Topological Insulators and Superconductors

- Lecture #1: Topology and Band Theory
- Lecture #2: Topological Insulators in 2 and 3 dimensions
- Lecture #3: Topological Superconductors, Majorana Fermions an Topological quantum compution

General References :

M.Z. Hasan and C.L. Kane, RMP in press, arXiv:1002.3895 X.L. Qi and S.C. Zhang, Physics Today 63 33 (2010). J.E. Moore, Nature 464, 194 (2010).

My collaborators :

Gene Mele, Liang Fu, Jeffrey Teo, Zahid Hasan

Topology and Band Theory

- I. Introduction
 - Insulating State, Topology and Band Theory
- II. Band Topology in One Dimension
 - Berry phase and electric polarization
 - Su Schrieffer Heeger model :
 - domain wall states and Jackiw Rebbi problem
 - Thouless Charge Pump
- III. Band Topology in Two Dimensions
 - Integer quantum Hall effect
 - TKNN invariant
 - Edge States, chiral Dirac fermions
- IV. Generalizations
 - Bulk-Boundary correspondence
 - Higher dimensions
 - Topological Defects

The Insulating State

Characterized by energy gap: absence of low energy electronic excitations

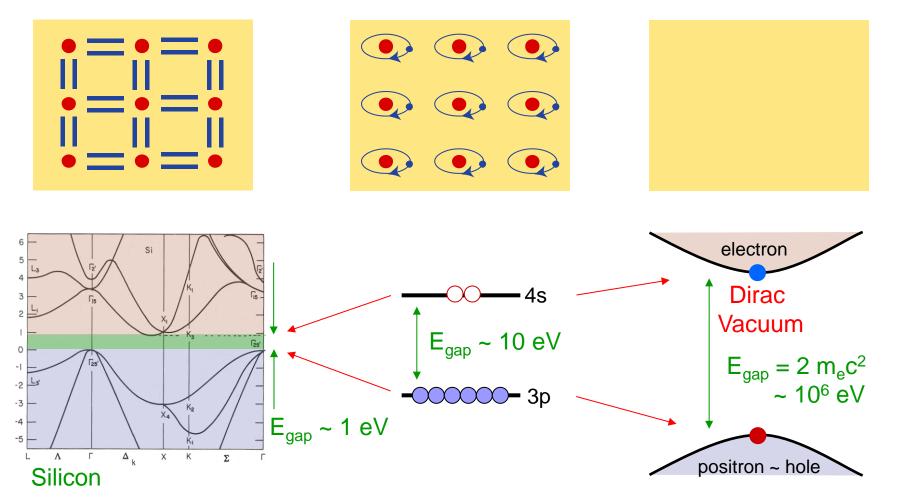
Covalent Insulator

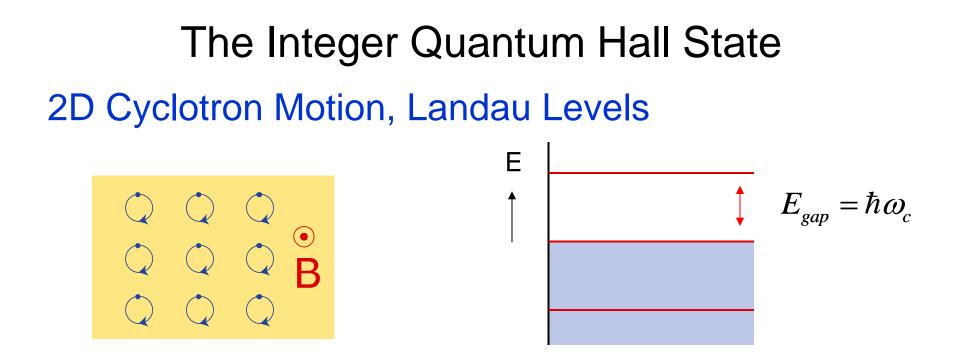
e.g. intrinsic semiconductor

Atomic Insulator

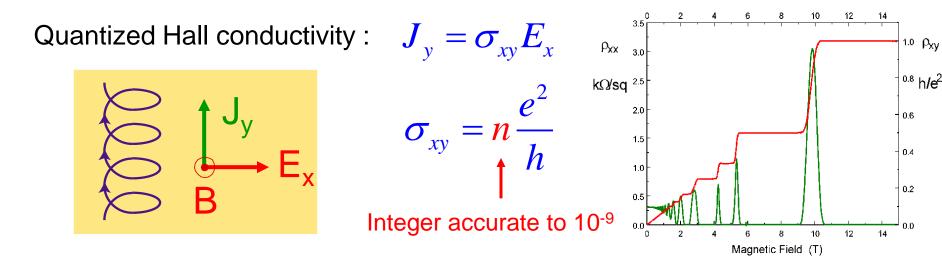
