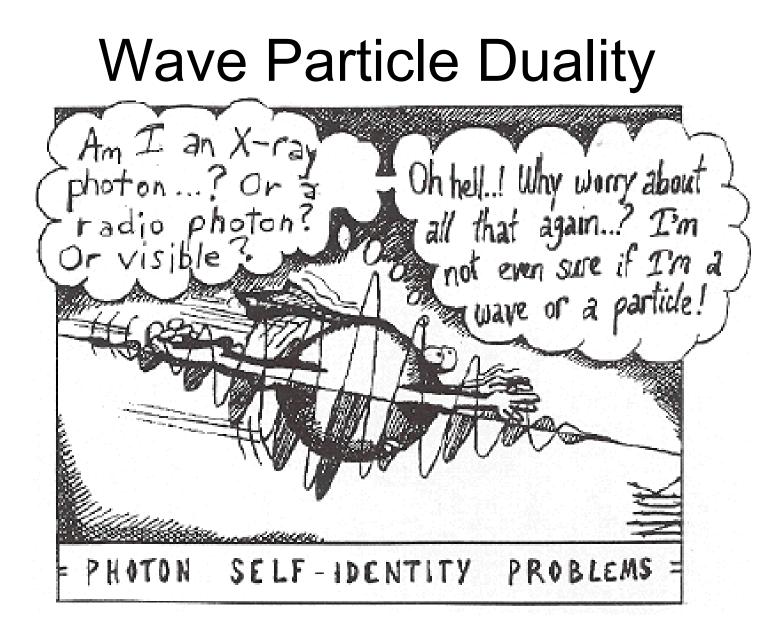
Quantum Transport in Solids

- Waves and particles in quantum mech.
- Quantization in atoms
- Insulators : Energy gap
- Emergent particles in a solid
- Landau quantization in a magnetic field and the quantum Hall effect

Light is a Wave

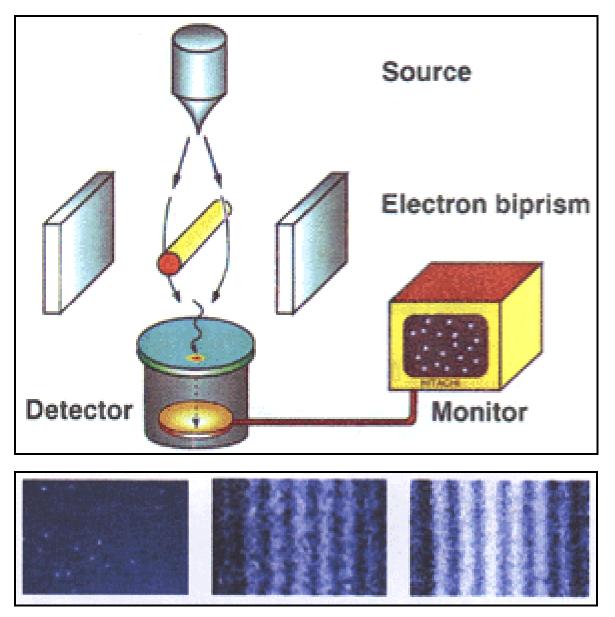
Hallmark of a wave : Interference





A photon is a particle too

Electrons are Waves



Max Planck 1858-1947

Louis de Broglie 1892-1987

Planck : Energy ~ Frequency

Energy and Momentum

 $E = hf = \hbar\omega \qquad \omega = 2\pi f$

 $\hbar = h / 2\pi = 1.05 \times 10^{-34} Js$

de Broglie: Momentum ~ (Wavelength)⁻¹ $p = \frac{h}{\lambda} = \hbar k \qquad k = 2\pi / \lambda$

Dispersion Relation

Relation between

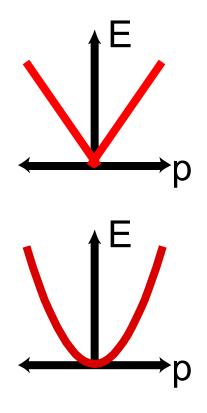
- Frequency and Wavelength
- Energy and Momentum

