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A long narrow gate across a fractional quantum Hall fluid at filling 1/m with odd integemn, creates a
one-dimensiondl1D) system that is isomorphic to a disordered 1D electron gasatiithctiveinteractions. By
varying the gate potential along such a line junction, it should be possible to tune through the 1D localization
transition, predicted for an attractively interacting electron gas. The key signature of this 1D metal-insulator
transition is the temperature dependence of the conductivity, which diverges as a power of temperature in the
metallic phase, and vanishes rapidly in the insulator. We show that the 1D conductivity can be extracted from
a standard Hall transport measurement, in the regime where the Hall conductance is close to its quantized
value. A line junction in av=2/3 quantized Hall fluid is predicted to exhibit a similar localization transition.
[S0163-18207)02544-1

I. INTRODUCTION antiwire.” As the gate potential is varied, the degree of back-
scattering between the two counterpropagating modes can be

Edge states in the quantum Hall effect offer a highly con-varied. For strong depletion under the gate, all backscattering
trolled laboratory for the experimental study of quantumcan be effectively eliminated, and the source to drain con-
transport in one dimension. The right and left moving edgeductance vanishes. In the opposite limit, the gate potential
modes, which reside on the opposite edges of a quantum Hagn be turned off, and théwo-termina} source-to-drain
bar form an ideal one-dimensional electron gas. Since theéonductance is quantized. But what happens in between? For
edges are spatially separated from one other, backscatterifigfermediate values of s, intermode backscattering will be
due to impurities, which usually localizes electrons in onemediated by inhomogeneities, either of the gate itself or due
dimension, may effectively be eliminated. to nearby impurities in the electron gas.

Following Wen’s suggestion that the edge states in the Since the line junction is effectively a disordered one-
fractional quantum Hall effect are chiral Luttinger liquitls, dimensional electron system, one might expect that electron
there has been considerable interest in the experimental infocalization is inevitable. For the integer quantum Hall ef-
plications of Luttinger liquid theory on edge state transportfect, this expectation is valid. However, Renn and Arévas
Much of the focus has been on the nature of point contadnave recently shown that for a fractional quantum Hall fluid
tunneling. Specifically, pinching a quantum Hall bar at aat filing »=1/3, the “antiwire” line junction is formally
point using a patterned gate electrode introduces local angquivalent to a 1D electron gas wittitractive electron in-
controllable backscattering between oppositely moving edgéeractions. As shown some years back by Giamarchi and
modes. This is analogous to a single impurity in an otherwis&chulz® a disordered 1D electron gas becomes metallic for
clean one-dimensional electron dalsuttinger liquid theory  sufficiently strong attractive interactions — that is, all states
predicts that the tunneling conductance through the poin@re not localized in 1D. Upon varying the strength of the
contact vanishes as a power of temperature with a universal
exponent, which depends on the structure of the bulk quan-
tum Hall fluid. Milliken, Umbach, and Webb have observed [ Vi1 T
a temperature dependence consistent with the predited
behavior for tunneling between two=1/3 fluids® More re-
cently, Chang, Pfeiffer, and West have measured the tunnel- Isp
ing conductance between a Fermi liquid ana@-al/3 edge
state, and found behavior consistent with the predidtéd
temperature dependente.

A different and perhaps more interesting way of introduc-
ing intermode backscattering is depicted schematically in Vg —t®
Fig. 1. A bulk quantum Hall fluid is divided into two pieces o
by depleting the electron gas along a narrow line, using @ FiG. 1. A long narrow gate across a quantum Hall bar creates a
long “skinny” gate. Such a “line junction” creates “inter- |ine junction, with oppositely moving edge modémes with ar-
nal” edge states that propagate in opposite directions on etows) on either side of the gate. The intermode backscattering rate
ther side of the gate. Together, these two modes constitute(dotted line$ can be varied by changing the gate potenwal,

novel (nonchira) one-dimensional syste — a “quantum  which drives a one-dimensional metal-insulator transition.
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attractive interaction, a disorder-driven metal-insulator tranwhere ¢y is an electron destruction operator in the right
sition was predicted. This metal-insulator transition shouldmoving mode. These operators can be reexpressed in terms
be directly observable in such a fractional quantum Hall ef-of boson fieldspg, , which are proportional to the electron
fect line contact. densities:

