
Quantum Transport in Solids

• Waves and particles in quantum mech.

• Quantization in atoms

• Insulators :  Energy gap

• Emergent particles in a solid

• Landau quantization in a magnetic field
and the quantum Hall effect



Light is a Wave
Hallmark of a wave :  Interference

constructive

destructive



Wave Particle Duality

A photon is a particle too



Electrons are Waves



Energy and Momentum

Max Planck 1858-1947

Louis de Broglie 1892-1987

Planck :  Energy ~ Frequency
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Dispersion Relation
Relation between

• Frequency and Wavelength
• Energy and Momentum 

For a photon:
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Quantization
Waves in a confined geometry have discrete modes
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Quantization of circular orbits

Circular orbits have quantized
angular momentum.
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Bohr Model

Niels Bohr 1885-1962

vL m r n= =
2 2

2

ve mF k
r r

= =

2/nE Ry n= −
2

0nr n a=

2 4

2 13.6 eV
2

mk eRy = =

2

0 2 .5a
mke

= = Å

• Two equations :

• Bohr radius :

• Rydberg energy:

• Solve for rn and En(rn,vn)

Explains line spectra of atoms



Flatland ...                           (1980’s)
Semiconductor Heterostructures :   “Top down technology”
→ Two dimensional electron gas (2DEG)

Ga As

AlxGa1-x As

2DEG
z

V(z)

∆E ~ 20 mV ~ 250°K

2D subband

conduction band
energy

Fabricated with atomic precision using MBE. 
1980’s - 2000’s :  advances in ultra high mobility samples  

z



Pauli Exclusion Principle

Wolfgang Pauli 1900-1958

Enrico Fermi 1901-1954

Electrons are “Fermions”:

Each quantum state can
accommodate at most one electron
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Insulator

Energy
Gap

An insulator is inert  because a finite energy 
is required to unbind an electron.

A semiconductor is an insulator with a small
energy gap.



Add electrons to a semiconductor

Energy
Gap

Accomplished by either

• Chemical doping 
• Electrostatic doping (as in MOSFET)

Added electrons are mobile.
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Added electrons form a band
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m* = “Effective mass”

Electrons in the “conduction band” behave just like
ordinary electrons with charge e, but with a 
renormalized mass.

“Emergent quasiparticles at low energy”



“Holes” in the valence band

Energy
Gap

Added holes are mobile
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“Holes” in the valence band

Energy
Gap

Added holes are mobile



Holes are particles too
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mh* = Hole Effective mass

Holes in the “valence band” behave just like
ordinary particles with charge + e, with a mass mh* .

The sign of the charge of the carriers can be 
measured with the Hall effect.



Band Structure of a Semiconductor

p

E

Valence Band: Occupied states

Conduction Band: Empty states

electrons

holes

Gap



The Quantized Hall Effect

Von Klitzing,1981 (Nobel 1985)

Hall effect in 2DEG MOSFET at large magnetic field

• Quantization:

• Quantum Resistance:

• Explained by quantum mechanics of electrons in a magnetic field
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N = integer accurate to 10-9 !



Quantization in a magnetic field
Cyclotron Motion:
1D Quantization argument:
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Cyclotron frequency

Magnetic flux 
enclosed by orbit

Solve for rn and En(rn,vn)
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Landau Levels

Lev Landau 1908-1968
1( )
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Landau solved the 2D Schrodinger
Equation for free particles in a 
magnetic field

Closely related to the harmonic oscillator 
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Each Landau level has one state
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Quantized Hall Effect
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