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We study the motion of a particle in a periodic potential with Ohmic dissipation. InD51 dimension it is
well known that there are two phases depending on the dissipation: a localized phase with zero temperature
mobility m50 and a fully coherent phase withm unaffected by the periodic potential. However, for nonsym-
morphic lattices withD.1, such as the honeycomb lattice, there is an intermediate phase with a universal
mobility m* . This intermediate phase is relevant to resonant tunneling experiments in strongly coupled
Coulomb-blockade structures as well as multichannel Luttinger liquids. We relate this problem to the Toulouse
limit of the D11 channel Kondo problem, which allows us to computem* exactly using results known from
conformal field theory.@S0163-1829~98!52110-8#

The quantum mechanics of a particle in a periodic poten-
tial coupled to a dissipative environment is a fundamental
problem.1 A simple theory based on the Caldeira-Leggett
model of Ohmic dissipation was proposed in the mid 1980s
as a possible description of the motion of a heavy charged
particle in a metal.2 Recently there has been renewed interest
in this quantum Brownian motion~QBM! model in connec-
tion with quantum impurity problems3,4 and boundary con-
formal field theory.5 Kane and Fisher3,4 have shown that this
model describes tunneling through a barrier in a single-
channel Luttinger liquid~LL !, which is relevant to experi-
ments on quantum wires6 and quantum Hall edge states.7 In
this mapping the QBM takes place in an abstract space where
the ‘‘coordinate’’ of the ‘‘particle’’ is the number of elec-
trons that tunnel past the barrier. The periodic potential is
due to the discreteness of the electron’s charge. Low-energy
electronic excitations play the role of the dissipative bath.
There are two possible zero-temperature (T50) phases: a
localized phase in which the conductanceG50, and a fully
coherent phase with ‘‘perfect’’ conductance.

A related problem concerns the Coulomb blockade in
quantum dots connected to leads via quantum point contacts
~QPC!. Provided the level spacingDE of the quantum dot is
sufficiently small, Furusaki and Matveev~FM!8 argued that
each QPC may be treated as an independent one-dimensional
~1D! system. For spin-1/2 electrons, the dot may be de-
scribed by four coordinates: the number of electrons of each
spin transfered through each of the two leads. Since the Cou-
lomb blockade constrains the total charge, this maps to QBM
on a three-dimensionalpotential.

FM studied resonances in such a system with two identi-
cal QPC’s.8 They showed that the conductance on resonance
is lessthan the perfect conductancee2/h.9 While they did not
calculate its precise value, they argued that it is universal and
is controlled by the fixed point~FP! of the four-channel
Kondo problem~KP!. This prediction is particularly interest-
ing in light of recent experiments on gated quantum dots.10

Similar FP’s with intermediate conductance were found in
models of resonant tunneling in a spin-1/2 LL4 and in con-
formal field theory.11 Analysis of these FP’s, however, was
only possible in certain special limits.

In this paper we consider the general problem of QBM on
periodic lattices. The lattice symmetry plays a crucial role in
determining theT50 phases. For the honeycomb lattice and
its N21 dimensional generalization, there is aT50 phase
described by a FP which we relate to theN channel KP.
Exploiting the mapping onto the KP, we compute exactly the
FP mobility using results from conformal field theory. This
allows us to compute exactly the resonant conductance in
both in the FM model, and in a LL with a particular interac-
tion strength. Moreover, this analysis provides a unified
framework for understanding the nature of the intermediate
FP’s.

The QBM model is most easily described using an imagi-
nary time path integral for the coordinater (t). In 1D elec-
tronic problems, this is derived by first bosonizing, and then
integrating out the degrees of freedom away from the QPC.3

The action has the form1

S5S0@r ~t!#2E dt

tc
(
G

vGei2pG•r ~t!, ~1!

wherevG are Fourier components of the periodic potential at
the reciprocal-lattice vectorsG ~defined so thatG•R is an
integer for any lattice vectorR). The coupling to the dissi-
pative bath gives

S0@r ~t!#5
1

2 E dvuvueuvutcur ~v!u2, ~2!

wheretc is a short time cutoff. Although the coefficient of
S0 determines the amount of dissipation, it may be fixed by
rescalingr andG. The dissipation is thus controlled by the
lattice constantR0. Note that Eqs.~1! and ~2! haveexactly
the same form as the bosonized actions in Refs. 3 and 4 for
LL’s, and also in Ref. 8 for QPC’s after integrating out de-
grees of freedom away fromx50. A QPC with noninteract-
ing electrons is described by a 1D lattice withR051. For a
LL with repulsive interactions,R0.1.3 We define the di-
mensionless mobility

m5 2p
D

lim
v→0

uvu^ur ~v!u2&. ~3!
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m describes the average velocity of the particle in response
to a uniform applied force, normalized such thatm51 when
vG50.

