
PHYSICAL REVIEW B 15 DECEMBER 1997-IVOLUME 56, NUMBER 23
Line junctions in the quantum Hall effect
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A long narrow gate across a fractional quantum Hall fluid at fillingn51/m with odd integerm, creates a
one-dimensional~1D! system that is isomorphic to a disordered 1D electron gas withattractiveinteractions. By
varying the gate potential along such a line junction, it should be possible to tune through the 1D localization
transition, predicted for an attractively interacting electron gas. The key signature of this 1D metal-insulator
transition is the temperature dependence of the conductivity, which diverges as a power of temperature in the
metallic phase, and vanishes rapidly in the insulator. We show that the 1D conductivity can be extracted from
a standard Hall transport measurement, in the regime where the Hall conductance is close to its quantized
value. A line junction in an52/3 quantized Hall fluid is predicted to exhibit a similar localization transition.
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I. INTRODUCTION

Edge states in the quantum Hall effect offer a highly co
trolled laboratory for the experimental study of quantu
transport in one dimension. The right and left moving ed
modes, which reside on the opposite edges of a quantum
bar form an ideal one-dimensional electron gas. Since
edges are spatially separated from one other, backscatt
due to impurities, which usually localizes electrons in o
dimension, may effectively be eliminated.

Following Wen’s suggestion that the edge states in
fractional quantum Hall effect are chiral Luttinger liquids1

there has been considerable interest in the experimenta
plications of Luttinger liquid theory on edge state transpo
Much of the focus has been on the nature of point con
tunneling. Specifically, pinching a quantum Hall bar at
point using a patterned gate electrode introduces local
controllable backscattering between oppositely moving e
modes. This is analogous to a single impurity in an otherw
clean one-dimensional electron gas.2 Luttinger liquid theory
predicts that the tunneling conductance through the p
contact vanishes as a power of temperature with a unive
exponent, which depends on the structure of the bulk qu
tum Hall fluid. Milliken, Umbach, and Webb have observ
a temperature dependence consistent with the predicteT4

behavior for tunneling between twon51/3 fluids.3 More re-
cently, Chang, Pfeiffer, and West have measured the tun
ing conductance between a Fermi liquid and an51/3 edge
state, and found behavior consistent with the predictedT2

temperature dependence.4

A different and perhaps more interesting way of introdu
ing intermode backscattering is depicted schematically
Fig. 1. A bulk quantum Hall fluid is divided into two piece
by depleting the electron gas along a narrow line, usin
long ‘‘skinny’’ gate. Such a ‘‘line junction’’ creates ‘‘inter-
nal’’ edge states that propagate in opposite directions on
ther side of the gate. Together, these two modes constitu
novel ~nonchiral! one-dimensional system — a ‘‘quantum
560163-1829/97/56~23!/15231~7!/$10.00
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antiwire.’’ As the gate potential is varied, the degree of ba
scattering between the two counterpropagating modes ca
varied. For strong depletion under the gate, all backscatte
can be effectively eliminated, and the source to drain c
ductance vanishes. In the opposite limit, the gate poten
can be turned off, and the~two-terminal! source-to-drain
conductance is quantized. But what happens in between?
intermediate values ofVG , intermode backscattering will be
mediated by inhomogeneities, either of the gate itself or d
to nearby impurities in the electron gas.

Since the line junction is effectively a disordered on
dimensional electron system, one might expect that elec
localization is inevitable. For the integer quantum Hall e
fect, this expectation is valid. However, Renn and Arova5

have recently shown that for a fractional quantum Hall flu
at filling n51/3, the ‘‘antiwire’’ line junction is formally
equivalent to a 1D electron gas withattractive electron in-
teractions. As shown some years back by Giamarchi
Schulz,6 a disordered 1D electron gas becomes metallic
sufficiently strong attractive interactions — that is, all sta
are not localized in 1D. Upon varying the strength of th

FIG. 1. A long narrow gate across a quantum Hall bar create
line junction, with oppositely moving edge modes~lines with ar-
rows! on either side of the gate. The intermode backscattering
~dotted lines! can be varied by changing the gate potentialVG ,
which drives a one-dimensional metal-insulator transition.
15 231 © 1997 The American Physical Society
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15 232 56C. L. KANE AND MATTHEW P. A. FISHER
attractive interaction, a disorder-driven metal-insulator tr
sition was predicted. This metal-insulator transition sho
be directly observable in such a fractional quantum Hall
fect line contact.