In this paper we describe in detail the experimental sig-
nature of a 1D metal-insulator transition for a quantum Hall . 1
line junction. The transition is conveniently characterized by NRiL= _Eax‘ﬁR/L '
the temperature dependence of a one-dimensimraductiv- .
ity, o — an intensive quantity. For an infinitely long system, SPecifically,

Giamarchi and Schutzargue that the conductivity vanishes el tRIY (2.5

at T=0 in the insulating phase, but divergesTas:0 in the R ' '
metallic phase. However, the most accessible experimentaind similarly for the left moving mode.

quantity is the source-to-draiconductancefor a Hall bar The electron tunneling amplitudg x) is generally com-
with a finite width,L. Nevertheless, by tuning the gate po- plex. For a perfectly clean line junction one expects
tential into a regime where the Hall conductance is close t@(x)~e'*** wheresk is a gauge-invariant momentum differ-
its quantized value, it is possible to extract the “antiwire” ence between the right and left moving modes. If the edge
conductivity, as we discuss in detail below. modes are separated by a distanc¢hen sk=27Bd/ D,

We begin in Sec. Il with a review of the Luttinger-liquid whereB is the applied magnetic field, arbl,=hc/e is the
model for a line junction and show, following Renn and magnetic flux quantum. However, in any real device one
Arovas, that for fractional quantum Hall effedFQHE)  expects the presence of impurities near the line junction,
states in the Laughlin sequenoes- 1/m with oddm, a 1D  which will effect also the magnitude of the tunneling
metal-insulator transition should be accessible. We describstrength|£|. We thus assume thg{x) is a random complex
the temperature dependence of the conductivity in the metalariable, uncorrelated on length scales long compared to the
and insulating phases as well as near the transition, in Seinterimpurity spacing a.” In practice one expects to be
[ll. In Sec. IV we show how the conductivity can be ex- comparable to or smaller than the distance to the line-
tracted from a Hall conductance measurement. Finally, ijunction gate. For further simplicity, we takéx) to have a
Sec. V we consider the line contact for a hierarchical FQHEGaussian distribution,
state at filling v=2/3, and argue that a similar metal-

(2.9

insulator transition should occur there as well. [E(X)E* (X)) Jens= AwS(X—X"), (2.6)
where the square brackets denote an ensemble average over
Il. MODEL AND TRANSITION impurity configurations. For later convenience we define a

. o i o dimensionless impurity strengtiV:
The bosonized Hamiltonian density for a clean line junc-

tion can be written in terms of right and left moving electron a
densitiesngy : W= ?AW. 2.7
Cc
Y 5, Here the cutoff frequency,. is set by the bulk quantum Hall
Ho=——(Ng+NL+2NNRN,). (2.)  gap — the cyclotron frequency when= 1. Upon decreasing

the gate potential, which brings the edge modes closer to-
These densities satisfy Kac-Moody commutation relatfons: 96ther enabling tunneling, one expects that the effective dis-
order strengtiW increases in magnitude.
As emphasized by Renn and Arovalse above model for
a line junction is mathematically equivalent to a model of a
one-dimensional interacting electron gas with impurity scat-
tering present. For the integer quantum Hall efilé@HE) at

i tional ton h d Coulomb inter->~ 1 the electron gas is repulsively interacting, and one an-
eft'.“ prsptor |onath rer;])tresedn |Sf? screene (;)u OICV II"r](er'ticip<';1tes that the line junction will be insulating with all
action between the right and et moving modes. We NaVeiaq |ocalized. But most remarkably, whens small the

assumed that the long-ranged piece of the Coulomb intera%’lectron gas isomorphic to the FQHE line junction fas

tion is screened by a ground plane, or the line junction 98%active interactions. To see this we define new nonchiral

[N (X), N (X)) ]= £ (1v/2m) dyo(x—X"). (2.2

When\ =0 this Hamiltonian describes decoupled right and
left moving modes, which propagate at a veloaity. The

itself. '
When the gate potential is large, there is a large barriePOson fields,
between the quantum Hall fluids. The two modes are then b= (b v6), 2.9

well separated spatially, and the interactioris small. As

the gate potential is decreased, the modes move closer tehich are canonically conjugate variables,

gether, increasing the repulsive interactionBut in addi-

tion, tunneling of electrons between the right and left modes [0(X),dxp(X")]=T8(x=X"). 2.9

underthe gate becomes possible. To incorporate these prqy tgrmg of these fields the pure Hamiltonian becomes
cesses we add an additional term to the Hamiltonian:

v 1
Hy=ECO PR g () +H.C., (2.3 Ho=5| K(0:)2+ (3x0)?|, (2.10
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with a renormalized velocity