For a photon:

 $f = \frac{c}{\lambda} \implies \omega = ck \implies E = cp$

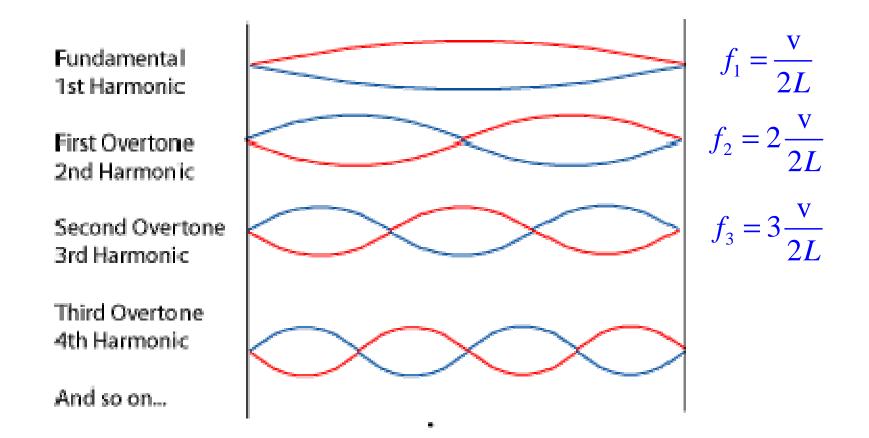
For an electron in vacuum:

$$E = \frac{1}{2}mv^2 = \frac{p^2}{2m} \implies \hbar\omega = \frac{\hbar^2 k^2}{2m}$$

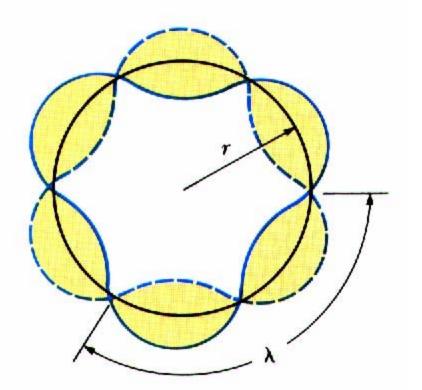


Quantization

Waves in a confined geometry have discrete modes



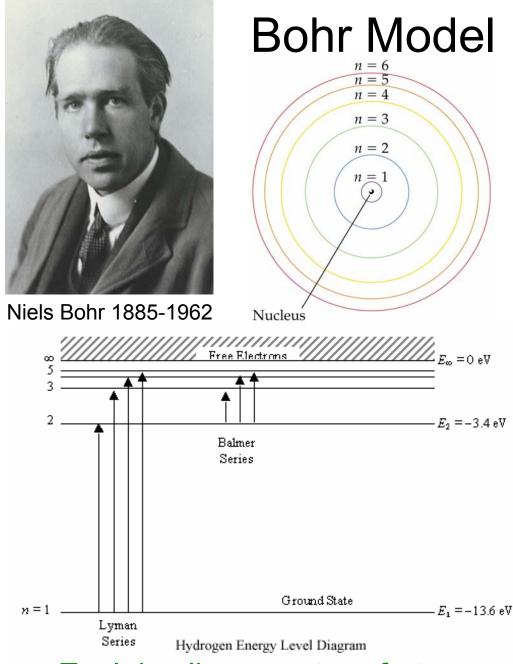
Quantization of circular orbits



Circular orbits have quantized angular momentum.