In this paper we describe in detail the experimental s
nature of a 1D metal-insulator transition for a quantum H
line junction. The transition is conveniently characterized
the temperature dependence of a one-dimensionalconductiv-
ity, s — an intensive quantity. For an infinitely long system
Giamarchi and Schulz6 argue that the conductivity vanishe
at T50 in the insulating phase, but diverges asT→0 in the
metallic phase. However, the most accessible experime
quantity is the source-to-drainconductance, for a Hall bar
with a finite width,L. Nevertheless, by tuning the gate p
tential into a regime where the Hall conductance is close
its quantized value, it is possible to extract the ‘‘antiwire
conductivity, as we discuss in detail below.

We begin in Sec. II with a review of the Luttinger-liqui
model for a line junction and show, following Renn an
Arovas, that for fractional quantum Hall effect~FQHE!
states in the Laughlin sequence,n51/m with odd m, a 1D
metal-insulator transition should be accessible. We desc
the temperature dependence of the conductivity in the m
and insulating phases as well as near the transition, in
III. In Sec. IV we show how the conductivity can be e
tracted from a Hall conductance measurement. Finally
Sec. V we consider the line contact for a hierarchical FQ
state at filling n52/3, and argue that a similar meta
insulator transition should occur there as well.

II. MODEL AND TRANSITION

The bosonized Hamiltonian density for a clean line jun
tion can be written in terms of right and left moving electr
densities,nR/L :

H05
pv0

n
~nR

21nL
212lnRnL!. ~2.1!

These densities satisfy Kac-Moody commutation relation1

@nR/L~x!,nR/L~x8!#56~ in/2p!]xd~x2x8!. ~2.2!

Whenl50 this Hamiltonian describes decoupled right a
left moving modes, which propagate at a velocityv0. The
term proportional tol represents a screened Coulomb int
action between the right and left moving modes. We ha
assumed that the long-ranged piece of the Coulomb inte
tion is screened by a ground plane, or the line junction g
itself.

When the gate potential is large, there is a large bar
between the quantum Hall fluids. The two modes are t
well separated spatially, and the interactionl is small. As
the gate potential is decreased, the modes move close
gether, increasing the repulsive interactionl. But in addi-
tion, tunneling of electrons between the right and left mod
under the gate becomes possible. To incorporate these
cesses we add an additional term to the Hamiltonian:

H15j~x!cR
†~x!cL~x!1H.c., ~2.3!
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where cR is an electron destruction operator in the rig
moving mode. These operators can be reexpressed in t
of boson fieldsfR/L , which are proportional to the electro
densities:

nR/L56
1

2p
]xfR/L . ~2.4!

Specifically,

cR;eifR /n, ~2.5!

and similarly for the left moving mode.
The electron tunneling amplitudej(x) is generally com-

plex. For a perfectly clean line junction one expec
j(x);eidkx wheredk is a gauge-invariant momentum diffe
ence between the right and left moving modes. If the ed
modes are separated by a distanced then dk52pBd/F0,
whereB is the applied magnetic field, andF05hc/e is the
magnetic flux quantum. However, in any real device o
expects the presence of impurities near the line juncti
which will effect also the magnitude of the tunnelin
strength,uju. We thus assume thatj(x) is a random complex
variable, uncorrelated on length scales long compared to
interimpurity spacing ‘‘a.’’ In practice one expectsa to be
comparable to or smaller than the distance to the li
junction gate. For further simplicity, we takej(x) to have a
Gaussian distribution,

@j~x!j* ~x8!#ens5DWd~x2x8!, ~2.6!

where the square brackets denote an ensemble average
impurity configurations. For later convenience we define
dimensionless impurity strengthW:

W5
a

vc
2 DW . ~2.7!

