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Quantum Brownian motion in a periodic potential and the multichannel Kondo problem
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We study the motion of a particle in a periodic potential with Ohmic dissipatio® 41l dimension it is
well known that there are two phases depending on the dissipation: a localized phase with zero temperature
mobility =0 and a fully coherent phase wijh unaffected by the periodic potential. However, for nonsym-
morphic lattices withD>1, such as the honeycomb lattice, there is an intermediate phase with a universal
mobility w*. This intermediate phase is relevant to resonant tunneling experiments in strongly coupled
Coulomb-blockade structures as well as multichannel Luttinger liquids. We relate this problem to the Toulouse
limit of the D+ 1 channel Kondo problem, which allows us to compute exactly using results known from
conformal field theory[S0163-18288)52110-§

The quantum mechanics of a particle in a periodic poten- In this paper we consider the general problem of QBM on
tial coupled to a dissipative environment is a fundamentaperiodic lattices. The lattice symmetry plays a crucial role in
problem! A simple theory based on the Caldeira-Leggettdetermining thel =0 phases. For the honeycomb lattice and
model of Ohmic dissipation was proposed in the mid 1980dts N—1 dimensional generalization, there isTa=0 phase
as a possible description of the motion of a heavy chargedescribed by a FP which we relate to thechannel KP.
particle in a metaf.Recently there has been renewed interesEXploiting the mapping onto the KP, we compute exactly the
in this quantum Brownian motiofQBM) model in connec- FP mobility using results from conformal field theory. This
tion with quantum impurity problemi¢ and boundary con- allows us to compute exactly the resonant conductance in
formal field theory? Kane and Fishéf* have shown that this Poth in the FM model, and in a LL with a particular interac-

model describes tunneling through a barrier in a singlelion strength. Moreover, this analysis provides a unified
channel Luttinger liquidLL), which is relevant to experi- framework for understanding the nature of the intermediate

ments on quantum wirBand quantum Hall edge statein FP's.

this mapping the QBM takes place in an abstract space where Th? QBM quel is most easily de;cnbed using an imagi-
the “coordinate” of the “particle” is the number of elec- nary time path integral for the coordinatér). In 10D elec-

.~ . tronic problems, this is derived by first bosonizing, and then

Integrating out the degrees of freedom away from the @PC.
due to the discreteness of the electron’s charge. Low-ener hegactiog has the fo%m y Q

electronic excitations play the role of the dissipative bath.

There are two possible zero-temperatufe=(0) phases: a dr .

localized phase in which the conductar@e=0, and a fully S=Sy[r(n)]- J — > vge?me ), 2
coherent phase with “perfect” conductance. e G

A related problem concerns the Coulomb blockade inyherey . are Fourier components of the periodic potential at
guantum dots connected to leads via quantum point contactge reciprocal-lattice vector& (defined so that-R is an
(QPQ. Provided the level spacin§E of the quantum dot is  integer for any lattice vectoR). The coupling to the dissi-
sufficiently small, Furusaki and Matved#M)® argued that pative bath gives
each QPC may be treated as an independent one-dimensional
(1D) system. For spin-1/2 electrons, the dot may be de- 1 o] )
scribed by four coordinates: the number of electrons of each Solr(1]1=7 f do|w|e'“"|r(w)[%, (2)
spin transfered through each of the two leads. Since the Cou-
lomb blockade constrains the total charge, this maps to QBNMvhere 7. is a short time cutoff. Although the coefficient of
on athree-dimensionapotential. Sy determines the amount of dissipation, it may be fixed by

FM studied resonances in such a system with two identirescalingr and G. The dissipation is thus controlled by the
cal QPC's® They showed that the conductance on resonanckattice constanR,. Note that Egs(1) and (2) haveexactly
is lessthan the perfect conductane®h.® While they did not  the same form as the bosonized actions in Refs. 3 and 4 for
calculate its precise value, they argued that it is universal antlL’s, and also in Ref. 8 for QPC's after integrating out de-
is controlled by the fixed pointFP) of the four-channel grees of freedom away from=0. A QPC with noninteract-
Kondo problem(KP). This prediction is particularly interest- ing electrons is described by a 1D lattice wiRg=1. For a
ing in light of recent experiments on gated quantum dbts. LL with repulsive interactionsRy>1.2 We define the di-
Similar FP’s with intermediate conductance were found inmensionless mobility
models of resonang tunneling in a spin-1/2*4nd in con-
formal flelld th'eory'F Analy3|s. of thse FP’s, however, was = 27 |im |o|(|r(w)?). 3)
only possible in certain special limits. D o—0
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u describes the average velocity of the particle in response
to a uniform applied force, normalized such that 1 when (@
ek 0.