 $n\lambda = 2\pi r$ $p = \frac{2\pi\hbar}{\lambda} = \frac{n\hbar}{r}$

 $L = rp = n\hbar$



- Two equations : $L = mvr = n\hbar$ $F = k \frac{e^2}{r^2} = \frac{mv^2}{r}$
- Solve for r_n and $E_n(r_n, v_n)$ $E_n = -Ry / n^2$ $r_n = n^2 a_0$
- Rydberg energy: $Ry = \frac{mk^2e^4}{2\hbar^2} = 13.6 \text{ eV}$

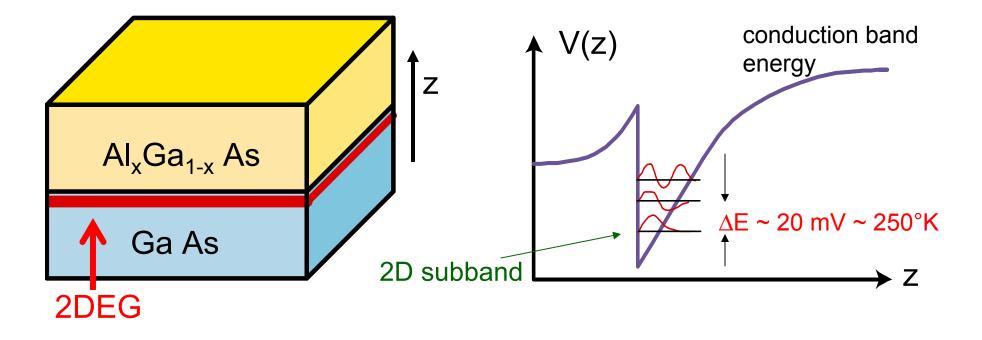
• Bohr radius :

$$a_0 = \frac{\hbar^2}{mke^2} = .5\text{\AA}$$

Explains line spectra of atoms

Flatland ... (1980's) Semiconductor Heterostructures : "Top down technology"

 \rightarrow Two dimensional electron gas (2DEG)



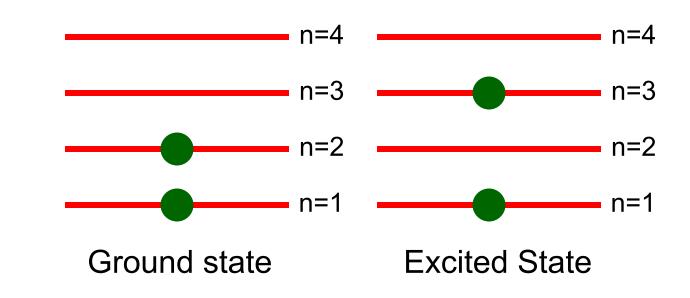
Fabricated with atomic precision using MBE. 1980's - 2000's : advances in ultra high mobility samples

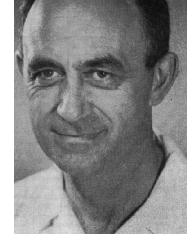
Pauli Exclusion Principle

Wolfgang Pauli 1900-1958

Electrons are "Fermions":

Each quantum state can accommodate at most one electron



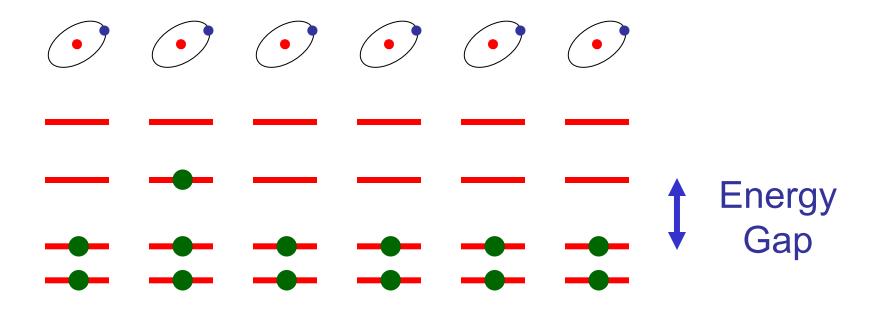


Enrico Fermi 1901-1954

An insulator is inert because a finite energy is required to unbind an electron.