Here the cutoff frequencyvc is set by the bulk quantum Hal
gap — the cyclotron frequency whenn51. Upon decreasing
the gate potential, which brings the edge modes closer
gether enabling tunneling, one expects that the effective
order strengthW increases in magnitude.

As emphasized by Renn and Arovas5 the above model for
a line junction is mathematically equivalent to a model o
one-dimensional interacting electron gas with impurity sc
tering present. For the integer quantum Hall effect~IQHE! at
n51 the electron gas is repulsively interacting, and one
ticipates that the line junction will be insulating with a
states localized. But most remarkably, whenl is small the
electron gas isomorphic to the FQHE line junction hasat-
tractive interactions. To see this we define new nonchi
boson fields,

fR/L5Ap~f6nu!, ~2.8!

which are canonically conjugate variables,

@u~x!,]xf~x8!#5 id~x2x8!. ~2.9!

In terms of these fields the pure Hamiltonian becomes

H05
v
2FK~]xf!21

1

K
~]xu!2G , ~2.10!
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56 15 233LINE JUNCTIONS IN THE QUANTUM HALL EFFECT
with a renormalized velocity

v5v0~11l2!1/2, ~2.11!

and a dimensionless ‘‘stiffness’’

K5
1

nF12l

11l G1/2

. ~2.12!

The random piece of the Hamiltonian involves only the fie
u:

H15j~x!ei2Apu~x!1H.c. ~2.13!

The model is equivalent to a bosonized representation o
interacting Luttinger liquid with impurity scattering. Th
stiffnessK is equal to the dimensionless conductanceg for
the Luttinger liquid. Thus,K,1 describes a repulsively in
teracting electron gas, whereasK.1 an attractively interact-
ing gas.

Remarkably, for an51/3 line junction with well sepa-
rated modes~smalll), the equivalent electron gas is strong
attractive,K51/n. This should be contrasted to a very na
row quantum Hall bar which also has right and left movi
modes. In this case, the dominant intermode tunneling p
cess is a fractionally charged Laughlin quasiparticle. T
system is isomorphic to a repulsively interacting electron
with K5n, rather thanK51/n as above.

The effects of impurity scattering on an interacting Lu
tinger liquid has been considered by a number of authors6–9

The renormalization-group calculation by Giamarchi a
Schulz6 reveals clearly the phase boundary separating an
sulating from a conducting phase. Working in momentu
space, they integrate over the fieldu(k,vn), for a shell of
modes with L/b,k,L, and rescale ask85bk and
vn85bzvn . HereL;1/a is a cutoff andvn is a Matsubara
frequency. The dynamical exponentz is chosen to keep the
velocity v invariant. To leading order inW the RG recursion
relations are (l 5 lnb)

]W/]l 5~322K !W, ~2.14!

]K/]l 52
K2

2
W, ~2.15!

with z512KW/2. These equations describe a phase tra
tion between a conducting phase, in which the disor
strengthW scales to zero, and an insulating disorder dom
nated phase, as sketched in Fig. 2. For smallW the phase
boundary is atK53/2, and increases to largerK with in-
creasingW.

For the IQHE line junction (n51), the largest value ofK
is one, so that the system is always in the localized ph
However, for an51/3 FQHE line junction, the maximum
value of K is 3, which occurs when the modes are w
separated andW is small. This puts the system well into th
conducting phase. With decreasing gate potential, both
tunneling (W) and the interactions (l) increase, which
moves the system along the trajectory sketched in Fig. 2.
system will undergo a phase transition into a localized st

This localization transition should be observable in FQH
line junctions. In the next section we consider the behav
of the transport along the line junction, first under the
n
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sumption that the line junction is infinitely long. We the
describe the predicted behavior for a finite length line jun
tion fed by QHE edge states, as depicted in Fig. 1. In Sec
we argue that an52/3 line junction should exhibit a simila
localization transition.