JW
v=vo(1+1?)*? (2.11
and a dimensionless “stiffness”
11-A\]"2
= —-— — . K
v|1+\ (2 12} =

The random piece of the Hamiltonian involves only the field 1 372 2 3

0: FIG. 2. Renormalization-group flow diagram for a 1D metal-

_ i2\7O(x insulator transition, with disorder strengW, and interaction pa-
Ha=¢(xe WHe. 213 rameterK. The dashed line represents tr?e initial valuev\bdindr()

The model is equivalent to a bosonized representation of afer »=1/3 as the voltage on the line junction gate is varied. The
interacting Luttinger liquid with impurity scattering. The parameters measures the “distance” to the transition.
stiffnessK is equal to the dimensionless conductagctor _ S
the Luttinger liquid. ThusK<1 describes a repulsively in- Sumption that the line junction is infinitely long. We then
teracting electron gas, wherelés-1 an attractively interact- describe the predicted behavior for a finite length line junc-
ing gas. tion fed by QHE edge states, as depicted in Fig. 1. In Sec. IV

Remarkably, for av=1/3 line junction with well sepa- We argue that a=2/3 line junction should exhibit a similar
rated modegsmall)), the equivalent electron gas is strongly localization transition.
attractive,K=1/v. This should be contrasted to a very nar-
row quantum Hall bar which also has right and left moving lll. BULK CONDUCTIVITY
modeg. In this case, the dominant intgrmode 'gunn'eling pro- Transport along the line junction is characterized by a
cess is a fractionally charged Laughlin quasiparticle. Theone-dimensional conductivity. Of interest is the tempera-

system is isomorphic to a repulsively interacting electron ga: X : . ;
with K = », rather thark = 1/» as above. Ture dependence in the insulating and conducting phases, as

The effects of impurity scattering on an interacting Lut- well as near the transition.

tinger liquid has been considered by a number of autfidts. In the insulating phase' at lO\.N temperatures, f{he transport
The renormalization-group calculation by Giamarchi andpresumably takes place via variable-range hopping processes

Schul? reveals clearly the phase boundary separating an int_)etvveen nearby localized states. This gives

sulating from a conducting phase. Working in momentum a(T)~e‘<T0’T)m 3.0)
space, they integrate over the fieddk,w,), for a shell of ' '
modes with A/b<k<A, and rescale ask’=bk and The temperature scal§;, is set by the localization length
w,=b%w,. Here A~1/a is a cutoff andw, is a Matsubara &, varying asTo~v/&,c. Deep within the localized phase,
frequency. The dynamical exponenis chosen to keep the &~ @ and the temperature scale should be large. Upon ap-
velocity v invariant. To leading order iV the RG recursion proaching the transition from the insulating side, the local-

relations are {'=Inb) ization length diverges as
W8/ = (3—2K)W, (2.14 £~ ae”?”, (3.2
K2 where § is the distance to the transition ands a constant.
IKId/ = — —W, (2.15  The parametes may be tuned by varying the gate voltage
2 Vg, 65Vge—Ve.

with z=1—KW/2. These equations describe a phase transi- N the conducting phase, the disordét scales to zero,
tion between a conducting phase, in which the disordeﬁr‘q the conductivity should be infinite at zero temperature.
strengthW scales to zero, and an insulating disorder domi-Finite temperature cuts off the RG flows befalereaches
nated phase, as sketched in Fig. 2. For sh#althe phase Z€r0, and a large b_ut finite con.ductlwty is expected. In this
boundary is at =3/2, and increases to largé with in- regime, the system is Cha_ractenz_ed by two length scales. The
creasingW. scattering mean free pathis the distance an .electro_n travels

