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Electronic structure of carbon nanotube ropes
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We present a tight-binding theory to analyze the motion of electrons between carbon nanotubes bundled into
a carbon nanotube rope. The theory is developed starting from a description of propagating Bloch waves on
ideal tubes, and the effects of intertube motion are treated perturbatively on this basis. Expressions for the
interwall tunneling amplitudes between states on neighboring tubes are derived which show the dependence on
chiral angles and intratube crystal momenta. We find that conservation of crystal momentum along the tube
direction suppresses interwall coherence in a carbon nanorope containing tubes with random chiralities. Nu-
merical calculations are presented which indicate that electronic states in a rope are localized in the transverse
direction, with a coherence length corresponding to a tube diameter.

[. INTRODUCTION Recognizing this, several groups have attempted to esti-
mate the energy scale for similar effects in nanotube rBpes.
A carbon nanotube is a cylindrical tubule formed by Here the situation is much more delicate, since the structure
wrapping a graphene sheet. Single-wall carbon nanotubesf a (10,10) nanotube does not permit perfect registry be-
(SWNT’s) can be synthesized in structures 1 nm in diametetween neighboring tubes when they are packed into a trian-
and microns longd. There has been particular interest in thegular lattice. Nevertheless, it is possible to construct a nano-
electronic properties of SWNT's, which are predicted to ex-tube crystal, a hypothesized ordered structure in which each
ist in both conducting and semiconducting forfrRemark- (10,10 tube adopts the same orientation, and to study its
ably, it is possible to probe this behavior experimentally byelectronic properties with conventional band theoretic
contacting individual tubes with lithographically patterned methods Theoretical studies on nanotube ropes show that
electrodes or by tunneling spectroscopy on single tdbesintertube interactions in a nanotube crystal lead to a mixing
However, most methods for synthesizing carbon nanotubesf forward- and backward-propagating electronic states near
do not produce isolated tubes; instead the tubes selthe Fermi energy. The level repulsion between these
assemble to form a hierarchy of more complex structures. Abranches leads to a suppression or “pseudogap” in the elec-
the molecular scale tubes pack together to form bundles dronic density of states, on an energy scale estimated to be a
“ropes” which can contain 10—-200 tubes. X-ray diffraction few tenths of an electron volt. It should be noted that these
reveals that a bundle contains tubes close packed in a triaeffects are qualitatively different from those found in graph-
gular lattice! and measurements of the lattice constant andte, where intersurface interactions lead to banérlapand
tube form factor led initially to the suggestion that thesethus an enhancement of the Fermi-level density of states.
ropes contain primarily (10,10) nanotubes, a species pre- It has not yet been possible to extend these ideas to car-
dicted to be metallié. Subsequent work has demonstratedbon nanotube ropes which contain a mixture of tubes with
that the ropes likely contain a distribution of tube diametersvarious diameters and chiralities. A direct calculation of the
and chiralitiest On larger scales the ropes bend and entangleelectronic structure for such a rope, which we define as
so that the macroscopic morphology of a carbon nanotub&compositionally disordered,” is quite complicated since the
sample is that of an entangled mat. Carbon nanotubes asystem has no translational symmetry either along the rope
also formed in various thick multiwalled species which ex-axis or perpendicular to it.
hibit their own unique electronic behavior. In this paper we develop a tight-binding theory for the
The electronic properties of isolated SWNT’s are con-coupling between tubes. In the absence of intertube coupling
trolled by the tube’s wrapping vector, curvature, andthe electronic states on an isolated tube are essentially the
torsion® However, in ropes and in multiwalled tubes the in- Bloch waves of the graphene sheet wrapped onto the surface
teractionsbetweengraphene surfaces is expected to play aof a cylinder and indexed by a two-dimensional crystal mo-
major role. This is the case even for crystalline graphite inmentumk. The essence of our theory is to develop the ef-
the Bernal structure. Although an isolated graphene sheet isfacts of intertube interactiongk,,k,) perturbatively. We
zero gap semiconductor, the small residual interactions bdind that the effects of intertube interactions in a disordered
tween neighboring graphene sheets with the ordékd8l  rope are quite different from what one obtains for a crystal-
stacking sequence lead to a small overlap of bands near thi@e rope. In fact, we find that compositional disorder intro-
Fermi energy and eventually to conducting behaYior. duces an important energy barrier to intertube hopping
Graphite is an ordered three-dimensional crystal for whichwithin a rope, so that intertube coherence is strongly sup-
weak intersurface interactions are sufficient to establisipressed. We are led to conclude that eigenstates in a compo-
guantum coherence for electronic states on neighboringitionally disordered rope are strongly localized on indi-
sheets. Thus the electrons can delocalize both parallel to thédual tubes, though they can extend over large distances
graphene sheet and perpendicular to it. along the tube direction. Numerical results illustrating this
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effect will be presented in this paper. We believe this physics v
underlies the experimental observation that charge transport x4
at low temperature occurs by hopping conduction in nano-
tube ropes and mats. !
In Sec. Il we develop the tunneling model for describing 1
tight-binding coupling between neighboring tubes in a rope. 1
In this section we derive an analytic expression giving the v
tunneling amplitude(k, ,k,) between Bloch states on neigh-
boring tubes indexed by momenka andk,. In Sec. Ill we
apply the method to study the electronic structure of a rope --"B
crystal, and show that the model reproduces well the results
of more complete band theoretic calculations on this ordered g 1. A graphene sheet. Theandy axes are oriented with
system. In Sec. IV we then extend the method to study th@espect to the armchair and zigzag axes, while uhend v axes
low-energy electronic structure in @mpositionally disor-  point in directions along and around the tube, respectively. The
deredrope, and analyze the effects of intertube interactionsectorsd; are the three nearest-neighbor vectors connectinghthe
perturbatively. We will also present direct numerical calcu-and B sublattices, ang is the vector pointing to the center of a
lations on a compositionally disordered rope which probe thenexagon.é is the chiral angle.
transverse localization of the electronic states. A brief dis-
cussion of the relation of these results to experimental data is A. Plane-wave basis
given in Sec. V.