A semiconductor is an insulator with a small energy gap.

Add electrons to a semiconductor

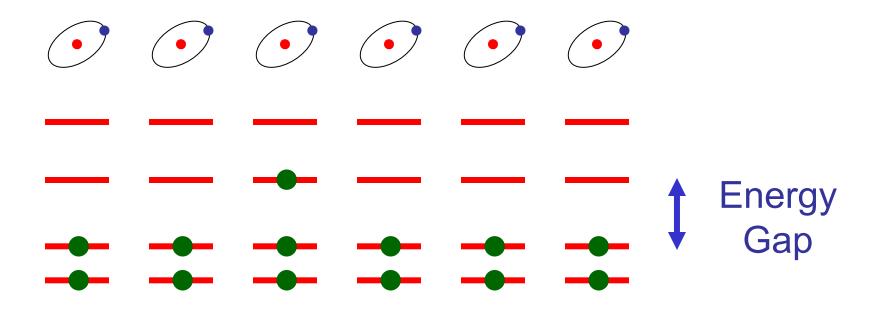


Accomplished by either

- Chemical doping
- Electrostatic doping (as in MOSFET)

Added electrons are mobile.

Add electrons to a semiconductor

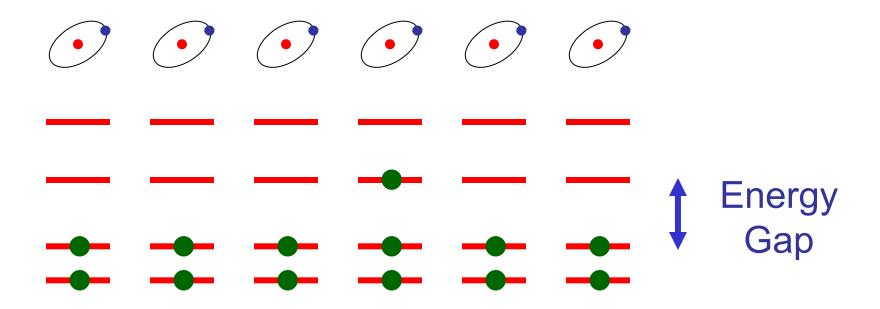


Accomplished by either

- Chemical doping
- Electrostatic doping (as in MOSFET)

Added electrons are mobile.

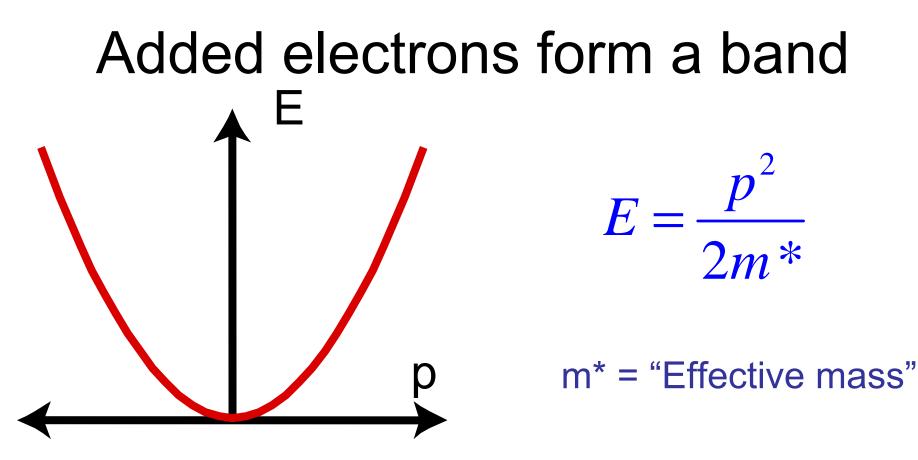
Add electrons to a semiconductor



Accomplished by either

- Chemical doping
- Electrostatic doping (as in MOSFET)

Added electrons are mobile.



Electrons in the "conduction band" behave just like ordinary electrons with charge e, but with a renormalized mass.

