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General validity of Jastrow-Laughlin wave functions
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We construct a class of interacting-boson Hamiltonians whose exact ground-state wave functions
are of Jastrow form. These Hamiltonians generally have both two- and three-body interactions;
however, we show that the three-body interaction does not affect the long-wavelength physics. This
enables us to deduce that (a) for Coulomb interacting bosons at 7=0 the lower critical dimension is
d,=2; (b) in two dimensions, the ground-state wave function has the form of the modulus of the
Laughlin wave function and exhibits algebraic long-range order; and (c) for short-range repulsions,
we obtain a simple expression for the sound velocity. We also show that the Laughlin wave func-
tion is the generic ground-state wave function for fermions in a magnetic field corresponding to a

filling factor of v=1/g.

A fruitful approach to some many-body problems is to
write down a wave function, which has much of the anti-
cipated physics built in, and ask the following question:
For what kind of Hamiltonian #,, is this wave function
the exact ground state? Hopefully, %, can be shown to
be perturbatively connected to the Hamiltonian # which
one sets out to solve. In particular, if one can show that
by writing #=%,+V, the “perturbation” ¥V does not
change the long-distance physics, then one can say that V'
is an “irrelevant” perturbation and therefore #, faithful-
ly represents the dynamics of the problem in the regime
of physical interest. In this sense, the proposed ground
state solves the problem.

In this paper, we apply this type of reasoning to
interacting-boson systems. In particular, we will show
that Jastrow! wave functions, which have been extremely
successful in describing the long-wavelength physics of
Bose systems,? are indeed the exact ground-state wave
functions of a class of Hamiltonians that are perturba-
tively related to the Bose Hamiltonians involving kinetic
energy and pairwise repulsion between the particles. As
a result, the Jastrow wave function gives correlation
functions which have the same asymptotic behavior as
the ones computed from the exact wave functions.
Therefore, as far as the long-distance physics is con-
cerned, Jastrow wave. functions are generic ground-state
wave functions of interacting boson Hamiltonians. We
go on to apply the same logic to the problem of pairwise
short-range interacting spinless fermions moving in two
space dimensions under an external magnetic field. We
show that, in exactly the same sense, the Laughlin wave
function® is the generic ground-state wave function of
that problem for filling factor v=1/¢q (q an odd integer).

We begin by asking the question: Given a many boson
wave function ¥z ({r;}), for what kind of interaction will
¥ be the exact ground state? Given a Hamiltonian of
the form

7{0=—ﬁ2v%+m{ri1), (1)

if we choose U ({r;})=(1/2m)3; ¥5'V?¢p, then ¥, will
be an eigenstate. Furthermore, if we specify that ¥, is
positive definite, then we are guaranteed that i is the
ground state of #,. For a general boson wave function,
U({r;}) is a very complicated many-particle interaction.
The form of U({r;}) is tremendously simplified when
has the Jastrow form,
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Yp({r;})=exp 2)

In that case U({r;}) is a combination of two- and three-
body interactions,

L S V)V () — 3 V()

2m 4 [j¢f, ki i
(3)

The interacting boson problems that we are interested
in do not generically involve a three-body interaction.
Sutherland* has used this type of logic to show that in
one dimension, for a particular case of Jastrow wave
functions with f(r)=y Inr, the three-body interaction
vanishes, so that the Jastrow wave function is the exact
ground state of the problem with a two-body potential
V(r)=y%/2mr?. In this paper, we go further and argue
that, in general, even if there is a three-body interaction,
F£, has the same long-wavelength behavior as a Hamil-
tonian involving only pairwise interaction. For this pur-
pose it is convenient to rewrite U({7;}) in a second quan-
tized form:

1
U—_z_fddrlderV%f(rlz)p(l'l)p(rz)
+—Lfddr d*r,d%r;V f(r,)-V

) 1 2 3Vi1 12 1

X f(ri3)plr)p(r,)p(rs) ,
where p(r)Ez/JT(r)dJ(r) is the density operator. To
proceed, we write p(r)=p—+8p(r), where p is the mean
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particle density. By direct substitution it is simple to
show that

ﬁoz—zimfddr SH(r)V2(r)
+%fddr1ddr2 V,(r5)8p(r,)8p(r,)
+fddrlddrzddr3V3(r12,r13)

X 8p(r)6p(r,)8p(r;) , 4)
where
Vz("lz)Efdd f_vlf (r3)Vaf(ry)— V%f(”lz) )
(5)
Vil t13) ==V f (r)Vif(ry)

Equations (4) and (5) constitute one of the central results
of this paper: we have constructed a Hamiltonian whose
exact ground-state wave function has Jastrow form.