III. BULK CONDUCTIVITY

Transport along the line junction is characterized by
one-dimensional conductivitys. Of interest is the tempera
ture dependence in the insulating and conducting phase
well as near the transition.

In the insulating phase at low temperatures, the trans
presumably takes place via variable-range hopping proce
between nearby localized states. This gives

s~T!;e2~T0 /T!1/2
. ~3.1!

The temperature scaleT0 is set by the localization length
j loc , varying asT0;v/j loc . Deep within the localized phase
j loc;a and the temperature scale should be large. Upon
proaching the transition from the insulating side, the loc
ization length diverges as

j loc;aec/d1/2
, ~3.2!

whered is the distance to the transition andc is a constant.
The parameterd may be tuned by varying the gate voltag
VG , d}VGc2VG .

In the conducting phase, the disorderW scales to zero,
and the conductivity should be infinite at zero temperatu
Finite temperature cuts off the RG flows beforeW reaches
zero, and a large but finite conductivity is expected. In t
regime, the system is characterized by two length scales.
scattering mean free pathl is the distance an electron trave
in the right moving mode, say, before suffering an intermo
backscattering event. In addition, the thermal leng
LT5v/T describes the loss of phase coherencewithin a
single mode due to thermal smearing. On length sca
longer thanLT , scattering events are uncorrelated.10

Following Giamarchi and Schulz,6 the temperature depen
dence ofl may be deduced from scaling arguments. Unde
rescaling transformation by a factor ‘‘b’’ one can write

l ~W,T/vc!5bl ~b322KW,bT/vc!. ~3.3!

Generally temperature scales asbz, butz51 to leading order
in W. With the choiceb5vc /T, the effective temperature o

FIG. 2. Renormalization-group flow diagram for a 1D meta
insulator transition, with disorder strengthW, and interaction pa-
rameterK. The dashed line represents the initial values ofW andK
for n51/3 as the voltage on the line junction gate is varied. T
parameterd measures the ‘‘distance’’ to the transition.
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15 234 56C. L. KANE AND MATTHEW P. A. FISHER
the right side becomes comparable to the cutoff frequen
Quantum interference effects should be absent at such
temperatures, and a perturbative evaluation of the scatte
length should be valid. Since the scattering rate should
linear inW one expectsl (W,1)5ca/W, with some constan
c. This gives

l ~W,T/vc!5
ca

W~T/vc!
2~K21!. ~3.4!

SinceK.3/2 throughout the conducting phase,l @LT as
T→0. This implies that successive backscattering events
incoherent, so that quantum interference effects are abse
Boltzmannn transport description is then appropriate, wh
relates the conductivity and scattering lengthss5(e2/h)l ,
so that

s}~e2/h!~a/W!~T/vc!
2~12K !. ~3.5!

In the Appendix we show that this result may also be o
tained from the Kubo formula, treating the disorder pert
batively within a Born approximation.8 For 1,K,3/2 it ap-
pears naively that perturbation theory should be valid, si
l diverges at low temperature. However, sinceLT diverges
faster, successive scattering events become coherent.
leads to a breakdown of Boltzmann transport and to local
tion.

To describe the conductivity near the metal-insulator tr
sition, it is necessary to include the renormalization ofK.
The precise temperature dependence of the conductivit
the crossover region may be determined by integrating b
flow equations ~2.14! and ~2.15! out to a temperature
dependent length scale, lnb5ln(vc /T). Let d}Kc2K be the
‘‘distance’’ to the transition, as shown in Fig. 2. To leadin
order inK23/2, the renormalized value ofW in the insulat-
ing phase,d.0, is

WR5~8/9!c2udu/sin2~cAd lnvc /T!. ~3.6!