The effect of the periodic potential may be analyzed per-
turbatively in either of two limits. A weak potential may be
studied by considering the renormalization grdR&) flows
to leading order irvg, tj

v

dvg/d/=(1-|G|*vg. (4)

Clearly, if the shortest reciprocal-lattice vector satisfies
|Go|>1, then allvg are irrelevant. The “small barrier” limit (b)VI
in which w=1 is thus perturbatively stable. On the other
hand, if|Gy| <1, then the system flows to a different strong
coupling phase.

When the barriers are large, the particle is localized in one tJ
of the minima of the potential with a small probability for ~ 1 «—Y Wi }T ......
tunneling to another. It is then more natural to consider a 1 2/3 4/9 IROI2
dual representation in which the partition function is ex- ) . .
panded in powers of the fugacity of these tunneling events. FIG. 1. Flow diagrams for thés) triangular lattice andb) hon-

For a Bravais lattice, this may be generated by expanding th@Ycomp lattice as a function of lattice constant. The topttom
dual action lines represent the small (t) limits. Stable(unstablg fixed points

are depicted by soliddotted lines, and arrows indicate the RG
flows. The mobilityu is indicated by the vertical axis on the right.

25i112(1|:/5)

S=So[k(f)]—jd—72 tre! 2Rk, (5
Te R lent to the triangular lattice described above with a two-site
tr may be interpreted as the matrix element for the particldasis. While the reciprocal lattice is still trianguldRo| is

to tunnel between minima connected by a lattice ve&or shorter, andGo||Ro| = 2/3. Thus, for 4/3<|G|*<1 both the
Equivalently,k(7) describes the particle’s trajectory in mo- large and small barrier limits arenstable so that there must
mentum space in a potential with the symmetry of the recipbe a stable FP describing a new intermediate coupling phase.

rocal lattice. The RG flows to leading ordertig are then A perturbative analysis is again possible in the large and
small barrier limits. For small barriers the FP of E@) is
dtg/d/=(1-|R|?)tg. (6) stable forv<0 ande<0. u* is the same as above. In the

large barrier theory we must keep track of the two-site basis
of the honeycomb lattice. There are three nearest neighbors
R for each site on thé sublattice. For thd8 sublattice the
nearest neighbors areR. The tunneling must alternate be-
tween the sublattices. This can be incorporated in the dual
theory by introducing a spin-1/2 degree of freedom. For
Cnearest—neighbor hopping, the dual action is given by

The “large barrier” limit is thus perturbatively stable pro-
vided the shortest lattice vector satisf|&g|>1.

For a one-dimensional latticéR||Go|=1. Thus either
the small or the large barrier limit is stable, but not both.
There are two phases: f¢6G,/<1 the system is localized
and for|Gy|>1 the system has perfect mobility. Clearly, this
is also the case in higher dimensions for a lattice with cubi
symmetry. dr ' _

In contrast, for a triangular latticéR,||G,| = 2/4/3. It fol- S=Sy[k]— f — X t[rT €2k rmemi2TRE] L (g)
lows that for 1< |Gy|2< 4/3, boththe small and large barrier Te R
limits are stable. There must therefore be an unstable FhereR are among the three nearest-neighbor lattice vectors
separating the two phases, as indicated in Fig. A similar  of suplatticeA and 7= are spin-1/2 operators;=/2. A per-
intermediate FP occurs in the single barrier problem of ayrpative analysis fofGy|2=1+ € gives u* = 72e.
spin-1/2 LL* An analysis perturbative img of this FP is The flow diagram for the honeycomb lattice as a function
possible for|Go|*=1+e. Let vg=v for the six nearest- of |attice constant is summarized in Fig(bL Unlike the
neighbor reciprocal lattice vectors. For-0, the potential  cybic and triangular Bravais lattices, tfie= 0 mobility does
minima form a triangular lattice. The RG flow to secondnot exhibit a discontinuous jump from 0 to 1. Rather, the
order inv is mobility interpolates smoothly tz)etween the two limits in the

intermediate phase for 49Ry|“<1. In general, the exis-

do/d/'=—ev+20% (D tence of a stable intermediate phase requires a nonsymmor-
Providedv >0 ande>0, there is an unstable FFP* = €/2. phic lattice symmetry, with a vector connecting equivalent
The mobility at this FP is universaly* =1— (372/2)€’. A sites that is shorter than any lattice translation.
similar analysis for smallt at |Ro|?>=1+e€ gives We now relaf[e th_e _stable inter_mediate FP to_ the multi-
w* =(37212)€2. For |Go|2=|Ry|?=2/\/3, the theory is self Cchannel KP by |dent|fy|ng.the lattice symmetry in the KP.
dual, which implies tha* = 1/2. Piecing these results to- The Hamiltonian of the anisotropl channel KP is’
gether, we obtain the flow diagram in Figial

