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- Edge States, chiral Dirac fermions
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The Insulating State

Characterized by energy gap: absence of low energy electronic excitations

Covalent Insulator Atomic Insulator The vacuum
e.g. intrinsic semiconductor e.g. solid Ar
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The Integer Quantum Hall State

2D Cyclotron Motion, Landau Levels
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Topology

The study of geometrical properties that are insensitive to smooth deformations
Example: 2D surfaces in 3D

A closed surface is characterized by its genus, g = # holes

b

~

g is an integer topological invariant that can be expressed in terms of the
gaussian curvature k that characterizes the local radii of curvature

1 3
K=— =0 i

Gauss Bonnet Theorem : L KdA = 471(1— g)

A good math book : Nakahara, ‘Geometry, Topology and Physics’



Band Theory of Solids

Bloch Theorem :
Lattice translation symmetry T (R) ‘ l//> =R ‘l//> |W> =" |U(k)>
Bloch Hamiltonian H (k) =e " "He™*" H (k) | u, (k)> =E, (k) | u, (k)>
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Band Structure :
\./¢
A mapping K+ H(k) T | Bgap
c—
(or equivalently to E, (k) and|u,(k)))

—n/a k, = mla

Topological Equivalence : adiabatic continuity

Band structures are equivalent if they can be continuously deformed
Into one another without closing the energy gap



Berry Phase

Phase ambiguity of quantum mechanical wave function
lu(k)) > " |u(k))
Berry connection : like a vector potential A =—i(u(k)|V, |u(k))

A—>A+V, ¢(k)
Berry phase : change in phase on a closed loop C ¢ = Cﬁc A-dk

Berry curvature: F=V, xA Ve = L Fd“k

Famous example : eigenstates of 2 level Hamiltonian

H(K) =d(k)-& d.  dc-d,
(k)y=d(k)-o= d,+id, —d,

H(K)|u(k)) = +|d(K)||u(k)) Ve = %(Solid Angle swept out by a(k))



Topology in one dimension : Berry phase and electric polarization

i i ) see, e.g. Resta, RMP 66, 899 (1994)
Electric Polarization

P dipole moment 1D insulator

. — - —
length V-P=p, Q *Q

The end charge is not completely determined by the bulk polarization P _p d
because integer charges can be added or removed from the ends : Q =F mod e

Polarization as a Berry phase: P = icﬁ A(k)dk
27

n/a
/a 0
=T
P is not gauge invariant under “large” gauge transformations.
This reflects the end charge ambiguity
P—o>P+en when [uk)—e’“uk)) with ¢(z/a)—@(-z/a)=2zn
Changes in P, due to adiabatic variation are well defined and gauge invariant
Y
\u(k)) —>\u(k,/1(t))> < 1 C
€ e
AP=P,_ —P_,=—¢ Adk=——| Fdkdi |g
21 J¢C 27T S y
0
gauge invariant Berry curvature \j < > g

-m/a m/a



Su Schrieffer Heeger Model — [oonoipovacesiens

simplest “two band” model

H= Z (t+ot)chc, +(t—aot)ch. . c. +he. t E(K)
Gap 4|5t
St>0 *xn 0B 0L ' ' <\: \ ;k
\ A\ AH_l\. a\‘ \. —n/a\/n/a
<0 '\ 2\, 2N\, 2 N2, |
° ¢ ¢ Peierl’s instability — ot
4 dy
— K
H (k) = d(k) O ) /(\)‘ 5t>0 : Berry phase O
)y X, P =0
d, (k) = (t+ot) + (t —ot)coska !
d, (k) = (t— 6t)sinka ‘*gy(k)
ot<0 : Berry phase n
— A
d,(k)=0 —" P = o/

Provided symmetry requires d,(k)=0, the states with 5t>0 and 6t<0 are topologically distinct.
Without the extra symmetry, all 1D band structures are topologically equivalent.



Domain Wall States

An interface between different topological states has topologically protected midgap states

e Ot >O/ ot<0 o .
F N F N, %. N,
Low energy continuum theory :

T :
For small 6t focus on low energy states with k~mn/a K—>—+q; q— 10,

a

H=—-lv,o 0, +m(X)o,  v.=ta;m=2st

Massive 1+1 D Dirac Hamiltonian  E(q) :i\/(VFq)Z +m?

« T . Any eigenstate at +E
Chiral” Symmetry : {& H}=0 — o,lwe)=lw ) hagagarmerat_E

Zero mode : topologically protected eigenstate at E=0
(Jackiw and Rebbi 76, Su Schrieffer, Heeger 79)

m>0

Soma ” Im(x)dx/v,; 1

omain wa B

bound state v, SZ I w=2lm|  Yo(X)=e°? (O]
m<0




Thouless Charge Pump

The integer charge pumped across a 1D insulator in one period of an adiabatic cycle
Is a topological invariant that characterizes the cycle.