e.g. solid Ar

The vacuum





Energy gap, but NOT an insulator

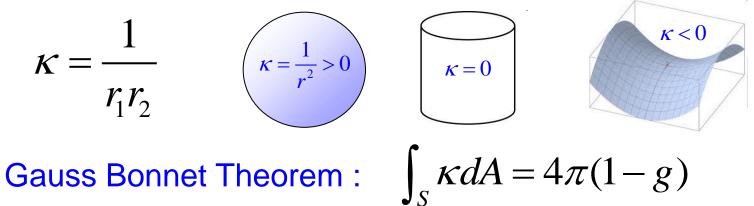


Topology

The study of geometrical properties that are insensitive to smooth deformations Example: 2D surfaces in 3D

A closed surface is characterized by its genus, g = # holes

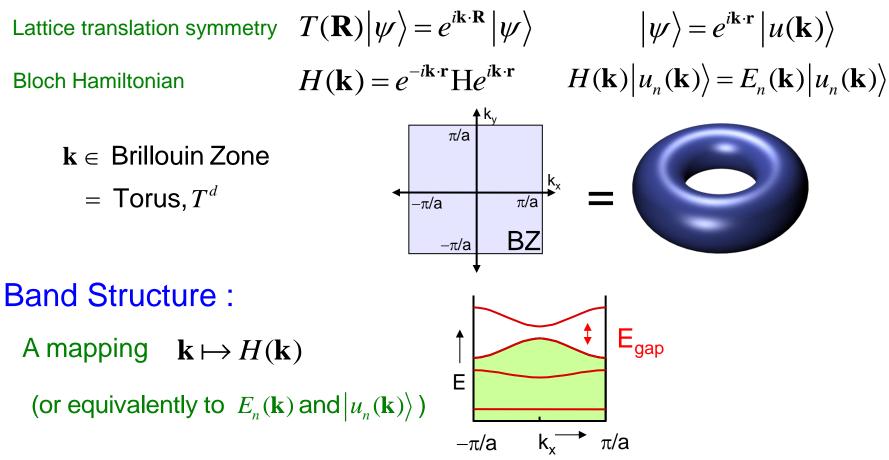
g is an integer topological invariant that can be expressed in terms of the gaussian curvature κ that characterizes the local radii of curvature



A good math book : Nakahara, 'Geometry, Topology and Physics'

Band Theory of Solids

Bloch Theorem :



Topological Equivalence : adiabatic continuity

Band structures are equivalent if they can be continuously deformed into one another without closing the energy gap

Berry Phase

Phase ambiguity of quantum mechanical wave function

$$u(\mathbf{k})\rangle \rightarrow e^{i\phi(\mathbf{k})}|u(\mathbf{k})\rangle$$

Berry connection : like a vector potential $\mathbf{A} = -i \langle u(\mathbf{k}) | \nabla_{\mathbf{k}} | u(\mathbf{k}) \rangle$

$$\mathbf{A} \to \mathbf{A} + \nabla_{\mathbf{k}} \phi(\mathbf{k})$$

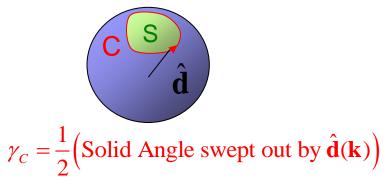
Berry phase : change in phase on a closed loop C $\gamma_C = \oint_C \mathbf{A} \cdot d\mathbf{k}$