For the IQHE line junction =1), the largest value df in the right moving mode, say, b(_afore suffering an intermode
is one, so that the system is always in the localized phas®ackscattering event. In addition, the thermal length
However, for av=1/3 FQHE line junction, the maximum Lt=v/T describes the loss of phase coheremdthin a
value of K is 3, which occurs when the modes are well Single mode due to _thermal smearing. On length scales
separated anw/ is small. This puts the system well into the longer thanl 7, scattering events are uncorrelatéd.
conducting phase. With decreasing gate potential, both the Following Giamarchi and SChUFZ‘:h‘? temperature depen-
tunneling W) and the interactions\) increase, which dence_of/ may be det_:iuced from scaling arguments. Under a
moves the system along the trajectory sketched in Fig. 2. ThEescaling transformation by a factob™ one can write
system will undergo a phase transition into a localized state. L 3—2K

This localization transition should be observable in FQHE 7/ (W, T/we)=b/ (b W.bT/wc). 8.3
line junctions. In the next section we consider the behavioGenerally temperature scaleskd#s butz=1 to leading order
of the transport along the line junction, first under the as4in W. With the choiceb= w./T, the effective temperature on
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the right side becomes comparable to the cutoff frequency.
Quantum interference effects should be absent at such high
temperatures, and a perturbative evaluation of the scattering

25

length should be valid. Since the scattering rate should be 20
linear inW one expectg’(W,1)=ca/W, with some constant
c. This gives « 15
P
‘ ca © 10k
(W, Tlwg)= (3.9

W(T/wy)?®- "

SinceK >3/2 throughout the conducting phasgés> L, as —
T—0. This implies that successive backscattering events are , ‘ ,
incoherent, so that quantum interference effects are absent. A 0 0.05 0.1 0.15 02

Boltzmannn transport description is then appropriate, which T
relates the conductivity and scattering lengths (e?/h)/, . _
so that FIG. 3. Temperature dependence of the conductivity obtained
from Eq. (3.7) for ¢?6=—-0.3-0.2,-0.1,—0.05,0,0.1,0.2,0.3 «
croc(e2/h)(a/W)(T/wc)2(1’K). (3.5 decreasing Negative(positive) values of§ correspond to the me-

tallic (insulating phase. The dashed line correspondsste0 —

In the Appendix we show that this result may also be ob-Precisely at the metal-insulator transition.

tained from the Kubo formula, treating the disorder pertur- . ) o
batively within a Born approximatiohFor 1<K <3/2 it ap- Slightly below theT transitiom T increases logarithmically as
pears naively that perturbation theory should be valid, sinc&1® temperature is lowered, down to a temperature of order
/ diverges at low temperature. However, sincediverges T_*“u{ceXF[—C/\/E]- Below T* the conductivity decreases,
faster, successive scattering events become coherent. Ttfgnaling the crossover to the insulating regime. As the tem-
leads to a breakdown of Boltzmann transport and to localizaPerature is lowered furtheéw flows out of the perturbative
tion. regime whernsT/A<1. The conductivity should then follow
To describe the conductivity near the metal-insulator tranthe Mott variable-range hopping la@.1) with To~T*.
sition, it is necessary to include the renormalizationkof
The precise temperature dependence of the conductivity in IV. TRANSPORT WITH LEADS
the crossover region may be determined by integrating both
flow equations(2.14 and (2.15 out to a temperature-
dependent length scale b In(w./T). Let 6<K.—K be the
“distance” to the transition, as shown in Fig. 2. To leading
order inK —3/2, the renormalized value &Y in the insulat-
ing phase >0, is

In the previous section we discussed the temperature de-
pendence of the line junction conductivity for an infinitely
long wire. In practice, of course, the line junction will have
some finite length.. Moreover, it is initially unclear how the
bulk line junction conductivity can be extracted from a stan-
dard Hall conductance measurement. In this section we dis-
cuss how this can be achieved.

Consider the geometry shown in the Fig. 1. A Hall bar of
The conductivity is then given by E€3.5) with K =3/2 and v_vidth L is cut into two by a Iing junction. The easiest quan-
W replaced byWx, tity to measure experimentally is the Hall condgctance, pass-

ing a current from source to drain, and measuring the voltage
drop between the two Hall voltage prob@enoted 1 and)2
that straddle the line junction. Ignoring contact resistances at
For the conducting phasé<0 the expressions are similar, the source and drain e_Iectrodes, this is equivalent to the two-
except “sin” is replaced by “sinh.” These expressions are rminal source-to-drain conductance,
accurate provided<1 andWgr<<1. The latter condition is
equivalent toL << ¢, where the localization lengthis given
in Eqg. (3.2. whereV, andV, are the source and drain voltages.

