
VOLUME 78, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 10 MARCH 1997

vania,

bules
onal
metry
gap
the
lyzed.

1932
Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes

C. L. Kane and E. J. Mele
Department of Physics, Laboratory for Research on the Structure of Matter, University of Pennsyl

Philadelphia, Pennsylvania 19104
(Received 27 August 1996)

A theory of the long-wavelength low-energy electronic structure of graphite-derived nanotu
is presented. The propagatingp electrons are described by wrapping a massless two dimensi
Dirac Hamiltonian onto a curved surface. The effects of the tubule size, shape, and sym
are included through an effective vector potential which we derive for this model. The rich
structure for all straight single wall cylindrical tubes is obtained analytically in this theory, and
effects of inhomogeneous shape deformations on nominally metallic armchair tubes are ana
[S0031-9007(97)02693-8]
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Since the discovery of a new family of carbon bas
structures formed by folding graphite sheets into comp
tube-shaped objects, there has been interest in the
tronic properties which can be realized with these str
tures [1]. It is now understood that these tubes exh
insulating, semimetallic, or metallic behavior depending
the helicity of the mapping of the graphite sheet onto
surface of the tube [2–5]. Discrete microscopic defects
the form of disclination pairs, provide an interface betwe
neighboring straight tubule segments ofdifferenthelicities
with different electronic gaps, providing a novel class
elemental heterojunctions [6].

In this Letter we investigate the effects of shape flu
tuations on the electronic properties of the carbon na
tubes. We present a new formulation of this proble
which allows us to study the effects of geometry on t
quantum dynamics for ap electron propagating within
the surface of the wrapped graphite sheet. We show
the very rich gap structure already well established
straight single wall cylindrical tubules can be derived
rectly from this geometrical theory [2–5]. We then e
tend the model to consider the effects ofinhomogeneous
deformations in the form of local twists and bends of t
tubule on the low-energy electronic structure. These
important low-energy structural degrees of freedom of
tubules, and indeed one finds that these deformations
easily quenched into any three dimensional network co
posed of tubules. We show that these shape fluctuat
also have a very strong effect on the low-energy electro
and transport properties.

An isolated two dimensional sheet of graphite is
semimetal, with the Fermi energy residing at a critic
point in the two dimensionalp electron spectrum. The
Fermi surface is collapsed to a point for this syste
there are two distinct Fermi points atK (K 0) points
of the zones64py3a, 0d, where a is the length of the
primitive translation vector (a ­

p
3 d where d is the

nearest neighbor bond length of the graphite lattic
Expanding thep electron Hamiltonian around either o
these points one finds that the low-energy electro
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states are described by a massless two dimensional Di
Hamiltonian, Heff ­ y $s ? $p, where p denotes a two
dimensional momentum in the graphite plane, and th
s’s are the2 3 2 Pauli matrices [7]. Here the two spin
polarizations of the particle refer to the two independe
basis states (labeling thea and b sublattices) in the
graphite primitive cell. Thus, in addition to its physica
spin and momentum, thep electron carries an internal
pseudospin index, labeling the sublattice state, and
isospin index, labeling the two independent Dirac spect
derived from theK andK 0 points of the zone. The Fermi
energy for this system is atE ­ 0.

To study the electronic behavior of the tubule one map
Heff onto a curved surface. The mapping of the graphi
sheet onto the cylindrical surface can be specified by
single superlattice translation vectorTh which defines an
elementary orbit around the waist of the cylinder. In th
absence of disclinations the superlattice vectorTh is an
element of the original graphite triangular Bravais lat
tice. This wrapping is conventionally indexed by two