Berry curvature :
$$\mathbf{F} = \nabla_{\mathbf{k}} \times \mathbf{A}$$
 $\gamma_C = \int_S \mathbf{F} d^2 k$

Famous example : eigenstates of 2 level Hamiltonian

$$H(\mathbf{k}) = \mathbf{d}(\mathbf{k}) \cdot \vec{\sigma} = \begin{pmatrix} d_z & d_x - id_y \\ d_x + id_y & -d_z \end{pmatrix}$$

 $H(\mathbf{k})|u(\mathbf{k})\rangle = +|\mathbf{d}(\mathbf{k})||u(\mathbf{k})\rangle$



Topology in one dimension : Berry phase and electric polarization

see, e.g. Resta, RMP 66, 899 (1994)

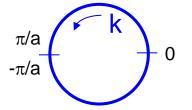
Electric Polarization

$$P = \frac{\text{dipole moment}}{\text{length}} \quad \nabla \cdot P = \rho_b \qquad -Q \bigcirc 1D \text{ insulator} +Q$$

The end charge is not completely determined by the bulk polarization P because integer charges can be added or removed from the ends :

Polarization as a Berry phase :

$$P = \frac{e}{2\pi} \oint A(k) dk$$



 $Q = P \mod e$

P is **not** gauge invariant under "large" gauge transformations. This reflects the end charge ambiguity

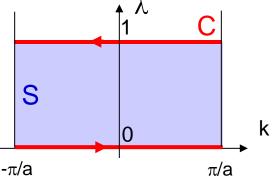
$$P \rightarrow P + en$$
 when $|u(k)\rangle \rightarrow e^{i\phi(k)}|u(k)\rangle$ with $\phi(\pi/a) - \phi(-\pi/a) = 2\pi n$

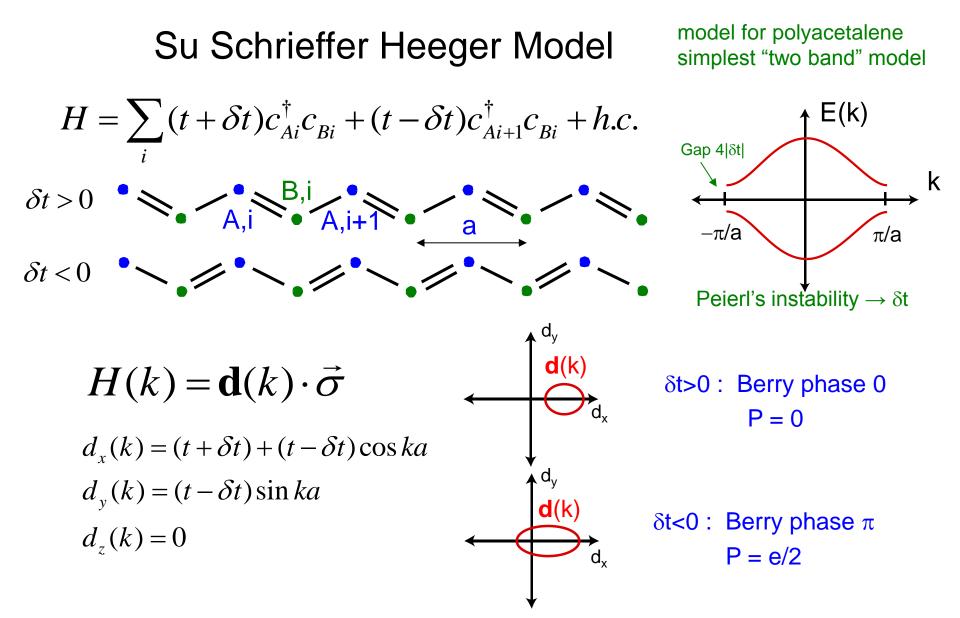
Changes in P, due to adiabatic variation are well defined and gauge invariant