Whenv <0, the minima of the potential described above _ t o o
form a honeycomb lattice. The hoﬁ)neycomb lattice is equiva- nt IvFaEs dx%SaX%SJFsz% JiSimpa(0).
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FIG. 3. Flow diagram for th&l-channel Kondo model for small

J, . The dashed line is the Toulouse limdt,=2/N. The strong-
coupling fixed point is marked with the full circle.

FIG. 2. Lattice of spin states for the three-channel KP, WhiChOf the lattice in the perpendicular  direction

form two planes with constargj + S;+S;. R2 = (1—NJ,/2)?/N. Note thatR, =0 for J,=2/N, so that

) . o the perpendicular direction decouples. This is rehannel
wherea, s, andi are channel, spin, and space indic8s, is  generalization of the Toulouse limit: 1> A central point of
the impurity spin, ands,(0)= ¢1(0)(0Ly/2)as (0) is the  this paper is that this limit of th&l-channel KP isdentical
electronic spin in channel at x=0. We consider an aniso- to a QBM model on & — 1 dimensional honeycomb lattice.
tropic model, characterized by dimensionless couplidgs An RG analysis shows that the corrugation of the lattice,

andJ,=J,=J, . Our analysis closely parallels that of Emery given byR, , is irrelevant. The flow equations, expanded to
and Kivelson for the two-channel K¥ We first bosonize the orderJf are®17
theory, and then do a rotation in spin space which transforms

the J, interaction. Upon integrating out the degrees of free- dJZ/d/=Jf[1—(N/2)JZ], 9
dom away fromx=0, we obtain a theory in terms of the
boson fields at the impurity which closely resembles the lat- dJ, /d/zJLJZ[l—(N/4)JZ]—(N/4)Jf . (10

s shown in Fig. 3,J, flows towards 2N, the Toulouse
mit, shown by the dashed line. Fdt= 3 this is the same as
the dashed line in Fig. (). The intermediate FP for the
honeycomb lattice withR,|?=2/3 is the same as that of the
Jhree-channel KP. VaryingR,| adiabatically connects the
multichannel Kondo FP to the strong and weak barrier limits

tice models studied in this paper. The details of this mappin
will be presented in a longer article, however its essence m%
be understood quite simply.

Now the total spirS; in each of theN channels plays the
role of the coordinates of the QBM model. Wh&n=0, the
state of the system may be characterized by a vector of di

z : . : .
;:irete Jval,l,Jhe S OFat,hwhlchtf?Tr]mbathDI dlnmei?smnil ::mblﬁ lt?it described above. For largé the FP atl, =J,=2/N is in the
ce.J. hops™ ne system between Sites on 1nis 1atlice. o hq harrier limitt

.Smce.H conserves the total Spin of th.e electrons plus the Conformal field theory allows for an exact description of
impurity, the system is constrained to lie on one of two Iat-,[he multichannel Kondo FPThis allows us to computa*

. . V4 zZ

tice planes with constarsi,, + X,S; whereSi,,= = 1/2. For nonperturbatively, by identifying the appropriate correlation
N=3 each lattice plane forms a triangular lattice, asncfion in the KP. The analog af, is the spin in each
lskt(ta_tche(? n F'gf‘ 2. V|evxed fromttr((ﬁla;) d|rect|ont,) tlh(it.two. channel,S;. u then describes the flow of spin between the
attice planes form a “corrugate oneéycomp fatlice I o nnels in response to an applied potential. Introducing an

e s o orihogonal ransiomaton~Os,. 1 may be projcte
P : : generdl, the P onto theN—1 dimensional plane witl® r, constant(see
of two interpenetratind— 1 dimensional close packed lat- Fig. 2. For A=1 N—1 this has the formO..—TA
tices. ForN=4, they form a corrugated diamond lattice. 9. 5. L Aa

aa’
A . .
Now consider QBM on such a lattice described by whereT” are the diagonal generators of & normalized

such that TFTAT®]=6,g. In terms of electronic operators
dr _ we then havesa=[dxyl(o? /2)Th, ars. Ludwig and
S=Sk]— f T—Z t[ 72" RIKIFRkD 4 H e ]. Affleck!® have computed all correlation functionsrof. Us-
cR ing Eqg. (3) and borrowing their results, we obtain,