The conductivity is then given by Eq.~3.5! with K53/2 and
W replaced byWR ,

s}~e2/h!a~vc /T!sin2~cAudu lnvc /T!/c2udu. ~3.7!

For the conducting phased,0 the expressions are simila
except ‘‘sin’’ is replaced by ‘‘sinh.’’ These expressions a
accurate providedd!1 andWR!1. The latter condition is
equivalent toLT!j, where the localization lengthj is given
in Eq. ~3.2!.

At high temperatures, the conductivity in the transiti
region is dominated by the prefactor in Eq.~3.7!, s5A/T,
whereA;(e2/h)avc . In Fig. 3 we plot the temperature de
pendence ofsT/A from Eq. ~3.7! for several values ofd
above and below the transition. On the metallic side,Ts/A
diverges as (T/vc)

2a at low temperatures, where the exp
nent a5cAd. As the transition is approached from abov
a→0, and logarithmic corrections to the power-law beha
ior develop. Precisely at the transition, the conductivity v
ies as

sT/A5 ln2vc /T. ~3.8!
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Slightly below the transitionsT increases logarithmically a
the temperature is lowered, down to a temperature of or
T* 'vcexp@2c/Ad#. Below T* the conductivity decreases
signaling the crossover to the insulating regime. As the te
perature is lowered furtherW flows out of the perturbative
regime whensT/A,1. The conductivity should then follow
the Mott variable-range hopping law~3.1! with T0;T* .

IV. TRANSPORT WITH LEADS

In the previous section we discussed the temperature
pendence of the line junction conductivity for an infinite
long wire. In practice, of course, the line junction will hav
some finite lengthL. Moreover, it is initially unclear how the
bulk line junction conductivity can be extracted from a sta
dard Hall conductance measurement. In this section we
cuss how this can be achieved.

Consider the geometry shown in the Fig. 1. A Hall bar
width L is cut into two by a line junction. The easiest qua
tity to measure experimentally is the Hall conductance, pa
ing a current from source to drain, and measuring the volt
drop between the two Hall voltage probes~denoted 1 and 2!
that straddle the line junction. Ignoring contact resistance
the source and drain electrodes, this is equivalent to the t
terminal source-to-drain conductance,

Gsd5I sd /~Vs2Vd!, ~4.1!

whereVs andVd are the source and drain voltages.
Imagine starting in equilibrium withVs5Vd50, and then

raising the source voltage toVs5V. This injects an extra
incident current,I in5(ne2/h)V, from the source electrode
along the top edge. At the line junction this current spli
with a currentI passing along the line junction, andI in2I
continuing along the edge into the drain electrode. The tra
mitted source-to-drain current is thusI sd5I in2I . Since the
two ends of the line junction are separated by the voltageV,
the current flowing in the line junction isI 5GV, whereG is
the two-terminal conductanceof the line junction. The
source-to-drain conductance is thereby related to the
junction conductance:

FIG. 3. Temperature dependence of the conductivity obtai
from Eq. ~3.7! for c2d520.3,20.2,20.1,20.05,0,0.1,0.2,0.3 (s
decreasing!. Negative~positive! values ofd correspond to the me
tallic ~insulating! phase. The dashed line corresponds tod50 —
precisely at the metal-insulator transition.
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56 15 235LINE JUNCTIONS IN THE QUANTUM HALL EFFECT
Gsd5ne2/h2G. ~4.2!

The two-terminal conductance of the line junction d
pends on the lengthL of the junction. ProvidedL is long
compared to the thermal coherence lengthLT , a classical
description is possible in terms of the bulkconductivityof an
infinitely long line junction. In particular, solving a Boltz
mannn equation11 subject to the boundary condition that th
channels incident to the left and right of the line junction a
separated by a voltageV, one arrives at the two-termina
conductance

G5n
e2

h

s

s1n~e2/h!L
. ~4.3!