FIG. 1. Lattice structures for (a) the ideal zigzag [12,0] tube
(b) the ideal chiral [8,6] tube, and (c) the ideal armchair [8,8
tube.
© 1997 The American Physical Society
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integers fm, ng such thatTh ­ mT1 1 nT2 with T1 ­
as1, 0d andT2 ­ as1y2,

p
3y2d [2–5]. In Fig. 1 we show

the structures of three cylindrical single wall nanotubes f
selected values ofm and n. The p electron eigenstates
Csrd satisfy periodic boundary conditions on the cylin
der, i.e.,Csr 1 Thd ­ Csrd. Interestingly this doesnot
imply periodic boundary conditions for the eigenfunction
of Heff. Instead,Heff is obtained from a factorization of
the single particle stateC ­ csrd ? fUasrd, Ubsrdg where
sUa, Ubd are the two sublattice components of the eige
states of thep electron Hamiltonian at the criticalK point
of the zone, andcsrd is a (slowly varying) eigenstate of
Heff. In particular, the functionsUa and Ub are Bloch
functions with crystal momentumK ­ s4py3a, 0d which
do not retain the periodicity of the original Bravais lattice
but are invariant only under the translations of a

p
3 3

p
3

superlattice. SinceCsrd is invariant under Bravais lattice
vectorTh, one finds that the functionc is conjugate toU,
and accumulates a phasee2iK?Th under translationsTh.

This phase shifted boundary condition is an awkwa
computational as well as conceptual constraint on t
low-energy theory. However, we observe that this co
straint can always be enforced by imposing strictly pe
odic boundary conditions on the wave functionc in the
presence of an effective vector potentialaw which satisfies
2p

R
aw ? dl ­ 2K ? Th where the line integral is taken

on a closed orbit around the waist of the cylinder. Th
vector potential can be associated with an elementary fl
of strengthF ­ 2K ? Thy2p which links the cylinder.

The azimuthal quantum states which satisfy period
boundary conditions on the surface of the cylinder a
the cylindrical harmonicseimf with integerm. We adopt
a coordinate system in which thej direction denotes
the (counterclockwise) tangential direction on the tube
surface, and thez direction is aligned along the tube
Then for themth channel propagating along the tubule

Heff ­
2py

Th
s1sm 1 Fd 2 iys2≠z , (1)

with spectrum E ­ 6y

q
q2

z 1 s2pyThd2 sm 1 Fd2.
Thus, for any wrapping whereF is an integer, the accu-
mulated phase due to the vector potential can be absor
into the definition of the azimuthal quantum numberm.
In particular, there exists an azimuthal statem ­ 2F for
which the “mass” term vanishes, and the electronic sp
trum is gapless. This occurs for the wrapped tubules
which Th is an element of a regular

p
3 3

p
3 superlattice

of the original graphite Bravais lattice. For the remainin
two-thirds of the wrapped structures, the minimum valu
of jm 1 Fj ­ 1y3, so that these structures retain
nonvanishing gapDE ­ 4pyy3Th. In a nearest neigh-
bor tight binding model, with nearest neighbor hoppin
amplitude t, one hasy ­ 3tdy2 so that these primary
gaps depend inversely on the tube radiusR, DE ­ tdyR
as has already been deduced from numerical work
several groups and derived analytically from a tig
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binding model [5]. It is noteworthy that the symmetry o
the Dirac spectrum requires that for the metallic tubu
for each isospin there is only a single azimuthal branch
the electronic spectrum which crosses the Fermi ene
independentof the radius of the tubule, and that transpo
in a single tube is therefore always governed by a sin
transverse channel.

In addition to the wrapping constraint described abo
the localshapeof the tubule plays an essential role in d
termining the low-energy electronic properties. Spec
cally, curvature and shear in a graphite sheet introd
variations in the local electronic hopping amplitude
Consider fluctuations in the hopping amplitudesdta along
three nearest neighbor bonds$ta at a given site on sub-
lattice a. The average value ofdta simply renormalizes
the velocity of the Dirac particle. However, the variatio
from bond to bond introduces a new symmetry break
term in the formdHeff ­ syy2d sa1

c s2 1 a2
c s1d, where

a6
c ­

1
y

3X
a­1

dtae6i $K? $ta (2)

ands6 ­ s1 6 is2. Defining the vector

$h ­
3X

a­1

t̂adtayt , (3)

it is straightforward to showa6
c ­ is2y3dd shx 6 ihyd.

This term may be written as an effective curvature deriv
vector potential [8]$ac ­ ẑ 3 $h, whereẑ is the local unit
normal vector. We then have

Heff ­ y $s ? s $p 1 $aw 1 $acd . (4)

A similar expression may be derived for theK 0 point.
Equation (4) demonstrates that the effect of fluctuatio
in the bond hopping amplitudes are to displace t
singular point of the Dirac operator ink space, but not
to remove it. As an electron propagates on the surf
of a tube it accumulates a phase from both the wind
condition (throughaw) and from the local fluctuations o
the hopping amplitudes (throughac) which it encounters
along its path.