Let us for the moment drop the three-body term in (5)
and analyze the long-wavelength properties of the result-
ing two-body Hamiltonian #,. It is well known that for
Bose fluid at zero temperature the long-wavelength ele-
mentary excitations are exhausted by a single collective
mode.’ Therefore as far as the long-wavelength physics is
concerned, it is a good approximation to restrict our-
selves to the sub-Hilbert space spanned by this collective
mode and study the effects of the three-body
perturbation—the single-mode approximation (SMA).

A convenient representation for doing this is the
coherent-state path-integral formulation of the problem,
in which we write the partition function as

Z,= [ D(@plexp[ —S, (9],
with
=[lar [a‘r g 8.~

+1 [d¥dr,V,(rp)p(r)

P(r)

—pllp(ry)—p] . (6)

In this language, the SMA amounts to treating longitudi-
nal fluctuations in the phase of i as the only low-energy
dynamical degrees of freedom. Specifically, we write
¥=p'/2¢'% and ignore vortex configurations in the phase
6. We then integrate out the massive 8p(r,7)
fluctuations and keep only the leading order VO terms.
At the saddle point, 8p(q,w,)=iw,0(q,,)/V,(g). Upon
Fourier transformation we obtain the single-mode
effective action

11
2:550)2 f

2 _
@ pg’
V,(q) m

dd
(2m)?

x0(q,0,)0(—q,w,) , 7

where w,==2mv/B is the Bose-Matsubara frequency
and V,(q) is the spatial Fourier transform of V,(r).
Upon Wick rotation w,—iw we obtain the collective
mode dispersion,

=p(r,7)—p
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=[V,(q)pg*/m]"* .

By computing the equal-time density-density correlation
function,

do
27 Vz(

-(6(q,0)0(—q,—0)) ,

we obtain the structure factor

s<q>s%<5p<q>8p<—q>>=£q2/[4ﬁVz<q>mn”2 :

This is 51mply the familiar relation w, =g 2/[2mS(q)] ob-
tained in the SMA..>

We now analyze the effects of V;. Clearly, if there is a
gap in the collective-mode spectrum, the density fluctua-
tions will be massive, so that V; will not affect the phys-
ics for q,w—0. We are actually able to make a stronger
statement. even if there is no gap for density fluctuations,
we shall now show that V; is an irrelevant perturbation
in the renormalization-group sense, so that it does not
affect the long-wavelength physics of the model.

In terms of 6, the three-body interaction will make a
contribution to the action at 7'=0,

V3(q1,9;)0,0,0;
Qm)edtt 2m)? T Vy(q,)V,(q,)V,(q3)

XO(Q1,w1)9(qz,w2)9(q3,w3) y (8)

f d’,dw, d’qdo,

where g3 =—¢q;—¢q, and w;= —w;—®,. In order to ad-
dress the relevance of V5 upon scaling, we have inserted a
coupling constant g. Our argument rests on an analysis
of the canoncial dimension of g.® If f(g)—¢q X (x>0)
at small g, then both ¥, and V;—q2~ %X, If we let ¢’ =bgq
and o' =b’w (b > 1 is a scaling factor), then from Eq. (7)
we deduce that the dynamical exponent z =2 —Y. There-
fore =b "¢ 272729 and hence g'=b "¢ TX)/2g, Under
the renormalization group, the strength of the three-body
interaction will decrease as we lower the energy and
momentum cutoff. It is in this sense that the long-
wavelength physics of the problem is entirely captured by
(6) because the importance of V; diminishes as we go to
lower and lower g and w.