In the localized phase,s!(e2/h)L, so that Eq.~4.3! re-
duces to the classical expressionG5s/L, with a small con-
ductance. In the extended phase this may also be true at
temperatures. However, upon cooling,s grows, and the
backscattering lengthl will eventually become comparabl
to or larger than the line junction lengthL. In this opposite
limit, s@(e2/h)L, an electron will typically be transporte
all the way along the line junction length without sufferin
any backscattering collisions. The line junction conducta
will be very close to perfect,G'ne2/h, whereas the source
to-drain conductance will be much smaller than the quan
unit Gsd!ne2/h. In this low-temperature regime of the me
tallic phase, one thus hasGsd}(e2/h)(L/a)W(T/vc)

2(K21).
Finally, at very low temperatures in the metall

phase, whenLT@L, the system lengthL replaces tempera
ture as a cutoff. In this limit the line junction behave
effectively as a point contact, with ideal leads. O
expects the source-to-drain conductance to vary
Gsd}(e2/h)(L/a)W(T/vc)

(2/n22).
To extract the bulk line junction conductivity, and avo

the complications associated with the various different
gimes, it is clearly desirable to make the line junction as lo
as possible. The temperature range should then be restr
so that the source-to-drain conductance is close to its q
tized value. The bulk conductivity can be readily extracte

s5L~ne2/h2Gsd!
ne2/h

Gsd
. ~4.4!

V. LOCALIZATION TRANSITION FOR 2/3

Hierarchical FQHE states at filling factors different fro
1/n an odd integer, are believed to have multiple propaga
modes on a single edge. This necessarily complicates
analysis of a line junction in such states. For simplicity,
discuss only the experimentally most robust hierarch
state —n52/3.

We first briefly review the theory of a single edge of
n52/3 fluid. MacDonald12 and Wen1 originally argued that
the edge consists of two modes: a forward propagating m
similar to an51 edge, and a backward propagating mo
similar to an51/3 edge. The appropriate Hamiltonian is

H05pv1n1
213pv2n2

2 , ~5.1!
-
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wheren15]xf1/2p is the charge density propagating dow
stream at velocityv1, andn252]xf2/2p the density propa-
gating upstream atv2. These densities satisfy the commut
tion relations:

@n1~x!,n1~x8!#5~ i /2p!]xd~x2x8!, ~5.2!

@n2~x!,n2~x8!#52~1/3!~ i /2p!]xd~x2x8!. ~5.3!

Generally, these two modes will interact via a term of t
form Hint;v12n1n2.

Operators that add charge to the edge take the gen
form On1 ,n2

5ei (n1f11n2f2), for integerni . These operators

addn1 electrons to channel one, andn2 1/3-charged Laugh-
lin quasiparticles to mode two, creating a total char
Q(n1 ,n2)5e(n11n2/3).

To account for the observed quantized Hall conducta
at n52/3, it is essential to incorporate processes that
equilibrate the two edge modes. The dominant proces
O1,23, which transfers a unit charge from mode two to mo
one. This process must be mediated by impurities, since
two edge modes will generally be at different momenta.
Ref. 9 we have analyzed in detail the effects of su
impurity-induced tunneling processes. We find that there
two possible phases, depending on the impurity strength
the interchannel Coulomb interactionv12. For a very clean
edge with smallv12 the impurity scattering scales to zero
low energies, and charge propagates in both directions.
for a dirtier edge, the system has a phase transition in
disorder-dominated phase. In this phase the two modes
structure, forming a charge mode,

nr5n12n25]xfr/2p, ~5.4!

propagating downstream, and a neutral mode,

ns5n123n25]xfs/2p, ~5.5!

moving upstream.@More precisely, the actual neutral mod
that propagates is related tons by a spatially random SU~2!
rotation — see Ref. 9.# The effective Hamiltonian becomes

H05~pvr /n!nr
21~pvs/2!ns

2 . ~5.6!