The effect of the periodic potential may be analyzed per-
turbatively in either of two limits. A weak potential may be
studied by considering the renormalization group~RG! flows
to leading order invG ,

dvG /dl 5~12uGu2!vG . ~4!

Clearly, if the shortest reciprocal-lattice vector satisfies
uG0u.1, then allvG are irrelevant. The ‘‘small barrier’’ limit
in which m51 is thus perturbatively stable. On the other
hand, if uG0u,1, then the system flows to a different strong
coupling phase.

When the barriers are large, the particle is localized in one
of the minima of the potential with a small probability for
tunneling to another. It is then more natural to consider a
dual representation in which the partition function is ex-
panded in powers of the fugacity of these tunneling events.2,3

For a Bravais lattice, this may be generated by expanding the
dual action,

S5S0@k~t!#2E dt

tc
(
R

tRei2pR•k~t!. ~5!

tR may be interpreted as the matrix element for the particle
to tunnel between minima connected by a lattice vectorR.
Equivalently,k(t) describes the particle’s trajectory in mo-
mentum space in a potential with the symmetry of the recip-
rocal lattice. The RG flows to leading order intR are then

dtR /dl 5~12uRu2!tR . ~6!

The ‘‘large barrier’’ limit is thus perturbatively stable pro-
vided the shortest lattice vector satisfiesuR0u.1.

For a one-dimensional lattice,uR0uuG0u51. Thus either
the small or the large barrier limit is stable, but not both.
There are two phases: foruG0u,1 the system is localized
and foruG0u.1 the system has perfect mobility. Clearly, this
is also the case in higher dimensions for a lattice with cubic
symmetry.

In contrast, for a triangular lattice,uR0uuG0u52/A3. It fol-
lows that for 1,uG0u2,4/3, both the small and large barrier
limits are stable. There must therefore be an unstable FP
separating the two phases, as indicated in Fig. 1~a!. A similar
intermediate FP occurs in the single barrier problem of a
spin-1/2 LL.4 An analysis perturbative invG of this FP is
possible for uG0u2511e. Let vG5v for the six nearest-
neighbor reciprocal lattice vectors. Forv.0, the potential
minima form a triangular lattice. The RG flow to second
order inv is4

dv/dl 52ev12v2. ~7!

Providedv.0 ande.0, there is an unstable FPv* 5e/2.
The mobility at this FP is universal,m* 512(3p2/2)e2. A
similar analysis for small t at uR0u2511e gives
m* 5(3p2/2)e2. For uG0u25uR0u252/A3, the theory is self
dual, which implies thatm* 51/2. Piecing these results to-
gether, we obtain the flow diagram in Fig. 1~a!.

Whenv,0, the minima of the potential described above
form a honeycomb lattice. The honeycomb lattice is equiva-

lent to the triangular lattice described above with a two-site
basis. While the reciprocal lattice is still triangular,uR0u is
shorter, anduG0uuR0u52/3. Thus, for 4/9,uG0u2,1 both the
large and small barrier limits areunstable, so that there must
be a stable FP describing a new intermediate coupling phase.

A perturbative analysis is again possible in the large and
small barrier limits. For small barriers the FP of Eq.~7! is
stable forv,0 ande,0. m* is the same as above. In the
large barrier theory we must keep track of the two-site basis
of the honeycomb lattice. There are three nearest neighbors
R for each site on theA sublattice. For theB sublattice the
nearest neighbors are2R. The tunneling must alternate be-
tween the sublattices. This can be incorporated in the dual
theory by introducing a spin-1/2 degree of freedom. For
nearest-neighbor hopping, the dual action is given by

S5S0@k#2E dt

tc
(
R

t@t1ei2pR•k1t2e2 i2pR•k#, ~8!

whereR are among the three nearest-neighbor lattice vectors
of sublatticeA andt6 are spin-1/2 operators,s6/2. A per-
turbative analysis foruG0u2511e givesm* 5p2e.