At high temperatures, the conductivity in the transition Imagine starting in equilibrium witvV,=V4=0, and then
region is dominated by the prefactor in E§.7), c=A/T,  raising the source voltage td,=V. This injects an extra
whereA~ (€’/h)aw,. In Fig. 3 we plot the temperature de- incident current,l;,= (v€?/h)V, from the source electrode
pendence oo T/A from Eq. (3.7) for several values o  along the top edge. At the line junction this current splits,
above and below the transition. On the metallic sifie/A  with a currentl passing along the line junction, amg—|
diverges as T/w.)~ * at low temperatures, where the expo- continuing along the edge into the drain electrode. The trans-
nent a=c./5. As the transition is approached from above, mitted source-to-drain current is thlig;=1,,— . Since the
a—0, and logarithmic corrections to the power-law behav-two ends of the line junction are separated by the volidge
ior develop. Precisely at the transition, the conductivity var-the current flowing in the line junction is= GV, whereG is
ies as the two-terminal conductanceof the line junction. The

source-to-drain conductance is thereby related to the line
oTIA=INw /T, (3.8 junction conductance:

Wi=(8/9)c?| 8|/sir?(c/dinw, /T). (3.6)

ox(e?/h)a(w./T)sirt(cy|dInw /T)/c 8. (3.7

Gsd=|5d/(VS—Vd), (41)
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Gyq=re?/h—G. (4.2 wheren, = d,¢,/27 is the charge density propagating down-
stream at velocity ;, andn,= — d, ¢,/27 the density propa-
The two-terminal conductance of the line junction de-9ating upstream at,. These densities satisfy the commuta-
pends on the length of the junction. Provided. is long  tion relations:
compared to the thermal coherence length a classical N o
description is possible in terms of the bu&nductivityof an [n2(x),ny(X")]= (i/2m) 3 d(x=X"), 5.2
infinitely long line junction. In particular, solving a Boltz- N . o
mannn equatiott subject to the boundary condition that the [n2(x).na(x")]= = (13)(i/2m) dx6(x—x"). (5.9

channels incident to the left and right of the line junction areGenerally, these two modes will interact via a term of the

separated by a voltag€, one arrives at the two-terminal form H;,,~ v 1,n1N,.

conductance Operators that add charge to the edge take the general
, form O, =e'("1#17"2%2), for integern; . These operators
G= Ve_ o 4.3 addn, electrons to channel one, angd 1/3-charged Laugh-
h o+ v(e’/h)L" ' lin quasiparticles to mode two, creating a total charge

Q(ny,nz) =e(ny+ny/3).

In the localized phaser<(e?h)L, so that Eq(4.3) re- To account for the observed quantized Hall conductance
duces to the classical expressiBr o/L, with a small con-  at v=2/3, it is essential to incorporate processes that can
ductance. In the extended phase this may also be true at higuilibrate the two edge modes. The dominant process is
temperatures. However, upon cooling, grows, and the ©O1,-3, Which transfers a unit charge from mode two to mode
backscattering length will eventually become comparable ©ne. This process must be mediated by impurities, since the
to or larger than the line junction length In this opposite tWo edge modes will generally be at different momenta. In
limit, o> (e?/h)L, an electron will typically be transported Ref. 9 we have analyzed in detail the effects of such
all the way along the line junction length without suffering impurity-induced tunneling processes. We find that there are
any backscattering collisions. The line junction conductancdéWo possible phases, depending on the impurity strength and
will be very close to perfects~ ve?/h, whereas the source- the interchannel Coulomb interactian,. For a very clean
to-drain conductance will be much smaller than the quantunfdge with smalb,, the impurity scattering scales to zero at
unit Ggg<ve?/h. In this low-temperature regime of the me- low energies, and charge propagates in both directions. But

tallic phase, one thus ha, < (€2/h) (L/a)W(T/wg)2K 1. for a dirtier edge, the system has a phase transition into a
Finally, at very low temperatures in thce metallic disorder-dominated phase. In this phase the two modes re-

phase, wherL>L, the system length replaces tempera- Structure, forming a charge mode,
ture as a cutoff. In this limit the line junction behaves _ _
effectively as a point contact, with ideal leads. One Ny =N1=Np= dxeby /2, 5.4
expects the source-to-drain conductance to vary apropagating downstream, and a neutral mode,
Geq (e2/h) (LIa)W(T/ wg) 22,