In the following we consider the behavior of a line junctio
supposing that then52/3 edges on either side of of the jun
tion are in this disorder-dominated phase. For this analy
we will need the ‘‘local’’ scaling dimensionsd of the edge
operators, defined viâO(x,t)O(x,0)&;t22d. Using the
above definitions, one finds

d~n1 ,n2!5
3

4S n11
n2

3 D 2

1
1

4
~n11n2!2. ~5.7!

Consider now a line junction, which will consist of tw
charge and two neutral modes, one above and the othe
low the junction. We denote these asfr,a for the ‘‘top’’ and
fr,b for the ‘‘bottom’’ charge mode — and similarly for the
two neutral modes. Tunneling processes that transfer ch
from the top to bottom are expressed as products,Oa†Ob.
For example, the operatorO1,0

a†(x)O1,0
b (x) tunnels an electron

from top to bottom at positionx along the junction. The
appropriate term to add to the Hamiltonian is
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15 236 56C. L. KANE AND MATTHEW P. A. FISHER
H15j~x!O1,0
a†~x!O1,0

b ~x!1H.c. , ~5.8!

where againj(x) is a random~complex! tunneling ampli-
tude.

Generally, all tunneling processes that transfer cha
from top to bottom edges in integer units of the electr
charge are allowed. Of interest are the most relevant~or least
irrelevant! of such operators, or equivalently those with t
smallest scaling dimensionsd. There are three of these, wit
the same scaling dimension,d(1,0)5d(2,23)5d(1,23)
51. The first two transfer a chargee, whereas zero charge i
transferred for~1,23!. A perturbative RG calculation fo
small disorderW, gives

]W/]l 5~322D!W, ~5.9!

whereD5da1db is the total~local! scaling dimension of the
operatorOaOb.

If we ignore any Coulomb interactions between the mo
on the top and bottom sides of the line junction, then we
use Eq.~5.7! to evaluate the scaling dimension, givingD52.
This implies thatall electron tunneling processes are irre
evant. The line junction is in a conducting phase, with
electron backscattering strength scaling to zero at low e
gies. This should be the case when the gate potential is
justed so that the top and bottom modes are well separa

But as the gate potential is reduced, the modes get cl
together, and the Coulomb interaction increases. Since
neutral modes do not carry any charge, the Coulomb in
action acts only between the top and bottom charge mo
Since these modes move in opposite directions, a Coulo
interaction will modify the scaling dimensions, just as in S
II. To see this consider the total Hamiltonian for the cle
line junction,H05H0

a1H0
b . From Eq.~3.6! this factorizes

into a sum of the charge and neutral sectors,H05H0
r1H0

s ,
with

H0
r5~pvr /n!@nr,a

2 1nr,b
2 1lnr,anr,b#, ~5.10!

where we have included a Coulomb interaction, with~dimen-
sionless! strengthl. Since the charge densities satisfy

@na/b~x!,na/b~x8!#56~ in/2p!]xd~x2x8!, ~5.11!

one sees that the charge sector forn52/3 is formally iden-
tical to the full theory forn21 an odd integer, Eqs.~2.1! and
~2.2!. As in Sec. II, we can diagonalize the HamiltonianH0

r

by defining fields,fr,a/b5Ap(f6u). In this way,H0
r takes

the form of Eq.~2.10! with a charge stiffness,

Kr5
1

nF12l

11l G1/2

. ~5.12!

Once the Hamiltonian is diagonalized, one can read
obtain the scaling dimension for the electron tunneling
erator that appears in Eq.~5.9!, giving

D5
1

2
1

3Kr

2
, ~5.13!

where the first term is from the neutral sector. In the abse
of Coulomb interactions between the top and bottom cha
modes,Kr51, and the tunneling is irrelevant, as befor
e

s
n

e
r-
d-
d.
er
he
r-
s.
b

.

y
-

ce
e

.