Some disclaimers are in order here. When we say that
“the long-wavelength physics is determined by the two-
body Hamiltonian,” we mean that if we compute the
long-distance and/or long-time correlation functions and
the g —0 collective mode dispersion via SMA using the
Jastrow wave functions, we should obtain identical
asymptotic behavior as we would have obtained using the
exact ground state wave functions. This simply means
that if (¢ (r,7)Y(r', 7)) —|r—r'|7" and o 95 our
procedure enables us to obtain the exponents n and €
correctly. Since we have no handle on the short-distance
behavior and hence have no way to obtain the exact value
for quantities that are nonuniversal, we are not solving
the problem exactly. Moreover, when the repulsion is
sufficiently strong and/or long range, so that, for in-
stance, the bosons will form a charge-density wave, this
perturbative analysis, and in particular the approxima-
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tion of ignoring vortices, may no longer be valid.

Now let us imagine we are given an interacting boson
problem with a two-body potential V,(r), and we want to
construct a ground-state wave function that reproduces
the correct ¢ —0 physics. What we do is to write down a
Jastrow wave function given by (1) with f(r) determined
via (5), which upon Fourier transform gives

p 1
Vaa)=L-a’f (@f (—9)+ 5 ~a*f (g)

or
f(q)=—2—1_—_[—1+(1+85mV2(q)/q2)”2] .
P

Suppose V,(g)—Vq " for small ¢ and y > —2. Then it
follows that for small g, f(q)—[2mV,(q)/(q%p )]‘/2
which in the SMA gives a structure factor S(g)= l/f

We first consider the case ¥ =0, which corresponds to
a short-range interaction. In this case, f(gq)—1/q so
that the Jastrow function f(r) decays with distance as
r @~V in d dimensions.” The SMA predicts a gapless
phonon mode a)q=\/Vp‘/m lgl. At low densities, this
sound velocity agrees with the well-known result;® how-
ever, at higher densities the three-body interaction will
introduce perturbative corrections.

For Coulomb interacting bosons, y =2, and we have
f(g)—1/q% There is a gap in the collective-mode corre-
sponding to a plasma frequency w, \/Vﬁ /m . For the
three-dimensional Coulomb mteractlon V =4me?, this
gives the familiar result. In two dimensions, the Jastrow
function is

172

2my In|#| .

-1
A=

In addition, for Coulomb interactions, it is necessary to
include a one-body potential, which serves as a neutraliz-
ing background for V. When this is done, we conclude
that for a boson Hamiltonian

1

7{=_2m

2 V2+ —-EQ Z In( r,_, )+ Vbackground ’

i i#*j

the Jastrow wave function

#({z;})=T1 |Zi—ZjIQCXP

i#j

1 2
—_— zZ;
41(2)§|J| ]

produces the correct asymptotic behaviors in the long-
distance and long- time correlation. For a circular
geometry, Vbackground _2Q2/m 21 1’ and the
effective “magnetic length” I3=(27pQ)"!. This wave
function is precisely the modulus of the Laughlin wave
function for the fractional quantum-Hall effect at filling
factor v=1/Q. Given this wave function Girvin and
McDonald’ showed that the single-particle reduced den-
sity matrix p;(z —z’) exhibits algebraic off-diagonal
long-range order so long as Q is sufficiently small that the
ground state does not Wigner crystallize:!°

pilz—z")—>|z—2'|797%.

We thus conclude that in two dimensions, logarithmically
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interacting bosons exhibit algebraic long-range order. In
three space dimensions f (#)— 1/r, the same analysis im-
plies that for boson interacting via repulsive 1/r
Coulomb interaction, the single-particle off-diagonal den-
sity matrix decays as exp(—1/r), which implies the ex-
istence of off-diagonal long-range order. Similarly, in one
dimension, the same quantity decays as exp(—r), so that
there is no off-diagonal long-range order.

We now turn to the problem of short-range interacting
spinless fermions moving in two space dimensions in an
external magnetic field. For field strength that corre-
sponds to a filling factor v=1/m (m an odd integer), the
fermions ‘“‘condense” into an incompressible quantum
liquid state, which gives rise to the phenomenology of the
fractional quantum-Hall effect.!’ In this state the longi-
tudinal conductivity vanishes in the dc limit and the
transverse conductivity assumes the quantized value
e?/hm. A wave function that contains all the essential
physics was proposed by Laughlin,®

Yr({z;})= I (z; —z;)"exp 2 |z, 12

i#j

9)

where z;=x;+iy; is the dimensionless complex coordi-
nate of the particle.