The flow diagram for the honeycomb lattice as a function
of lattice constant is summarized in Fig. 1~b!. Unlike the
cubic and triangular Bravais lattices, theT50 mobility does
not exhibit a discontinuous jump from 0 to 1. Rather, the
mobility interpolates smoothly between the two limits in the
intermediate phase for 4/9,uR0u2,1. In general, the exis-
tence of a stable intermediate phase requires a nonsymmor-
phic lattice symmetry, with a vector connecting equivalent
sites that is shorter than any lattice translation.

We now relate the stable intermediate FP to the multi-
channel KP by identifying the lattice symmetry in the KP.
The Hamiltonian of the anisotropicN channel KP is12

H5 ivF(
a,s

E dxcas
† ]xcas12pvF(

i ,a
JiSimp

i sa
i ~0!,

FIG. 1. Flow diagrams for the~a! triangular lattice and~b! hon-
eycomb lattice as a function of lattice constant. The top~bottom!
lines represent the smallv (t) limits. Stable~unstable! fixed points
are depicted by solid~dotted! lines, and arrows indicate the RG
flows. The mobilitym is indicated by the vertical axis on the right.
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wherea, s, andi are channel, spin, and space indices,Simp
i is

the impurity spin, andsa
i (0)5cas

† (0)(sss8
i /2)cas8(0) is the

electronic spin in channela at x50. We consider an aniso-
tropic model, characterized by dimensionless couplingsJz
andJx5Jy5J' . Our analysis closely parallels that of Emery
and Kivelson for the two-channel KP.13 We first bosonize the
theory, and then do a rotation in spin space which transforms
the Jz interaction. Upon integrating out the degrees of free-
dom away fromx50, we obtain a theory in terms of the
boson fields at the impurity which closely resembles the lat-
tice models studied in this paper. The details of this mapping
will be presented in a longer article, however its essence may
be understood quite simply.

Now the total spinSa
z in each of theN channels plays the

role of the coordinates of the QBM model. WhenJ'50, the
state of the system may be characterized by a vector of dis-
crete values ofSa

z , which form anN-dimensional cubic lat-
tice. J' ‘‘hops’’ the system between sites on this lattice.
SinceH conserves the total spin of the electrons plus the
impurity, the system is constrained to lie on one of two lat-
tice planes with constantSimp

z 1(aSa
z whereSimp

z 561/2. For
N53 each lattice plane forms a triangular lattice, as
sketched in Fig. 2. Viewed from the~111! direction, the two
lattice planes form a ‘‘corrugated’’ honeycomb lattice in
which the two triangular sublattices are displaced in the per-
pendicular direction. For generalN, the lattice planes consist
of two interpenetratingN21 dimensional close packed lat-
tices. ForN54, they form a corrugated diamond lattice.

Now consider QBM on such a lattice described by

S5S0@k#2E dt

tc
(
Ri

t@t1ei2p~Ri•ki1R'k'!1H.c.#.

For N53, k is a three-dimensional vector with components
ki andk' parallel and perpendicular to the lattice plane.Ri
are chosen from the three nearest-neighbor lattice vectors for
the honeycomb lattice, andR' is the perpendicular displace-
ment between the two sublattices shown in Fig. 2.t6 guar-
antee that the hopping alternates between the two lattice
planes. Now we replacer with Sa

z . Then, this is identical to
the N-channel KP witht5J'/2, provided the lattice con-
stants are chosen to give the appropriate scaling forJ' . For
Jz50, the dimension ofsa

1(0) is 1, so the cubic lattice con-
stant in Fig. 2 is 1. It follows thatuRiu25121/N. Finite Jz
may be treated nonperturbatively using bosonization,13 and
affects the dimension ofsa

1(0). This leads to a distortion

of the lattice in the perpendicular direction,
R'

2 5(12NJz/2)2/N. Note thatR'50 for Jz52/N, so that
the perpendicular direction decouples. This is theN-channel
generalization of the Toulouse limit.13–15 A central point of
this paper is that this limit of theN-channel KP isidentical
to a QBM model on aN21 dimensional honeycomb lattice.

An RG analysis shows that the corrugation of the lattice,
given byR' , is irrelevant. The flow equations, expanded to
orderJ'

3 are16,17

dJz /dl 5J'
2 @12~N/2!Jz#, ~9!

dJ' /dl 5J'Jz@12~N/4!Jz#2~N/4!J'
3 . ~10!