However, with increasing Coulomb interaction,Kr de-
creases, and eventuallyD,3/2. When this happens, eve
weak backscattering grows under the RG transformation,
the system scales into a disorder-dominated phase. Altho
the properties of this phase are perturbatively inaccessibl
is natural to presume that both the charge and neutral e
tations are localized in this phase.

We thereby conclude that a line junction in an52/3 fluid
should be qualitatively similar to an51/3 junction. Two
phases should be present, a conducting phase when
modes are well separated, and a localized phase. Upon
ing the gate potential, one should be able to pass through
localization phase transition separating the two phases. In
conducting phase, the electrical conductivity should dive
as a power law of temperature, precisely as in the analysi
Sec. III.

VI. CONCLUSION

A line junction in the fractional quantum Hall effect of
fers a unique opportunity for observing a one-dimensio
localization transition. In this geometry, the 1D system
formally equivalent to a 1D electron gas withattractive in-
teractions. With sufficiently strong attraction, localizatio
ceases to be operative in 1D, and the system can under
metal-insulator transition. The key signature of this 1
metal-insulator transition is the temperature dependenc
the conductivity, which diverges as a~variable! power of
temperature in the metallic phase. In the insulating phase
conductivity is expected to drop rapidly with cooling, fo
lowing a variable-range hopping law, whereas right at
transition a 1/T behavior with logarithmic corrections is pre
dicted. As discussed in detail, the 1D conductivity can
extracted from a standard Hall transport measurement, in
regime where the Hall conductance is close to its quanti
value.

ACKNOWLEDGMENTS

We are grateful to Sora Cho for helpful conversation
M.P.A.F. acknowledges support from the National Scien
Foundation under Grant Nos. PHY94-07194, DM
9400142, and DMR-9528578. C.L.K. has been supported
Grant No. DMR-9505425.

APPENDIX A: LINEAR RESPONSE THEORY
FOR THE CONDUCTIVITY

Here we evaluate the conductivity in linear respon
theory, treating the disorder perturbatively in the Born a
proximation. This is valid in the conducting phase, whereW
scales to zero at low temperatures and scattering events
uncorrelated. The Kubo formula expresses the conducti
as a current-current correlation function:

s5
1

vn
E

x,t
DI~x,t!e2 ivntuvn→ iv1e ~A1!

where

DI~x2x8,t2t8!5@^TtI ~x,t!I ~x8,t8!&#ens. ~A2!
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Here the square brackets denote an ensemble average
realizations of the disorder. After ensemble averaging t
current correlation function is translationally invariant. Fou
rier transforming gives

s5
1

vn
DI~k50,vn!uvn→ iv1e . ~A3!

An expression for the current operator can be obtained
noting that the total one-dimensional density
n5nR1nL5(n/Ap)]xu. Thus u(x) is proportional to the
integrated charge less thanx, so that current operator is

FIG. 4. Diagrams for the self-energy. The solid lines represe
the propagatorsDu,0 and the dashed lines represent the impuri
scattering vertex. A sum over all possible combinations of the
lines is implied.
m

ver
e

-

y

I 5
n

Ap
] tu. ~A4!

The conductivity then becomes

s5
vnn2

p
Du~k50,vn!uvn→ iv1e , ~A5!

where we have defined

Du~x2x8,t2t8!5@^Ttu~x,t!u~x8,t8!&#ens. ~A6!

In the absence of any disorder,

Du,05
vK

v2k21vn
2 . ~A7!

With disorder present we write

Du
215Du,0

211S, ~A8!

with a self-energyS(k,v). This self-energy can readily b
evaluated to leading order in the disorder strength. The
evant diagrams are shown in Fig. 4 and may be evaluate

S~k,vn!5DWE
0

b

dt~12eivnt!F pT/vc

sinhpTtG2K

. ~A9!

Analytically continuing to real time, this become
S(k,v)5cKivW/a(T/vc)

2(K21), wherecK is a numerical
factor that depends onK. Then using Eqs.~3.10! and~3.13!,
we recover the conductance given in Eq.~3.5!.
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