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Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes
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A theory of the long-wavelength low-energy electronic structure of graphite-derived nanotubules
is presented. The propagating electrons are described by wrapping a massless two dimensional
Dirac Hamiltonian onto a curved surface. The effects of the tubule size, shape, and symmetry
are included through an effective vector potential which we derive for this model. The rich gap
structure for all straight single wall cylindrical tubes is obtained analytically in this theory, and the
effects of inhomogeneous shape deformations on nominally metallic armchair tubes are analyzed.
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Since the discovery of a new family of carbon basedstates are described by a massless two dimensional Dirac
structures formed by folding graphite sheets into compactiamiltonian, H.;s = vo - p, where p denotes a two
tube-shaped objects, there has been interest in the eledimensional momentum in the graphite plane, and the
tronic properties which can be realized with these struce’s are the2 X 2 Pauli matrices [7]. Here the two spin
tures [1]. It is now understood that these tubes exhibipolarizations of the particle refer to the two independent
insulating, semimetallic, or metallic behavior depending orbasis states (labeling the and » sublattices) in the
the helicity of the mapping of the graphite sheet onto thegraphite primitive cell. Thus, in addition to its physical
surface of the tube [2—5]. Discrete microscopic defects, irspin and momentum, the- electron carries an internal
the form of disclination pairs, provide an interface betweerpseudospin index, labeling the sublattice state, and an
neighboring straight tubule segmentsdifferenthelicities  isospin index, labeling the two independent Dirac spectra
with different electronic gaps, providing a novel class ofderived from theK andK’ points of the zone. The Fermi
elemental heterojunctions [6]. energy for this system is & = 0.

In this Letter we investigate the effects of shape fluc- To study the electronic behavior of the tubule one maps
tuations on the electronic properties of the carbon nanoH. onto a curved surface. The mapping of the graphite
tubes. We present a new formulation of this problemsheet onto the cylindrical surface can be specified by a
which allows us to study the effects of geometry on thesingle superlattice translation vectfy which defines an
quantum dynamics for a electron propagating within elementary orbit around the waist of the cylinder. In the
the surface of the wrapped graphite sheet. We show thabsence of disclinations the superlattice vedgris an
the very rich gap structure already well established forelement of the original graphite triangular Bravais lat-
straight single wall cylindrical tubules can be derived di-tice. This wrapping is conventionally indexed by two
rectly from this geometrical theory [2—5]. We then ex-
tend the model to consider the effectsiofiomogeneous
deformations in the form of local twists and bends of the
tubule on the low-energy electronic structure. These are
important low-energy structural degrees of freedom of the
tubules, and indeed one finds that these deformations are
easily quenched into any three dimensional network com-
posed of tubules. We show that these shape fluctuations
also have a very strong effect on the low-energy electronic
and transport properties.

An isolated two dimensional sheet of graphite is a
semimetal, with the Fermi energy residing at a critical
point in the two dimensionatr electron spectrum. The
Fermi surface is collapsed to a point for this system;
there are two distinct Fermi points & (K’) points
of the zone(+47/3a,0), wherea is the length of the
primitive translation vector = +/3d where d is the

nearest neighbor bond length of the graphite Iattice)FlG. 1. Lattice structures for (a) the ideal zigzag [12,0] tube,