$$|u(k)\rangle \rightarrow |u(k,\lambda(t))\rangle$$

$$\Delta P = P_{\lambda=1} - P_{\lambda=0} = \frac{e}{2\pi} \oint_C \mathbf{A} dk = \frac{e}{2\pi} \int_S \mathbf{F} dk d\lambda$$

gauge invariant Berry curvature





Provided symmetry requires $d_z(k)=0$, the states with $\delta t>0$ and $\delta t<0$ are topologically distinct. Without the extra symmetry, all 1D band structures are topologically equivalent.

Domain Wall States

An interface between different topological states has topologically protected midgap states

Low energy continuum theory : For small δt focus on low energy states with k~ π/a

$$k \rightarrow \frac{\pi}{a} + q$$
; $q \rightarrow -i\partial_x$

$$H = -i \mathsf{V}_F \sigma_x \partial_x + m(x) \sigma_y$$

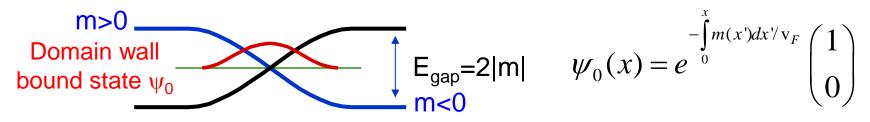
Massive 1+1 D Dirac Hamiltonian

$$E(q) = \pm \sqrt{\left(\mathsf{V}_F q\right)^2 + m^2}$$

 $V_F = ta$; $m = 2\delta t$

"Chiral" Symmetry: $\{\sigma_z, H\} = 0 \rightarrow \sigma_z |\psi_E\rangle = |\psi_{-E}\rangle$ Any eigenstate at +E has a partner at -E

Zero mode : topologically protected eigenstate at E=0 (Jackiw and Rebbi 76, Su Schrieffer, Heeger 79)



Thouless Charge Pump

The integer charge pumped across a 1D insulator in one period of an adiabatic cycle is a topological invariant that characterizes the cycle.

$$H(k,t+T) = H(k,t)$$

$$t=0$$

$$t=0$$

$$P=0$$

$$P=0$$

$$P=e$$

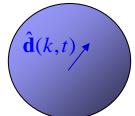
$$\Delta P = \frac{e}{2\pi} \left(\oint A(k,T) dk - \oint A(k,0) dk \right) = ne$$

$$n = \frac{1}{2\pi} \int_{T^2} \mathbf{F} dk dt$$

The integral of the Berry curvature defines the first Chern number, n, an integer topological invariant characterizing the occupied Bloch states, $|u(k,t)\rangle$

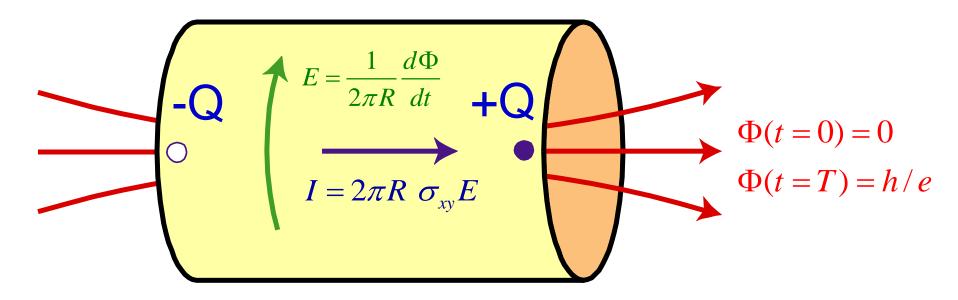
In the 2 band model, the Chern number is related to the solid angle swept out by $\hat{\mathbf{d}}(k,t)$, which must wrap around the sphere an integer n times.