To extract the bulk line junction conductivity, and avoid N,=N{—3N,=dy /27, (5.5

the complications associated with the various different re- oving upstream[More precisely, the actual neutral mode
gimes, it is clearly desirable to make the line junction as lon g up P Y,

as possible. The temperature range should then be restrict Iaat propagates is related g by a spatially random S(@)

so that the source-to-drain conductance is close to its quarli(-)tatlon — see Ref. 9.The effective Hamiltonian becomes

tized value. The bulk conductivity can be readily extracted: HOZ(wv,,/v)nf,Jr(wv J2)nZ. 5.6
) ve?/h In the following we consider the behavior of a line junction,
o=L(ve/h—=Gsd— o (4.4 supposing that the=2/3 edges on either side of of the junc-
S

tion are in this disorder-dominated phase. For this analysis,
we will need the “local” scaling dimensiong of the edge
V. LOCALIZATION TRANSITION FOR 2/3 operators, defined vigO(x,7)O(x,0))~7 2°. Using the

. : - . above definitions, one finds
Hierarchical FQHE states at filling factors different from

1/v an odd integer, are believed to have multiple propagating 3
modes on a single edge. This necessarily complicates the 5(n1,n2)=Z
analysis of a line junction in such states. For simplicity, we
discuss only the experimentally most robust hierarchical
state —v=2/3.
We first briefly revieél/\zl the theoﬁry of a single edge of a
v=2/3 fluid. MacDonald” and Wen originally argued that “ " P
the edge consists of two modes: a forv?ard gropggating modg”: for the “bottom chargg mode — and similarly for the
S , o neutral modes. Tunneling processes that transfer charge
similar to av=1 edge, and a backward propagating modes o, the top to bottom are expressed as produdEOP.
similar to av=1/3 edge. The appropriate Hamiltonianis . example, the operat@21(x) 0P (x) tunnels an electron
5 ) from top to bottom at poéitiorx élong the junction. The
Ho=mv N1+ 37v,Nn3, (5.1)  appropriate term to add to the Hamiltonian is

2\% 1 2
nl+§ +Z(nl+n2)' (5.7

Consider now a line junction, which will consist of two
charge and two neutral modes, one above and the other be-
low the junction. We denote these ég , for the “top” and
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leg(x)oﬂ(x)ogo(x)ju H.c., (5.8 However, with increasing Coulomb interactio, de-

' ’ creases, and eventually<<3/2. When this happens, even
where againg(x) is a random(compley tunneling ampli-  weak backscattering grows under the RG transformation, and
tude. the system scales into a disorder-dominated phase. Although

Generally, all tunneling processes that transfer chargene properties of this phase are perturbatively inaccessible, it
from top to bottom edges in integer units of the electronjs natural to presume that both the charge and neutral exci-
charge are allowed. Of interest are the most relev@nteast  tations are localized in this phase.

irrelevan) of such Operators, or equivalently those with the We thereby conclude that a line junction inva 2/3 fluid
smallest scaling dimensior There are three of these, with should be qualitatively similar to a=1/3 junction. Two

the same scaling dimensio®(1,0)=5(2,-3)=6(1,—3)  phases should be present, a conducting phase when the
=1. The first two transfer a charge whereas zero charge is modes are well separated, and a localized phase. Upon tun-
transferred for(1,—3). A perturbative RG calculation for ng the gate potential, one should be able to pass through the
small disordeiW, gives localization phase transition separating the two phases. In the
conducting phase, the electrical conductivity should diverge
as a power law of temperature, precisely as in the analysis of

whereA = 8,+ 8, is the total(local) scaling dimension of the S€¢- Ill.
operatorO20P,

If we ignore any Coulomb interactions between the modes VI. CONCLUSION
on the top and bottom sides of the line junction, then we can

use Eq(5.7) to evaluate the scaling dimension, giviag=2. d ; ; ; .
This implies thatall electron tunneling processes are irrel- €S @ unique opportunity for observing a one-dimensional
localization transition. In this geometry, the 1D system is

evant. The line junction is in a conducting phase, with the I ival | ) >Y=
electron backscattering strength scaling to zero at low eneformally equivalent to a 1D electron gas widlttractive in-

gies. This should be the case when the gate potential is adgractions. With sufficiently strong attraction, localization

justed so that the top and bottom modes are well separate§€ases o be operative in 1D, and the system can undergo a
etal-insulator transition. The key signature of this 1D