The bond hopping fluctuations can now be analyzed
studying the bond length variations and the misorientat
of p electron orbitals on neighboring sites of the tubu
The detailed calculations leading to the results giv
below are straightforward but lengthy [9], and will no
be presented here. Instead we focus on the key res
One finds that the dependence of the hopping amplitu
on bond length for a hop along bond$ta can be expressed
in terms of the metric tensorgij for the curved surface so
that

dtayt ­ sby2d2dti
atj

asgij 2 dijd , (5)

where b ­ ≠ ln ty≠ ln d gives the linear dependence o
the bond hopping operator on bond length. We consi
thep orbitals to be oriented along the local normal of th
tubule surface. On a curved surface, the local norm
1933
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on two neighboring sites are no longer perfectly aligne
and this misorientation also modulates the hopping am
plitudes. We find that this effect can be calculated usin
both the metric tensorgij and the curvature tensorKij

[10]. The result is

dtayt ­ 2s1y8dti
atj

aKjkKilg
kl 1 . . . . (6)

There is an additional contribution which arises from
rehybridization of thep electron states on the curved
manifold, and it can be derived by studying the effects
shape fluctuations on the invariantsn̂ ? $tad sn̂0 ? $tad [9].
The essential ingredients for the long-wavelength physi
are already contained in the former two contributions, an
we now consider them in more detail.

For a tubule in the form of a right circular cylinder we
need to specify the metric tensor, curvature tensor, and
tipping angleu which orients a bond of the honeycomb
network with respect to the “z axis” along the length of
the tube. For the right circular cylinder we havegij ­ dij

and the only nonzero component of the curvature te
sor is Kjj ­ 1yR. Thus the pure metric contribution
to $ac vanishes, and we only have the orientational co
tribution. The explicit form may be found using (3) and
(6) along with the fact that for any three vectors$A, $B, $C,P

ast̂a ? $Ad st̂a ? $Bd st̂a ? $Cd ­ s3y4dRefA1B1C1g. Ex-
pressing$ac in the new coordinate system, we finda1

c ­
acj 1 iacz ­ 2e3iudy16R2. Note that this contribution
is proportional to the square of the tubule curvature, a
is unchanged under rotations of the tipping angle by2py3
as one expects from the symmetry of the honeycomb l
tice. For the “zigzag” tubes [as shown in Fig. 1(a)] w
have a bond exactly aligned with the long axis of th
cylinder, so thatu ­ 0 anda1

c is purely real. This means
that $ac is directed along the circumferential direction o
the tube. Here the line integral

R
ac ? dl around the waist

of the tube is nonvanishing (and in general nonintegra
so that the curvature makes a nonzero contribution to t
effective mass of the Dirac particle in Eq. (4). For th
armchair tubes [as shown in Fig. 1(c)]u ­ py2 so that
the vector potential is purely imaginary, indicating tha
it is directed exactlyalong the tube direction. For this
geometry its only effect is to rigidly shift the electronic
spectrum along theqz direction in momentum space. This
shift has no physical consequence and can be complet
eliminated from this geometry by a simple gauge transfo
mation. SinceF is an integer for all armchair tubes, and
the curvature corrections can be removed from the Ham
tonian by a gauge transformation, the mass term vanish
and all the straight armchair tubules remain metallic.

For a given cylindrical tubule the total band gap i
j2ysaw 1 Refa1

c gdj, and in Fig. 2 we display a plot of
the total gaps predicted for all tubules with radii les
than 15 A. The plot identifies three distinct families
of tubules: (a) tubes with primary winding induced gap
scaling as1yR with curvature-derived fluctuations scaling
as1yR2 [11], (b) tubes with vanishing primary gaps, and
1934
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FIG. 2. Gaps calculated for all right circular tubes with rad
less than 15 Å. The tubes fall into three families: those w
primary gaps which scale as1yR (top panel, top curve), those
with zero primary gap but nonzero curvature induced ga
which scale as1yR2 (lower curve top panel, and shown i
the expanded scale in the lower panel), and armchair tubes
zero primary gap and zero curvature induced gap.

nonvanishing curvature induced gap (these are shown
an expanded scale in the lower panel), and (c) zero
(armchair tubules) for which both the primary gaps a
curvature induced gaps vanish by symmetry. The d
predicted within this model provide a strikingly comple
description of numerical data for these gaps obtain
from a complete tight binding analysis of these tub
employing four basis orbitals per carbon site for ea
of these structures [12]. We remark that the scales
these gaps for tubes of radiusø10 Å are by no means
negligible and can have important consequences for
low temperature transport properties [13].