For N=3, k is a three-dimensional vector with components -

k, andk, parallel and perpendicular to the lattice plaRe. n* =Zsinzm.
are chosen from the three nearest-neighbor lattice vectors for

the honeycomb lattice, arid, is the perpendicular displace- For N=2 the FP is at the small barrier limg*=1. For
ment between the two sublattices shown in Figr2.guar- N=3, u* is plotted in Fig. 1b).

antee that the hopping alternates between the two lattice we now return to the FM theory of Coulomb-blockade
planes. Now we replacewith S;. Then, this is identical to resonances, which is described by a four dimensional QBM
the N-channel KP witht=J,/2, provided the lattice con- model, with the coordinatasreplaced byQ;,, the charge in
stants are chosen to give the appropriate scaling forFor  lead i with spin o. Consider the limit of strong barriers,
J,=0, the dimension o8, (0) is 1, so the cubic lattice con- whenQ;, are constrained to be integers. Off resonance, the
stant in Fig. 2 is 1. It follows thafR)|*>=1—1/N. Finite J,  charge on the dot has a fixed value, which impligsQ; , is

may be treated nonperturbatively using bosonizatioand  fixed. The allowed values @, then form a fcc lattice with
affects the dimension of; (0). This leads to a distortion |Ry|>=2. On resonance, the charge on the dot can fluctuate

(11)
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between two values. In a manner similar to that shown in A similar analysis may be applied to a spin-degenerate
Fig. 2, this leads to a@iamondlattice with |Ro|2=3/4. Our  LL. Tunneling across a barrier then corresponds to QBM on
analysis allows us to identify the universal resonant conduca two-dimensional lattice. The lattice constants are deter-
tance. From linear response theorG*=Ilim, (e mined by the interaction parametegs , in the charge and
#1)|w|(|Q1;+Qy,|?). Using the transformatio®,, and Eq.  SPin sectors.  S(2) spin symmetry constraing,=2,
(3) we obtainG* = (e?/h) u*, with u* =1/2 from Eq.(11).  Whereas repulsive interactions redugebelow the noninter-
Away from resonance, the conductance has the scalingcting value of 2. In Ref. 4 it was shown that resonances can
form G=G(8/T23 wheres is a tuning parameter, such as a e reached by tuning a single parameter, such as a gate volt-
_ ) ) R age which controls the occupation of the resonant state. For
gate voltage.G is a universal scaling function which de-

! strong interactions,<1), the resonances have intermedi-
scribes the crossover from the four-channel Kondo(dfiB-

: . X ‘ ate conductance. For the particular valggs-2/3, g,=2,
mond latticg to the insulating FRfcc lattice when the sub-  yhe |attice has triangular symmetry off resonance. On reso-
lattice symmetry is broken.

nance the symmetry is that of a honeycomb lattice with

. Our analysis also appligs to resonant tunneling through ﬁ%|2:2/3_ The resonance FP thus corresponds precisely to
singleresonant statéhe limit whereAE>T) when the leads ¢ three-channel Kondo FP, and the resonant conductance is

are LL's* Resonant tunneling in a single channel LL may beg« =(2/3)(€%/h) w* with u* =2sirf(w/5). For other values

described by QBM on a corrugated 1D lattice, in which the g, the lattice is distorted, and resonances are related adia-
two equivalent 1D sublattices correspond to the OCCUpat'OrBatically to the three-channel KP.

of the resonant state. When the interaction parantgtet/2,
the lattice constant is such that this maps to the two-channel

KP. Other values ofjy correspond to different lattice con- We thank M. P. A. Fisher, K. A. Matveev, and E. J. Mele
stants and are related adiabatically to the two-channel KFor useful discussions and comments. This work was sup-
The universal resonance line shape has been computed fported by NSF Grant No. DMR 95-05425. The work of H.
bothg=1/2 andg=1/3*2?° Perhaps similar techniques could Y. was also in part supported by NSF Grant No. DMR 95-
be used to calculate the line shape for the FM model. 03814.
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