Quantum Theory of Graphene

- Graphene's electronic structure:

A quantum critical point

- Emergent relativistic quantum mechanics: The Dirac Equation
- Insights about graphene from relativistic QM Insights about relativistic QM from graphene
- Quantum Hall effect in graphene

Allotropes of elemental carbon

Graphene = A single layer of graphite

Graphene Electronic Structure

Carbon: $Z=6$; 4 valence electrons
3s,3p,3d (18 states)

Hopping on the Honeycomb

Textbook QM problem: Tight binding model on the Honeycomb lattice

Just like CJ's homework!

Hopping on the Honeycomb

$\pi=-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0$

Textbook QM problem: Tight binding model on the Honeycomb lattice

Just like CJ's homework!

Hopping on the Honeycomb

π $-\mathrm{O}-\mathrm{O}-\infty-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$

Textbook QM problem: Tight binding model on the Honeycomb lattice

Just like CJ's homework!

Electronic Structure

Metal

- Partially filled band
- Finite Density of States (DOS) at Fermi Energy

Semiconductor

- Filled Band
- Gap at Fermi Energy

Graphene A critical state

- Zero Gap Semiconductor
- Zero DOS metal

Semiconductor

$$
\begin{aligned}
& E_{c}=E_{c}^{0}-\frac{p^{2}}{2 m_{c}^{*}} \\
& E_{v}=E_{v}^{0}-\frac{p^{2}}{2 m_{v}^{*}}
\end{aligned}
$$

Graphene

$$
E= \pm \mathrm{v}_{F}|\vec{p}|
$$

"Fermi velocity"

$$
\mathrm{v}_{F}=8 \times 10^{5} \mathrm{~m} / \mathrm{s}
$$

Theory of Relativity

A stationary particle ($p=0$) has rest energy

$$
E=m c^{2}
$$

A particle in motion is described by the relativistic dispersion relation:

$$
E=\sqrt{\left(m c^{2}\right)^{2}+(c p)^{2}}
$$

Albert Einstein 1879-1955

Velocity:

$$
\mathrm{v}=\frac{\partial E}{\partial p}=c \frac{c p}{\sqrt{\left(m c^{2}\right)^{2}+(c p)^{2}}}
$$

Massive Particle (e.g. electron)

$$
E=\sqrt{\left(m c^{2}\right)^{2}+(c p)^{2}}
$$

Nonrelativistic limit ($\mathrm{v} \ll \mathrm{c}$)

$$
E \approx m c^{2}+\frac{p^{2}}{2 m}+\ldots
$$

Massless Particle (e.g. photon)

$$
\begin{gathered}
m=0 \\
E=c|p| \\
\mathrm{V}=c
\end{gathered}
$$

Wave Equation

$$
\left.E=\hbar \omega \sim i \hbar \frac{\partial}{\partial t} \quad ; \quad \vec{p}=\hbar k \sim-i \hbar \vec{\nabla} \quad \text { (e.g. } \psi=e^{i(k \cdot r-\omega t)}\right)
$$

Non relativistic particles: Schrodinger Equation

$$
E=\frac{p^{2}}{2 m} \Rightarrow i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi
$$

Relativistic particles: Klein Gordon Equation

$$
E^{2}=c^{2} p^{2}+m^{2} c^{4} \Rightarrow-\hbar^{2} \frac{\partial^{2} \psi}{\partial t^{2}}=\left(-\hbar^{2} c^{2} \nabla^{2}+m^{2} c^{4}\right) \psi
$$

In order to preserve particle conservation, quantum theory requires a wave equation that is first order in time.

Niels Bohr 1885-1958

Paul Dirac 1902-1984

Niels Bohr: "What are you working on Mr. Dirac?"

Paul Dirac : "I'm trying to take the square root of something"

Dirac's Solution (1928)

How can you take the square root of $p_{x}{ }^{2}+p_{y}{ }^{2}+m^{2}$ without taking a square root?

$$
\left(p_{x}^{2}+p_{y}^{2}+m^{2}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
m & p_{x}-i p_{y} \\
p_{x}+i p_{y} & -m
\end{array}\right)\left(\begin{array}{cc}
m & p_{x}-i p_{y} \\
p_{x}+i p_{y} & -m
\end{array}\right)
$$

$$
\sqrt{\left(p_{x}^{2}+p_{y}^{2}+m^{2}\right) I}=p_{x} \sigma_{x}+p_{y} \sigma_{y}+m \sigma_{z}
$$

"Dirac Matrices" : $\quad \sigma_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) ; \sigma_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right) ; \sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
$\underset{\text { Equation }}{\text { Dirac }} i \hbar \frac{\partial \psi}{\partial t}=\left[-i \hbar\left(\sigma_{x} \frac{\partial}{\partial x}+\sigma_{y} \frac{\partial}{\partial y}\right)+\sigma_{z} m\right] \psi \quad \psi=\binom{\psi_{A}}{\psi_{B}}$

Low Energy Electronic Structure of Graphene

The low energy electronic states in graphene are described by the Dirac equation for particles with

Mass :

$$
\mathrm{m}=0
$$

"Speed of light" $\quad c=v_{F}$

$$
\psi=\binom{\psi_{A}}{\psi_{B}} \begin{aligned}
& \text { sublattice A } \\
& \text { sublattice B }
\end{aligned}
$$

Emergent Dirac Fermions

Consequences of Dirac Equation

1. The existence of Anti Particles

$$
\begin{aligned}
& E= \pm \sqrt{\left(m c^{2}\right)^{2}+(c p)^{2}} \\
& \text { anti electron }=\text { positron }
\end{aligned}
$$

Massive Dirac Eq. ~ Semiconductor
Gap $2 \mathrm{~m}_{\mathrm{e}} \mathrm{c}^{2}$
Effective Mass $\mathrm{m}^{*}=\mathrm{m}_{\mathrm{e}}$
Anti Particles ~ Holes

Consequences of Dirac Equation

2. The existence of Spin

- Electrons have intrinsic angular momentum

$$
\underset{\text { Total a.m. Orbital a.m. Spin a.m. }}{J=L+S_{z}} \quad S_{z}= \pm \frac{\hbar}{2}
$$

- Electrons have permanent magnetic moment (responsible for magnetism)
- Interpretation natural for graphene

$$
\binom{\psi_{\uparrow}}{\psi_{\downarrow}} \sim\binom{\psi_{A}}{\psi_{B}} \quad \text { "pseudo spin" } \sim \text { sublattice index }
$$

Experiments on Graphene

- Gate voltage controls charge n on graphene (parallel plate capacitor)
- Ambipolar conduction: electrons or holes

Landau levels for classical particles

$$
E_{n}=\left(n+\frac{1}{2}\right) \frac{\hbar \mathrm{eB}}{\mathrm{~m}}
$$

for $n=0,1,2, \ldots$

Landau levels for relativistic particles

$$
E_{n}= \pm \sqrt{e \hbar v_{\mathrm{F}}^{2} B n}
$$

$$
\text { for } n=0,1,2, \ldots
$$

Existence of landau level at 0 is deeply related to spin in Dirac Eq.