But as the gate potential is reduced, the modes get clos&f Linsul tion is th q q ¢
together, and the Coulomb interaction increases. Since t etal-insulator transition is the temperature dependence o
the conductivity, which diverges as (@ariable power of

neutral modes do not carry any charge, the Coulomb inter X . . ;
action acts only between the top and bottom charge modelemperature in the metallic phase. In the insulating phase the

Since these modes move in opposite directions, a CoulompPnductivity is expected to drop rapidly with cooling, fol-
interaction will modify the scaling dimensions, just as in Sec.°Wing a variable-range hopping law, whereas right at the

Il. To see this consider the total Hamiltonian for the cleantr@nsition a 1T behavior with logarithmic corrections is pre-
line junction, Ho="H3+H53. From Eq.(3.6) this factorizes dicted. As discussed in detail, the 1D conductivity can be

into a sum of the charge and neutral sectétg=H3+ H3 extracted from a standard Hall transport measurement, in the
with re?lme where the Hall conductance is close to its quantized
value.

W/ 3/ =(3—2A)W, (5.9

A line junction in the fractional quantum Hall effect of-

2 2
HE=(mv,/v)[ng o+ N2 g+ n, 0, ], (5.10
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tical to the full theory forv™! an odd integer, Eq$2.1) and
(2.2). As in Sec. I, we can diagonalize the Hamiltoniag

by defining fields, o= \m($+ 6). In this way, 15 takes APPENDIX A: LINEAR RESPONSE THEORY
the form of Eq.(2.10 with a charge stiffness, FOR THE CONDUCTIVITY
1[1— ]2 Here we evaluate the conductivity in linear response
i Bl (5.12 theory, treating the disorder perturbatively in the Born ap-
P14 proximation. This is valid in the conducting phase, whérfe

scales to zero at low temperatures and scattering events are

Once the Hamiltonian is diagonalized, one can readily ncorrelated. The Kubo formula expresses the conductivity
obtain the scaling dimension for the electron tunneling op—4g 3 current-current correlation function:

erator that appears in E6.9), giving

_1.3%

1 )
+ o= — DI(XrT)eilwnrlwn—»iw-Ff (Al)
2 2’

(513) WnJx,r

where the first term is from the neutral sector. In the absencehere
of Coulomb interactions between the top and bottom charge
modes,K,=1, and the tunneling is irrelevant, as before. Di(x=x", 7= 7") =T AX,DI(X,7"))]enss (A2)
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The conductivity then becomes

wv?
T Dﬂ(kzoiwn)|wn~>iw+e7 (AS)

g=

where we have defined

Do(x=x", 7= 7")=[(T,0(%,7) (X", 7" )} ens: (AB)
‘ ‘ ’ ‘ In the absence of any disorder,

FIG. 4. Diagrams for the self-energy. The solid lines represent D, = vK (A7)
the propagatorsD,, and the dashed lines represent the impurity 0.07 22+ wﬁ'
scattering vertex. A sum over all possible combinations of these . )
lines is implied. With disorder present we write
-1_1y1
Here the square brackets denote an ensemble average over Dy =Dy, (A8)

realizations of the disorder. After ensemble averaging theyith a self-energy® (k,w). This self-energy can readily be
current correlation function is translationally invariant. Fou- evaluated to leading order in the disorder strength. The rel-

rier transforming gives evant diagrams are shown in Fig. 4 and may be evaluated as
1 B : 7Tlw, X
o= —D(k=0,0)| 0 —10se. A3 _ _ glon)| T @
o 1 o —io+ (A3) S (K, wp) AWJO dr(1-€"")| oo (A9)

An expression for the current operator can be obtained bynalytically continuing to real time, this becomes
noting that the total one-dimensional density is3 (k,w)=ckiwW/a(T/w)?®" Y, wherecy is a numerical
n=ng+n,=(v/\m)3,6. Thus 6(x) is proportional to the factor that depends ak. Then using Eqs3.10 and(3.13,
integrated charge less thanso that current operator is we recover the conductance given in Eg.5).
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