This model can now be extended to far more comp
structures which contain fluctuations in the tubule sha
Physically, just as the uniform vector potential describ
a homogeneous mapping of the graphite plane onto
tubule surface, a perturbation to the tubule shape produ
a perturbation in the vector potential which then c
scatter a quantum particle. Here we will focus only t
armchair tubes, since these are the only structures w
are metallic in the absence of shape fluctuations.
consider the effects of long-wavelength twists and ben
of the tubule, as shown in Fig. 3 since these are the lo
energy degrees of freedom for the system.

We find that even a modest twist can serve as a str
scatterer for a propagatingp electron. The dominant ef
fects are introduced through the metric tensor contributio
in Eq. (5). For a tube subject to a twistg ­ ≠z f we find
a1

c ­ ie3iubsRy2ddg. For the armchair tube,$ac is di-
rected along the circumferential direction and provide
gap in the Dirac spectrum ofs3bgRy2dt. Physically this
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FIG. 3. Deformations of an armchair [5,5] tube. The le
panel gives the ideal tube structure. The middle and ri
panels show the effects of uniform bend and twist on
structure.

effect is due to an asymmetric compression and dilation
the “axial” bonds on the surface of the twisted tubule. He
we find that a twist which rotates the wrapped graph
structure through an angle ofp over a distance of1 mm
introduces a gap of 20 meV at the Fermi surface. The c
tributions from the curvature induced misorientation of t
p orbitals in Eq. (6) are considerably smaller by a fac
d2y12bR2.

Interestingly, we find that the coupling to bend
much weaker. A deformation with a constant bend b
no twist does not backscatter a particle. The underly
reason for this is that an armchair tube with uniform be
has a local mirror plane which preserves the symme
between the “axial” bonds. This ensures that the effec
vector potential points along the tube, so it is ineffecti
for backscattering a propagating particle. In principle
propagatingp electron can scatter from spatial variatio
of the bend. However, the first order coupling to t
derivative of the curvature≠z Kzz [14] vanishes due to
the azimuthal symmetry of the electronic states at
Fermi energy. From the higher order corrections
estimate a bend induced gap of ordertR3dyL4, whereL

is the persistence length of the tube, so the correctio
negligible for the situation of experimental interest.

In a real single wall tubule, one expects that the twist c
be inhomogeneously distributed along the tubule leng
For a twisted section of tubule connecting two untwist
armchair tubes, one can regard the connecting segm
as a weak link between conducting segments. At s
ficiently low temperature, backscattering from these
fects can ultimately lead to localization of a quantu
particle. However, before this idea can be meaningfu
applied to these systems, the model will have to be gen
lized to describe the competing effect of interwall quantu
coherence in three dimensional samples built out of sin
wall tubes. Nevertheless we remark that recent meas
ments on ropes composed of armchair tubes, and on
composed of an ensemble of connected ropes, show
sistivity which crosses over from a low temperature regi
t
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with resistivity decreasing with increasing temperature t
high temperature regime in which the resistivity is increa
ing roughly linearly with temperature [15]. This crossov
occurs in the range 10–200 K (depending on sample qu
ity and morphology), and since these temperatures ar
an energy range which can be easily accounted for by
shape fluctuations discussed above, it is tempting to as
ciate this crossover with the onset of strong backscatter
from quenched disorder in the tubule twist. It would b
quite interesting to quantify this idea by measuring the d
gree of twist which is actually quenched into three dime
sional samples composed of carbon nanotubes. Fina
we note that the twist can be thermally excited and p
vides an important temperature dependent scattering
for p electrons propagating along the tubule.
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