$$n = \frac{1}{4\pi} \int_{T^2} dk dt \, \hat{\mathbf{d}} \cdot (\partial_k \hat{\mathbf{d}} \times \partial_t \hat{\mathbf{d}})$$



Integer Quantum Hall Effect : Laughlin Argument

Adiabatically thread a quantum of magnetic flux through cylinder.



$$\Delta Q = \int_{0}^{T} \sigma_{xy} \frac{d\Phi}{dt} dt = \sigma_{xy} \frac{h}{e}$$

Just like a Thouless pump : $H(T) = U^{\dagger}H(0)U$

$$\Delta Q = ne \quad \rightarrow \quad \sigma_{xy} = n \frac{e^2}{h}$$

TKNN Invariant

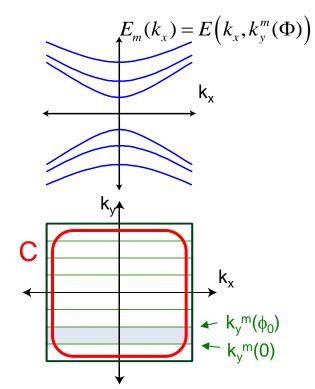
Thouless, Kohmoto, Nightingale and den Nijs 82

View cylinder as 1D system with subbands labeled by $k_y^m(\Phi) = \frac{1}{R} \left(m + \frac{\Phi}{\phi_0} \right)$

$$\Delta Q = \sum_{m} \frac{e}{2\pi} \int_{0}^{\phi_{0}} d\Phi \int dk_{x} \mathbf{F}\left(k_{x}, k_{y}^{m}(\Phi)\right) = ne$$

TKNN number = Chern number

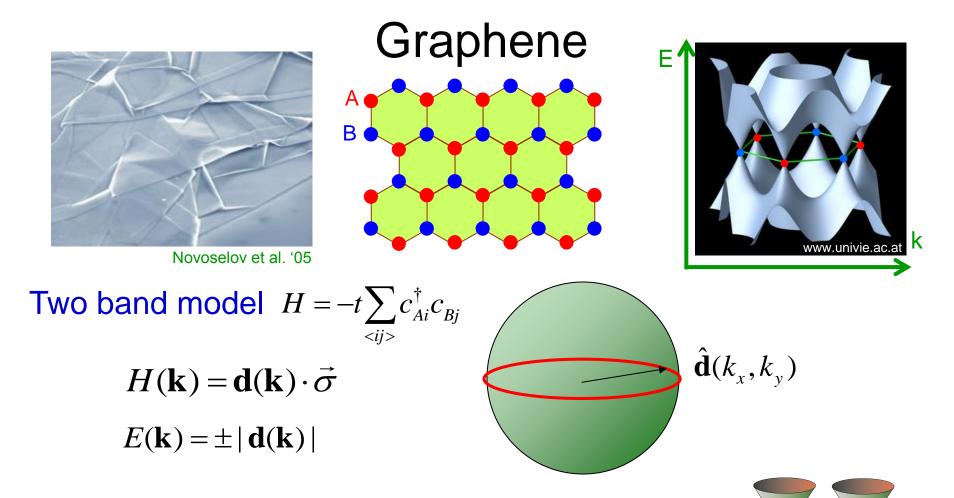
$$n = \frac{1}{2\pi} \int_{BZ} d^2 k \mathbf{F}(\mathbf{k}) = \frac{1}{2\pi} \oint_C \mathbf{A} \cdot d\mathbf{k}$$



Distinguishes topologically distinct 2D band structures. Analogous to Gauss-Bonnet thm.

