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The Insulating State 

Covalent Insulator 

Characterized by energy gap: absence of low energy electronic excitations 

The vacuum Atomic Insulator 

e.g. solid Ar 

Dirac  

Vacuum 
Egap ~ 10 eV 

e.g. intrinsic semiconductor 

Egap ~ 1 eV 

3p 

4s 

Silicon 

Egap = 2 mec
2  

       ~ 106 eV 

electron 

positron ~ hole 



The Integer Quantum Hall State 

2D Cyclotron Motion, Landau Levels 

Quantized Hall conductivity : 
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Integer accurate to 10-9 
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Topology  
The study of geometrical properties that are insensitive to smooth deformations 

Example:  2D surfaces in 3D 

A closed surface is characterized by its genus, g = # holes 

g=0 g=1 

g is an integer topological invariant that can be expressed in terms of the  

gaussian curvature k that characterizes the local radii of curvature 
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Gauss Bonnet Theorem :  
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A good math book :   Nakahara, ‘Geometry, Topology and Physics’ 



Band Theory of Solids 

Bloch Theorem :    
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k Brillouin Zone  

   Torus, 

Topological Equivalence :  adiabatic continuity 

( ) ( )n nE uk k(or equivalently to   and  )

Band structures are equivalent if they can be continuously deformed  

into one another without closing the energy gap 

Band Structure :    
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Berry Phase 

Phase ambiguity of quantum mechanical wave function 
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Topology in one dimension : Berry phase and electric polarization 

Electric Polarization 

+Q -Q 
1D insulator 

The end charge is not completely determined by the bulk polarization P 

because integer charges can be added or removed from the ends  :  

Polarization as a Berry phase : ( )
2
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P is not gauge invariant under “large” gauge transformations.  

This reflects the end charge ambiguity  

( )( ) ( )i ku k e u kP P en  ( / ) ( / ) 2a a n      

see, e.g. Resta, RMP 66, 899 (1994)  

Changes in P, due to adiabatic variation are well defined and gauge invariant 
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Su Schrieffer Heeger Model 
model for polyacetalene 

simplest “two band” model 
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Provided symmetry requires dz(k)=0, the states with t>0 and t<0 are topologically distinct. 

Without the extra symmetry, all 1D band structures are topologically equivalent. 

A,i 
B,i 

t>0 :  Berry phase 0 

P = 0 

t<0 :  Berry phase  

P = e/2 

Gap 4|t| 

Peierl’s instability → t 

A,i+1 



Domain Wall States 
An interface between different topological states has topologically protected midgap states 

Low energy continuum theory : 

  For small t focus on low energy states with k~/a  xk q q i
a
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Massive 1+1 D Dirac Hamiltonian 

“Chiral” Symmetry : 
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Egap=2|m| 
Domain wall 

bound state 0 

m>0 

m<0 

2 2( ) ( )vFE q q m  

Zero mode :   topologically protected eigenstate at E=0 

                       (Jackiw and Rebbi 76, Su Schrieffer, Heeger 79) 

Any eigenstate at +E  

has a partner at -E 



Thouless Charge Pump 
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The integral of the Berry curvature defines the first Chern number, n, an integer  

topological invariant characterizing the occupied Bloch states, ( , )u k t

In the 2 band model, the Chern number is related to the solid angle swept out by 

which must wrap around the sphere an integer n times. 
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The integer charge pumped across a 1D insulator in one period of an adiabatic  cycle  

is a topological invariant that characterizes the cycle. 



Integer Quantum Hall Effect :  Laughlin Argument 

Adiabatically thread a quantum of magnetic flux through cylinder. 
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TKNN Invariant 
Thouless, Kohmoto, Nightingale and den Nijs  82 

View cylinder as 1D system with subbands labeled by 
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Distinguishes topologically distinct 2D band structures.  Analogous to Gauss-Bonnet thm. 

 

Alternative calculation:  compute xy via Kubo formula 
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Graphene E 
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Two band model  

Novoselov et al. ‘05 
www.univie.ac.at  
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Inversion and Time reversal symmetry require ( ) 0zd k

2D Dirac points at             :   point zeros in ( , )x yd d
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 k K

-K +K 

Berry’s phase  around Dirac point 

A 

B 

†

Ai Bj

ij

H t c c
 

  



Topological gapped phases in Graphene 

1.   Broken P :  eg  Boron Nitride  

( ) v zH m    K q q

ˆ# ( )n  d ktimes  wraps around sphere

m m 

Break P or T symmetry :    

2 2 2( ) | |vE m  q q

Chern number  n=0   :  Trivial Insulator 

2.   Broken T : Haldane Model ’88 
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Chern number  n=1   :  Quantum Hall state 
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Edge States 
Gapless states at the interface between topologically distinct phases 

IQHE state 

n=1 

Egap 

Domain wall 

bound state 0 
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Vacuum 

n=0 

Edge states ~ skipping orbits 

Lead to quantized transport 

Chiral Dirac fermions are unique 1D states :   
     “One way” ballistic transport, responsible for quantized  

     conductance.  Insensitive to disorder, impossible to localize 

Fermion Doubling Theorem :  

    Chiral Dirac Fermions can not exist in a purely 1D system.  
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Band inversion transition : Dirac Equation 
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Chiral Dirac Fermions 
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Bulk - Boundary Correspondence 

Bulk – Boundary Correspondence : 

NR (NL) = # Right (Left) moving chiral fermion branches intersecting EF 

N = NR - NL is a topological invariant characterizing the boundary.   

N = 1 – 0 = 1 

N = 2 – 1 = 1 
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Haldane Model 
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The boundary topological invariant  

N characterizing the gapless modes 
Difference in the topological invariants 

n characterizing the bulk on either side = 



Generalizations 

Higher Dimensions :  “Bott periodicity”   d → d+2 

d=4 :  4 dimensional generalization of IQHE 
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Boundary states :  3+1D Chiral Dirac fermions 

Non-Abelian Berry connection 1-form 

Non-Abelian Berry curvature 2-form 

2nd Chern number  =  integral of 4-form over 4D BZ 

no symmetry 

chiral symmetry 

Zhang, Hu ‘01 



Topological Defects 
Consider insulating Bloch Hamiltonians that vary slowly in real space  

defect line 
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Generalized bulk-boundary correspondence : 

   n specifies the number of chiral Dirac fermion modes bound to defect line 

1 parameter family of 3D Bloch Hamiltonians 

Example : dislocation in 3D layered IQHE 
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Burgers’ vector 

3D Chern number 

(vector ┴ layers) 

Are there other ways to engineer 

1D chiral dirac fermions? 

Teo, Kane ‘10 


