
Quantum Theory of Graphene

• Graphene’s electronic structure:  
A quantum critical point

• Emergent relativistic quantum mechanics:
The Dirac Equation

• Insights about graphene from relativistic QM
Insights about relativistic QM from graphene

• Quantum Hall effect in graphene



Allotropes of elemental carbon

Graphene = A single layer of graphite

3.4 Å1.4 Å



Graphene Electronic Structure
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• σ bonds: exceptional structural rigidity
• π electrons: allow conduction
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Carbon: Z=6 ; 4 valence electrons



Hopping on the Honeycomb

Textbook QM problem:  Tight binding model on
the Honeycomb lattice

π

sublattice A

sublattice B

unit cell

Just like CJ’s homework!
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Metal
• Partially filled band
• Finite Density of States

(DOS) at Fermi Energy

Semiconductor

Graphene  A critical state

• Filled Band
• Gap at Fermi Energy

Electronic Structure

• Zero Gap Semiconductor
• Zero DOS metal



Semiconductor Graphene
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Theory of Relativity

Albert Einstein 1879-1955

2E mc=
A stationary particle (p=0) has rest energy

A particle in motion is described by the 
relativistic dispersion relation:
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Massive Particle  (e.g. electron)
2 2 2( ) ( )E mc cp= +

Nonrelativistic limit (v<<c)
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Massless Particle  (e.g. photon)
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Wave Equation

Non relativistic particles:  Schrodinger Equation
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Relativistic particles:  Klein Gordon Equation
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In order to preserve particle conservation, quantum theory 
requires a wave equation that is first order in time.



Niels Bohr :   “What are you working on Mr. Dirac?”

Paul Dirac :  “I’m trying to take the square root of 
something”

Paul Dirac 1902-1984Niels Bohr 1885-1958



Dirac’s Solution   (1928)

How can you take the square root of px
2+py

2+m2

without taking a square root?
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Low Energy Electronic Structure of 
Graphene 

The low energy electronic states
in graphene are described by the
Dirac equation for particles with

Mass :                    m=0

“Speed of light” c = vF
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Emergent Dirac Fermions



Consequences of Dirac Equation
1.  The existence of Anti Particles

2 2 2( ) ( )E mc cp+±=

anti electron = positron

Massive Dirac Eq.  ~   Semiconductor 
Gap 2 mec2

Effective Mass m*=me

Anti Particles          ~    Holes



Consequences of Dirac Equation
2.  The existence of Spin

• Electrons have intrinsic angular momentum

• Electrons have permanent magnetic 
moment (responsible for magnetism)

• Interpretation natural for graphene
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Experiments on Graphene

• Gate voltage controls charge n on graphene
(parallel plate capacitor)

• Ambipolar conduction:  electrons or holes



Landau levels for classical particles
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Landau levels for relativistic particles
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Existence of landau level at 0 is deeply related to spin in Dirac Eq.
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