 $\sigma_{xy} = n \frac{e^2}{h}$

Alternative calculation: compute σ_{xy} via Kubo formula



-K

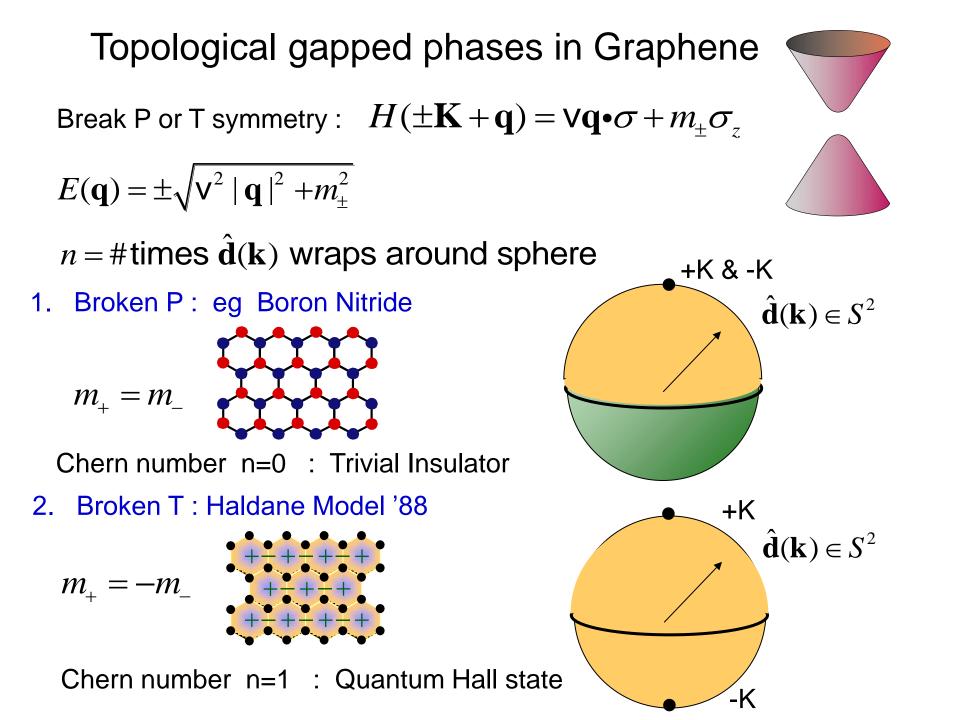
΄+Κ

Inversion and Time reversal symmetry require $d_{z}(\mathbf{k}) = 0$

2D Dirac points at $\mathbf{k} = \pm \mathbf{K}$: point zeros in (d_x, d_y)

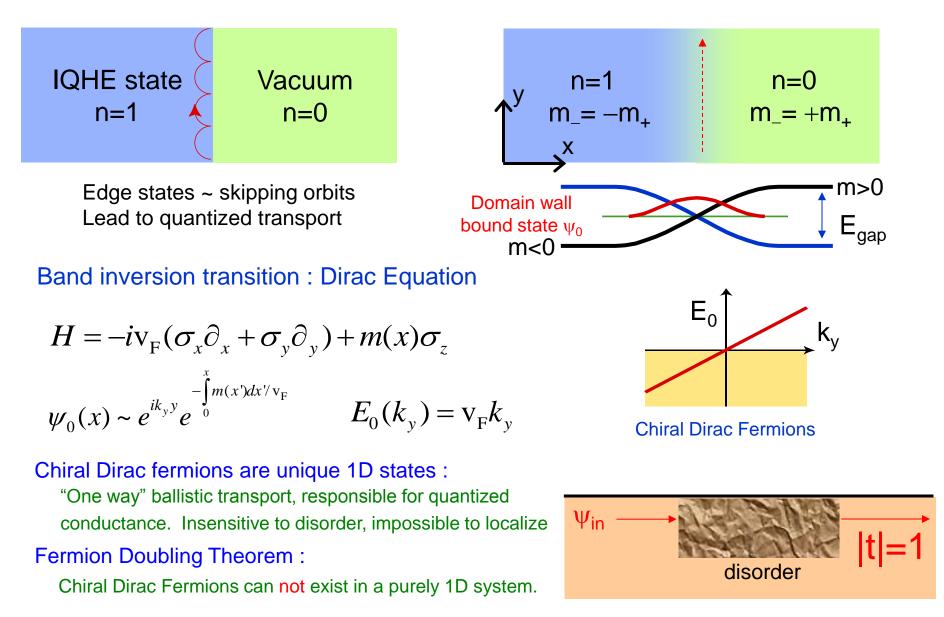
 $H(\pm \mathbf{K} + \mathbf{q}) = \mathbf{V}\vec{\sigma} \cdot \mathbf{q}$ Massless Dirac Hamiltonian