As shown in Fig. 3,Jz flows towards 2/N, the Toulouse
limit, shown by the dashed line. ForN53 this is the same as
the dashed line in Fig. 1~b!. The intermediate FP for the
honeycomb lattice withuR0u252/3 is the same as that of the
three-channel KP. VaryinguR0u adiabatically connects the
multichannel Kondo FP to the strong and weak barrier limits
described above. For largeN, the FP atJ'5Jz52/N is in the
strong barrier limit.18

Conformal field theory allows for an exact description of
the multichannel Kondo FP.5 This allows us to computem*
nonperturbatively, by identifying the appropriate correlation
function in the KP. The analog ofr a is the spin in each
channel,Sa

z . m then describes the flow of spin between the
channels in response to an applied potential. Introducing an
orthogonal transformationr A5OAar a , r may be projected
onto theN21 dimensional plane with(ar a constant~see
Fig. 2!. For A51, . . . ,N21 this has the formOAa5Taa

A ,
whereTA are the diagonal generators of SU~N! normalized
such that Tr@TATB#5dAB . In terms of electronic operators
we then have,r A5*dxcas

† (sss8
z /2)Taa8

A ca8s8. Ludwig and
Affleck19 have computed all correlation functions ofr A . Us-
ing Eq. ~3! and borrowing their results, we obtain,

m* 52sin2
p

N12
. ~11!

For N52 the FP is at the small barrier limitm* 51. For
N53, m* is plotted in Fig. 1~b!.

We now return to the FM theory of Coulomb-blockade
resonances, which is described by a four dimensional QBM
model, with the coordinatesr replaced byQis , the charge in
lead i with spin s. Consider the limit of strong barriers,
whenQis are constrained to be integers. Off resonance, the
charge on the dot has a fixed value, which implies( isQis is
fixed. The allowed values ofQis then form a fcc lattice with
uR0u252. On resonance, the charge on the dot can fluctuate

FIG. 2. Lattice of spin states for the three-channel KP, which
form two planes with constantS1

z1S2
z1S3

z .

FIG. 3. Flow diagram for theN-channel Kondo model for small
J' . The dashed line is the Toulouse limit,Jz52/N. The strong-
coupling fixed point is marked with the full circle.
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between two values. In a manner similar to that shown in
Fig. 2, this leads to adiamondlattice with uR0u253/4. Our
analysis allows us to identify the universal resonant conduc-
tance. From linear response theory,G* 5 limv→0(e2/
\)uvu^uQ1↑1Q1↓u2&. Using the transformationOAa and Eq.
~3! we obtainG* 5(e2/h)m* , with m* 51/2 from Eq.~11!.

Away from resonance, the conductance has the scaling
form G5G̃(d/T2/3) whered is a tuning parameter, such as a
gate voltage.G̃ is a universal scaling function which de-
scribes the crossover from the four-channel Kondo FP~dia-
mond lattice! to the insulating FP~fcc lattice! when the sub-
lattice symmetry is broken.

Our analysis also applies to resonant tunneling through a
singleresonant state~the limit whereDE@T) when the leads
are LL’s.4 Resonant tunneling in a single channel LL may be
described by QBM on a corrugated 1D lattice, in which the
two equivalent 1D sublattices correspond to the occupation
of the resonant state. When the interaction parameterg51/2,
the lattice constant is such that this maps to the two-channel
KP. Other values ofg correspond to different lattice con-
stants and are related adiabatically to the two-channel KP.
The universal resonance line shape has been computed for
bothg51/2 andg51/3.4,20 Perhaps similar techniques could
be used to calculate the line shape for the FM model.

A similar analysis may be applied to a spin-degenerate
LL. Tunneling across a barrier then corresponds to QBM on
a two-dimensional lattice. The lattice constants are deter-
mined by the interaction parametersgr,s in the charge and
spin sectors. SU~2! spin symmetry constrainsgs52,
whereas repulsive interactions reducegr below the noninter-
acting value of 2. In Ref. 4 it was shown that resonances can
be reached by tuning a single parameter, such as a gate volt-
age which controls the occupation of the resonant state. For
strong interactions (gr,1), the resonances have intermedi-
ate conductance. For the particular valuesgr52/3, gs52,
the lattice has triangular symmetry off resonance. On reso-
nance the symmetry is that of a honeycomb lattice with
uR0u252/3. The resonance FP thus corresponds precisely to
the three-channel Kondo FP, and the resonant conductance is
G* 5(2/3)(e2/h)m* with m* 52sin2(p/5). For other values
of gr the lattice is distorted, and resonances are related adia-
batically to the three-channel KP.
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