Expanding ther electron Hamiltonian around either of (p) the ideal chiral [8,6] tube, and (c) the ideal armchair [8,8]
these points one finds that the low-energy electronigube.
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integers[m,n] such thatT, = mT, + nT, with T} =  binding model [5]. It is noteworthy that the symmetry of
a(1,0) andT, = a(1/2,+/3/2) [2-5]. In Fig. 1 we show the Dirac spectrum requires that for the metallic tubules
the structures of three cylindrical single wall nanotubes forfor each isospin there is only a single azimuthal branch of
selected values ok andn. The 7 electron eigenstates the electronic spectrum which crosses the Fermi energy,
V¥(r) satisfy periodic boundary conditions on the cylin- independenof the radius of the tubule, and that transport
der, i.e.,.W(r + T;,) = ¥(r). Interestingly this doemot in a single tube is therefore always governed by a single
imply periodic boundary conditions for the eigenfunctionstransverse channel.
of H.. Instead,H is obtained from a factorization of In addition to the wrapping constraint described above,
the single particle stat# = (r) - [U,(r), Uy(r)] where the localshapeof the tubule plays an essential role in de-
(U4, Up) are the two sublattice components of the eigentermining the low-energy electronic properties. Specifi-
states of ther electron Hamiltonian at the critic& point  cally, curvature and shear in a graphite sheet introduce
of the zone, ands(r) is a (slowly varying) eigenstate of variations in the local electronic hopping amplitudes.
Hge. In particular, the functiond/, and U, are Bloch  Consider fluctuations in the hopping amplitudig along
functions with crystal momenturk = (477 /3a,0) which  three nearest neighbor bonds at a given site on sub-
do not retain the periodicity of the original Bravais lattice, lattice . The average value afr, simply renormalizes
but are invariant only under the translations af& X +/3  the velocity of the Dirac particle. However, the variation
superlattice. Sinc&d’(r) is invariant under Bravais lattice from bond to bond introduces a new symmetry breaking
vectorT},, one finds that the functio is conjugate td/,  terminthe forméHeg = (v/2) (af o~ + a_ o), where
and accumulates a phase’® 7" under translationg,. 3 i
This phase shifted boundary condition is an awkward ar = 1 Z 5;aeii1<'*a (2)
computational as well as conceptual constraint on the V4=l
low-energy theory. However, we observe that this con-
straint can always be enforced by imposing strictly peri-ando = = a1 * io,. Defining the vector
odic boundary conditions on the wave functignin the - S
presence of an effective vector potentiglwhich satisfies h = Z FaOta/t, (3)
27 [a, - dl = —K - T), where the line integral is taken a=l
on a closed orbit around the waist of the cylinder. Thisit is straightforward to show:; = i(2/3d) (h, * ih,y).
vector potential can be associated with an elementary fluXhis term may be written as an effective curvature derived
of strength® = —K - T, /27 which links the cylinder.  vector potential [8. = 2 X h, where? is the local unit
The azimuthal quantum states which satisfy periodimormal vector. We then have
boundary conditions on the surface of the cylinder are e e -
the cylindrical harmonics™? with integerm. We adopt Her = vo - (p +ay + ac). )
a coordinate system in which thé direction denotes A similar expression may be derived for th€ point.
the (counterclockwise) tangential direction on the tube’sEquation (4) demonstrates that the effect of fluctuations
surface, and the direction is aligned along the tube. in the bond hopping amplitudes are to displace the
Then for themth channel propagating along the tubule  singular point of the Dirac operator ih space, but not
2 to remove it. As an electron propagates on the surface
Het = —— o1(m + ®) — ivoad,, (1) of atube it accumulates a phase from both the winding
Ty condition (througha,,) and from the local fluctuations of

the hopping amplitudes (through) which it encounters
with  spectrum E = iv\/q§ + 2@ /Ty)? (m + ®)2.  along its path.

Thus, for any wrapping wher@ is an integer, the accu-  The bond hopping fluctuations can now be analyzed by
mulated phase due to the vector potential can be absorbatlidying the bond length variations and the misorientation
into the definition of the azimuthal quantum number  of 7 electron orbitals on neighboring sites of the tubule.
In particular, there exists an azimuthal state= —® for  The detailed calculations leading to the results given
which the “mass” term vanishes, and the electronic spedselow are straightforward but lengthy [9], and will not
trum is gapless. This occurs for the wrapped tubules ibe presented here. Instead we focus on the key results.
which T}, is an element of a regulaf3 X /3 superlattice One finds that the dependence of the hopping amplitudes
of the original graphite Bravais lattice. For the remainingon bond length for a hop along borid can be expressed
two-thirds of the wrapped structures, the minimum valuen terms of the metric tensgy;; for the curved surface so

of |m + ®| = 1/3, so that these structures retain athat
nonvanishing gap\E = 47v/3T,. In a nearest neigh- . ™ i
bor tight binding model, with nearest neighbor hopping Bta/t = (B/2d%)7,73(81j = Byy). ()
amplitude ¢, one hasv = 3td/2 so that these primary where 8 = dInt/dInd gives the linear dependence of
gaps depend inversely on the tube radysAE = td/R  the bond hopping operator on bond length. We consider
as has already been deduced from numerical work bthe 7 orbitals to be oriented along the local normal of the
several groups and derived analytically from a tighttubule surface. On a curved surface, the local normals
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on two neighboring sites are no longer perfectly aligned, 25
and this misorientation also modulates the hopping am- 20 )
plitudes. We find that this effect can be calculated using )
both the metric tensog;; and the curvature tensadf;; 1.5
[10]. The resultis

1.0

5la/[ = _(I/S)TéTéKijilgkl + ... (6) . 05

There is an additional contribution which arises from E 0.0

rehybridization of thew electron states on the curved "'<'1' 0.08
manifold, and it can be derived by studying the effects of ’

shape fluctuations on the invariaf#t - 7,) (7' - 7,) [9]. 0.06

The essential ingredients for the long-wavelength physics 0.04
are already contained in the former two contributions, and )

we now consider them in more detail. 0.02

For a tubule in the form of a right circular cylinder we 0.00

need to specify the metric tensor, curvature tensor, and the 70

tipping angled which orients a bond of the honeycomb
network with respect to thel* axis” along the length of ) ) ) B
the tube. For the right circular cylinder we haye = 5;; FIG. 2. Gaps calculated for all right circular tubes with radii

d th | t of th t ¢ less than 15 A.  The tubes fall into three families: those with
an € only nonzero component or the curvature enf)rimary gaps which scale dg'R (top panel, top curve), those

sor. is K;; = 1/R. Thus the pure metric contribution with zero primary gap but nonzero curvature induced gaps
to a. vanishes, and we only have the orientational conwhich scale asl/R* (lower curve top panel, and shown in

tribution. The explicit form may be found using (3) and the expanded scale in the lower panel), and armchair tubes with
(6) ananith thg fact th_?.t for any three Vecta}sé, a zero primary gap and zero curvature induced gap.