Our purpose in this section is to show that the Laugh-
lin wave function is a generic form describing the in-
compressible quantum liquid of spinless fermions at
filling factor v=1/m in the same sense that the Jastrow
wave function is the generic form describing the
superfluid of spinless bosons. To proceed, we note that it
is possible to translate a fermionic problem into a prob-
lem of hard-core bosons by performing the singular gauge
transformation,8

¢F—H 1 |k¢3 {z:}) . (10)

i<j

Here k is an odd integer, which guarantees the antisym-
metry of the total wave function. ¢, on the other hand,
is a symmetric Bose wave function. In simple terms (9)
means that in two space dimension we can view a spinless
fermion as a hard-core boson carrying k quanta of ficti-
cious, ‘“‘statistical” flux.

Girvin and MacDonald® were the first to realize that
although the reduced density matrix p,(z —z) computed
from (8) decays as a Gaussian with distance, the corre-
sponding quantity calculated from ¢p (with k =m) ex-
hibits algebraic long-range order. This long-range order
follows from the fact that the bosons see no net magnetic
field. On the average, the statistical flux cancels the
external magnetic field.!> This cancellation is not exact,
however, since the statistical flux is tied to the particles.
This will introduce interactions between the bosons, since
the bosons feel a fluctuating magnetic field which is deter-
mined by the fluctuations in the boson density.'?

We may obtain the effective interacting boson Hamil-
tonian by substituting (10) into the Schrdodinger equation
for ¢,

L+ 1 Ulz;—2;) |¢r=Eor -
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We obtain an effective Hamiltonian for ¢z, which in
second quantized form reads

Hy=—5— [ dr (V=i A +i Asr) P
+1 [d¥d’r,Ulr,)plr)p(ry) (11)

where Ag(r)=k [d*r'Z2XVG(r —r')p(r') is the statisti-
cal vector potential [Z is the unit vector perpendicular to
the physical plane, G (r) is the two-dimensional Green’s
function satisfying V2G ()= —2m8(r)].

At a magnetic field corresponding to v=1/k, the

J
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external vector potential will be canceled (up to a gauge
transformation) by k [d?r'2X VG (r —r')p. Therefore, if
we substitute p(r)=p—+8p(r) into (9), we obtain
—_ 1 o toaa
FHg= szd rY'[V—ikz
X [d*'VG (r —r)8p(r') %Y
+1 [d¥d%» U(r—r)sp(n)plr') . (12)

Straightforward manipulation gives

1
Hyp=—7— [dr ' Vy+1 [ d%,d’r, V,(r,))8p(x,)8p(r,)

+ [ d%rd%, Vy(r1,)8p(x,)2-V X j(r,)+ J d?rd?rydr,Vy(r,,r0)8p(r)8p(r,)8p(x5) (13)

with j=1/2im [¢'Vy— (V¢ )] and
Vz(r12)=k21%G(r12)+ Ulry,) ,
VZ(rlz):kG(rlz) ’ (14)
k2
Vs(rlzafn):‘z’r;VlG(rlz)'VlG("ls) .

We now proceed to analyze the long-wavelength behavior
of (11) in the same manner as above in the framework of
the SMA. In this case, since we ignore vortices and set
j(r)=V6(r)/m, the term involving ¥, has no effect. Pro-
vided that the interaction U(r) is short range, the most
important part of V,(r) at long distances is
k*(p/m)G (ry,)=2mk*(5/m)lnr,. If we apply the same
logic as that following Eq. (8) we conclude that V; is ir-
relevant to the long-distance physics. The ground-state
wave function v is therefore well described by a Jastrow

f

function with f(r)=k Inr. This gives us precisely
¢p= 11/221 .

If we now undo the singular gauge transformation (10),
we see that ¥, =v}. Thus we see that when cast in the
form of an interacting boson problem, the Laughlin wave
function is precisely the Jastrow wave function for
Coulomb interacting bosons and is in the same sense the
generic wave function for the odd denominator fractional
quantum-Hall state. Of course, when the range of the in-
teraction between particles is increased, Haldane!* has
shown that the Laughlin wave function ceases to be the
ground state. This signifies the failure of our approxima-
tion of ignoring vortices.
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