H(k,t+T) =H (k1) \ \ \ \ \ \ N

A

t=T
.

e

AP=§(98A(k,T)dk—<j>A(k,0)dk)=ne N -
< - >

1 -n/a m/a
n=-——{ Fdkdt

2T

The integral of the Berry curvature defines the first Chern number, n, an integer
topological invariant characterizing the occupied Bloch states, >

In the 2 band model, the Chern number is related to the solid angle swept out by a(k,t),
which must wrap around the sphere an integer n times.

1 . . .
n= [ .dkdt d-(2,dxa,d)




Integer Quantum Hall Effect : Laughlin Argument

Adiabatically thread a quantum of magnetic flux through cylinder.

d(t=0)=0
d(t=T)=h/e

Just like a Thouless pump: H(T)=U'H(0)U

eZ

AQ=ne — ny=”F



TKNN Invariant

Thouless, Kohmoto, Nightingale and den Nijs 82

View cylinder as 1D system with subbands labeled by k' (@) = %(m+§)
0
\%(k/)= E(kx,ky(qa))
"
AQ:ZZijdq>jdkxF(kx,k;“(q>))=ne \/k
m T 0 < >
. T
TKNN number = Chern number o, = nF Kyp
C
1 2 1 < o
n=_- | d kF(k)_gcﬁcA-dk . e
o “ k")

Distinguishes topologically distinct 2D band structures. Analogous to Gauss-Bonnet thm.

Alternative calculation: compute o,, via Kubo formula



Graphene .
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Novoselov et al. ‘05

Two band model H =-t> cjc,

<ij>

H(K) =d(K) & ek, k,)

E(k) =%[d(k)|

Inversion and Time reversal symmetry require d (k) =0 K WiK
2D Dirac points at k =+K: point zerosin (d,,d,)
H (iK + Q) =Vo-( Massless Dirac Hamiltonian

Berry’'s phase © around Dirac point




Topological gapped phases in Graphene v

Break P or T symmetry : H (K +q) =vQeoc +m,o,

E(q) = +V? |q[? +m? A

n =#times d(k) wraps around sphere 1K & K

1. Broken P : eg Boron Nitride ma(k) cS?2
m =m /
Chern number n=0 : Trivial Insulator

2. Broken T : Haldane Model '88 +K

e®e%e®e®e /‘\" 2
B LA ELE] dlkyes
M= el
elelelele
Chern number n=1 : Quantum Hall state <



Edge States

Gapless states at the interface between topologically distinct phases

IQHE state Vacuum n=1 | n=0

y |
n=1 n=0 m_=-m, o m_=+m,
X i
Edge states ~ skipping orbits Domain Wa% m>0
Lead to quantized transport I
bound ns}tg’g: Vo Egap

Band inversion transition : Dirac Equation

E P N
H =-iv, (6,0, +7,0,) + M(X)o, °
—Xm(x')dx'/vF

wo(x) ~e“e E, (k) =Vek,

Chiral Dirac Fermions

Chiral Dirac fermions are unique 1D states :
“One way” ballistic transport, responsible for quantized :
conductance. Insensitive to disorder, impossible to localize Vin — A

Fermion Doubling Theorem :
Chiral Dirac Fermions can not exist in a purely 1D system.



Bulk - Boundary Correspondence

AN = N - N, Is a topological invariant characterizing the boundary.

N (N,) = # Right (Left) moving chiral fermion branches intersecting E.

Haldane Model AN=1-0=1

K’ K—* ky
AN=2-1=1
K=Kk,
Bulk — Boundary Correspondence :
The boundary topological invariant _Difference in the topological invariants

AN characterizing the gapless modes ~  An characterizing the bulk on either side



Generalizations

d=4 : 4 dimensional generalization of IQHE  Zhang, Hu ‘01

A = (u,(K)|Vy ‘uj (k)>-dk Non-Abelian Berry connection 1-form

F=dA+AAA Non-Abelian Berry curvature 2-form
1

n= 8—ZIT4 Tr[FAF]leZ 2nd Chern number = integral of 4-form over 4D BZ
T

Boundary states . 3+1D Chiral Dirac fermions

Higher Dimensions : “Bott periodicity” d — d+2

d
1 2 3 4 5 6 7T 8
nosymmety O Z 0 Z 0 Z 0 Z
chiral symmetry 7 0 7 0 7. 0 7. 0




Topological Defects

Consider insulating Bloch Hamiltonians that vary slowly in real space

Teo, Kane “10
H =H(k,s)
1 parameter family of 3D Bloch Hamiltonians
1 defect line
2nd Chern number: N =— Tr[F AF]
872'2 T3xS?

Generalized bulk-boundary correspondence :
n specifies the number of chiral Dirac fermion modes bound to defect line

Example : dislocation in 3D layered IQHE
1

— G . B 3D Chern number
T (vector | layers)
27T

Are there other ways to engineer Burgers’ vector ‘-
1D chiral dirac fermions? e