Z.a(%a : A) (%a : B) (%a ' C) = (3/4)RC[A+B+C+] Ex-

pressinga. in the new coordinate system, we fiad =  nonvanishing curvature induced gap (these are shown on
ac¢ + ia.e = —e3%d/16R%. Note that this contribution an expanded scale in the lower panel), and (c) zero gap
is proportional to the square of the tubule curvature, andarmchair tubules) for which both the primary gaps and
is unchanged under rotations of the tipping angl@ky3  curvature induced gaps vanish by symmetry. The data
as one expects from the symmetry of the honeycomb latpredicted within this model provide a strikingly complete
tice. For the “zigzag” tubes [as shown in Fig. 1(a)] wedescription of numerical data for these gaps obtained
have a bond exactly aligned with the long axis of thefrom a complete tight binding analysis of these tubes
cylinder, so tha¥ = 0 anda is purely real. This means employing four basis orbitals per carbon site for each
that a. is directed along the circumferential direction of of these structures [12]. We remark that the scales of
the tube. Here the line integrdla. - dI around the waist these gaps for tubes of radiusl0 A are by no means

of the tube is nonvanishing (and in general nonintegral)negligible and can have important consequences for the
so that the curvature makes a nonzero contribution to thisw temperature transport properties [13].

effective mass of the Dirac particle in Eq. (4). For the This model can now be extended to far more complex
armchair tubes [as shown in Fig. 1(d]= #/2 so that structures which contain fluctuations in the tubule shape.
the vector potential is purely imaginary, indicating thatPhysically, just as the uniform vector potential describes
it is directed exactlyalong the tube direction. For this a homogeneous mapping of the graphite plane onto the
geometry its only effect is to rigidly shift the electronic tubule surface, a perturbation to the tubule shape produces
spectrum along the, direction in momentum space. This a perturbation in the vector potential which then can
shift has no physical consequence and can be completecatter a quantum particle. Here we will focus only the
eliminated from this geometry by a simple gauge transforarmchair tubes, since these are the only structures which
mation. Sinced is an integer for all armchair tubes, and are metallic in the absence of shape fluctuations. We
the curvature corrections can be removed from the Hamileonsider the effects of long-wavelength twists and bends
tonian by a gauge transformation, the mass term vanishes the tubule, as shown in Fig. 3 since these are the low-
and all the straight armchair tubules remain metallic. energy degrees of freedom for the system.

For a given cylindrical tubule the total band gap is We find that even a modest twist can serve as a strong
[2v(a, + Re[a}]), and in Fig. 2 we display a plot of scatterer for a propagating electron. The dominant ef-
the total gaps predicted for all tubules with radii lessfects are introduced through the metric tensor contributions
than 15 A. The plot identifies three distinct families in Eq. (5). For a tube subject to a twigt= d,¢ we find
of tubules: (a) tubes with primary winding induced gapsa, = ie*?B(R/2d)y. For the armchair tubej, is di-
scaling asl /R with curvature-derived fluctuations scaling rected along the circumferential direction and provides a
as1/R?[11], (b) tubes with vanishing primary gaps, and agap in the Dirac spectrum ¢88yR/2)t. Physically this
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with resistivity decreasing with increasing temperature to a
high temperature regime in which the resistivity is increas-
ing roughly linearly with temperature [15]. This crossover
occurs in the range 10—200 K (depending on sample qual-
ity and morphology), and since these temperatures are in
an energy range which can be easily accounted for by the
shape fluctuations discussed above, it is tempting to asso-
ciate this crossover with the onset of strong backscattering
from quenched disorder in the tubule twist. It would be
quite interesting to quantify this idea by measuring the de-
gree of twist which is actually quenched into three dimen-
sional samples composed of carbon nanotubes. Finally,
we note that the twist can be thermally excited and pro-
FIG. 3. Deformations of an armchair [5,5] tube. The left Vides an important temperature dependent scattering rate
panel gives the ideal tube structure. The middle and righfor 7 electrons propagating along the tubule.
panels show the effects of uniform bend and twist on the |t is a pleasure to thank J.E. Fischer and R. Kamien
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