"Emergent quasiparticles at low energy"

"Holes" in the valence band

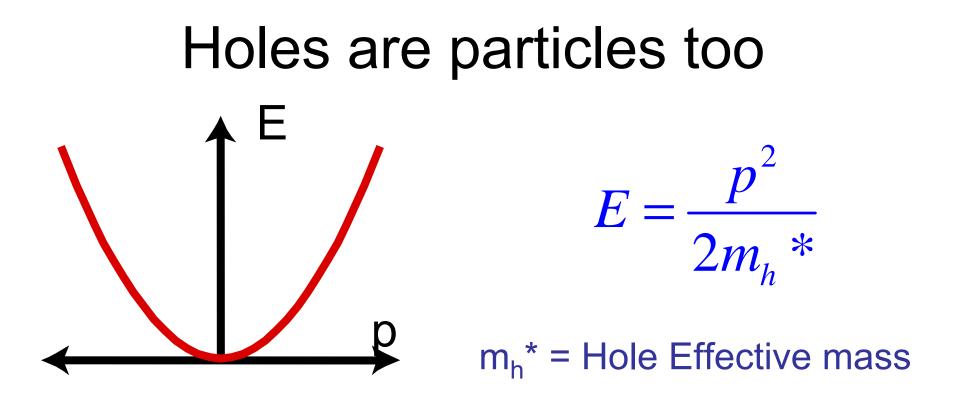
Added holes are mobile

"Holes" in the valence band Energy Gap

Added holes are mobile

"Holes" in the valence band Energy Gap ------

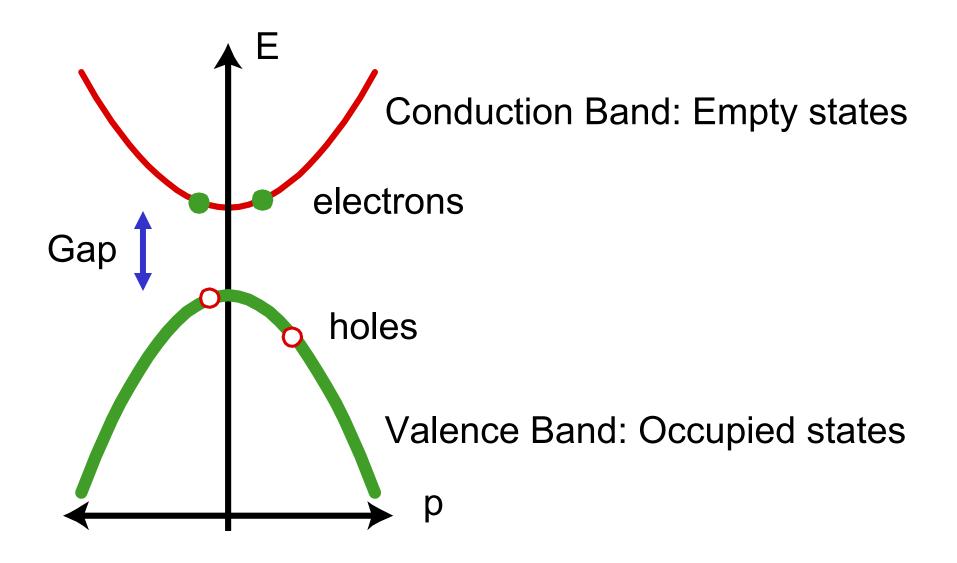
Added holes are mobile



Holes in the "valence band" behave just like ordinary particles with charge + e, with a mass m_h^* .