Berry's phase π around Dirac point



Edge States

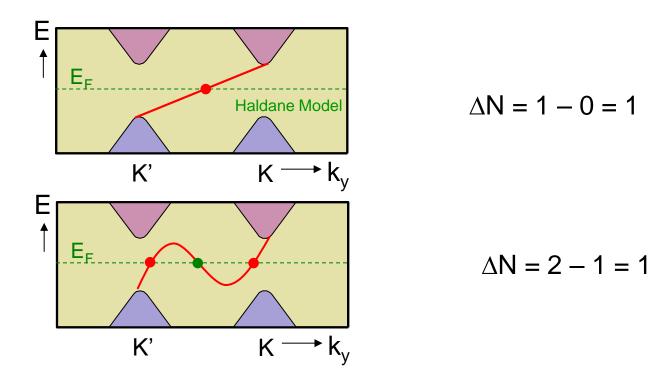
Gapless states at the interface between topologically distinct phases



Bulk - Boundary Correspondence

 $\Delta N = N_R - N_L$ is a topological invariant characterizing the boundary.

 $N_R (N_L) = #$ Right (Left) moving chiral fermion branches intersecting E_F



The boundary topological invariant ΔN characterizing the gapless modes

Difference in the topological invariants Δn characterizing the bulk on either side

Generalizations

d=4: 4 dimensional generalization of IQHE Zhang, Hu '01

 $\mathbf{A}_{ij} = \langle u_i(\mathbf{k}) | \nabla_{\mathbf{k}} | u_j(\mathbf{k}) \rangle \cdot d\mathbf{k} \quad \text{Non-Abelian Berry connection 1-form}$

 $\mathbf{F} = d\mathbf{A} + \mathbf{A} \wedge \mathbf{A}$ Non-Abelian Berry curvature 2-form

 $n = \frac{1}{8\pi^2} \int_{T^4} \text{Tr}[\mathbf{F} \wedge \mathbf{F}] \in \mathbb{Z}$ 2nd Chern number = integral of 4-form over 4D BZ

Boundary states : 3+1D Chiral Dirac fermions

Higher Dimensions : "Bott periodicity" $d \rightarrow d+2$

	d							
	1	2	3	4	5	6	7	8
no symmetry	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
chiral symmetry	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0

Topological Defects

Consider insulating Bloch Hamiltonians that vary slowly in real space

Teo, Kane '10

$$H = H(\mathbf{k}, S)$$

1 parameter family of 3D Bloch Hamiltonians
2nd Chern number : $n = \frac{1}{8\pi^2} \int_{T^3 \times S^1} \text{Tr}[\mathbf{F} \wedge \mathbf{F}]$

Generalized bulk-boundary correspondence :

n specifies the number of chiral Dirac fermion modes bound to defect line

Example : dislocation in 3D layered IQHE

$$n = \frac{1}{2\pi} \mathbf{G}_c \cdot \mathbf{B}$$

3D Chern number (vector ⊥ layers)

Burgers' vector

Are there other ways to engineer 1D chiral dirac fermions?