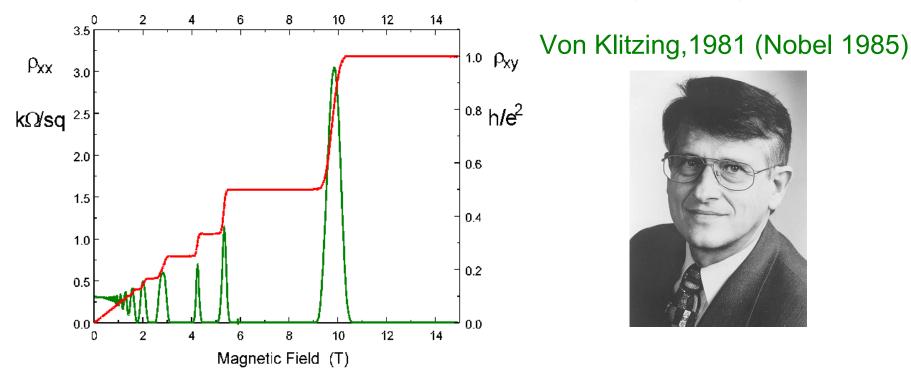
The sign of the charge of the carriers can be measured with the Hall effect.

Band Structure of a Semiconductor



The Quantized Hall Effect

Hall effect in 2DEG MOSFET at large magnetic field



• Quantization: $\rho_{xy} = R_Q / N$ N = integer accurate to 10⁻⁹!

- Quantum Resistance: $R_Q = h/e^2 = 25.812\ 807\ \mathrm{k}\Omega$
- Explained by quantum mechanics of electrons in a magnetic field

Quantization in a magnetic field

Cyclotron Motion: $\vec{F} = -e\vec{v} \times \vec{B}$ \mathbf{O} 1D Quantization argument: $F = evB = \frac{mv^2}{r} \qquad L = mvr = n\hbar$ Solve for r_n and $E_n(r_n, v_n)$ $E_n = \frac{eB}{2m}n\hbar = \frac{n}{2}\hbar\omega_c \qquad r_n = \sqrt{\frac{n\hbar}{eB}}$ Cyclotron frequency $\omega_c = \frac{eB}{eB}$ m Magnetic flux enclosed by orbit $\pi r_n^2 B = \frac{n\pi\hbar}{e} = \frac{n}{2}\phi_0$ Magnetic Flux $\phi_0 = \frac{h}{e}$ $=4.1 \times 10^{-15} Tm^{2}$

Landau Levels

1

Landau solved the 2D Schrodinger Equation for free particles in a magnetic field

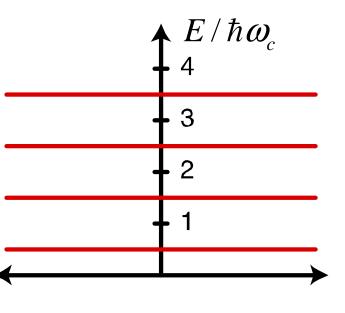
Closely related to the harmonic oscillator

$$E_n = \hbar \omega_c \left(n + \frac{1}{2} \right)$$

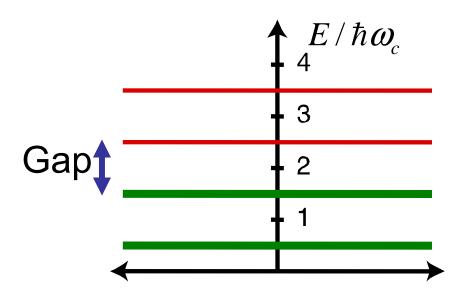
Each Landau level has one state per flux quantum

states = $\frac{\text{total flux}}{\text{flux quantum}} = \frac{B \times \text{Area}}{(h/e)}$

Lev Landau 1908-1968



Quantized Hall Effect



N filled Landau levels:

particles/area:

 $n = N \times \frac{\# \text{ flux quanta}}{\text{area}}$ $B = M \frac{eB}{M}$

$= N - \frac{D}{2}$	-N	
$= n \frac{1}{\phi_0}$	— <i>1</i> v	h

From last time:

$$\rho_{xy} = \frac{E_y}{J_x} = \frac{B}{ne}$$
$$\rho_{xy} = \frac{1}{N} \frac{h}{e^2}$$