-

v
1
%
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It is useful to express the eigenstates of the individual
tubes in a basis of plane-wave states localized on eithek the
Il. TUNNELING MODEL or B sublattice. Let us first focus on a single tube. The eigen-
states may be described by considering a two-dimensional
In this section we derive an effective tight-binding model graphene sheet with periodic boundary conditions. We will
which describes the coupling between the low-energy eleciind it useful to consider two coordinate systems for the two-
tronic states on neighboring tubes. This coupling depends ogimensional graphene sheet. As shown in Fig. 1 xtaedy
the Chlrallty and orientation of the tubes. Our Starting pOint iSaxeS are oriented with respect to the armchair and Zigzag
a microscopic tight-binding model which describes the couaxes of the graphene sheet. Tlhandv axes, on the other
pling of the carbonr orbitals both within a tube and between nand, are oriented with respect to the tube, withointing
tubes: down the tube and pointing around the circumference. For
armchair tubes these axes coincide, and in general the angle
H=Ho+Hr. (2.2 between the axes is equal to the chiral angle of the tube.
Suppressing the tube index, for the moment, we let

H, is a nearest-neighbor tight-binding model describing un-

coupled tubes, 1 .
p TN Ek: e 1iC iy 2.9
Ho=— 2 <2> twc;icaj , (2.2 where 7 specifies theA or B sublattice andN is the number
a (ij

of graphite unit cells on the tube. In this basis, the Hamil-

) o tonian for an isolated tube may be written
where the indexa labels the tubes andij) is a sum over

nearest-neighbor atoms on each tube. Tunneling between

tubes is also represented by Ho= —tﬁ; YeChCait+ H.C., (2.9
where
HTZ 2 E tai,bjclicbj—i_H-C- (23)
(aby ij 3
ne= 2, €ka, (2.6
=1

In the following we will assume thatai,bj:trai Tbj depends

on the positions and relative orientations of therbitals on  Hered; are the three nearest-neighbor vectors connecting the
thei andj atoms. o A and B sublattices indicated in Fig. 1. At low energy we
The eigenstates df{, are plane waves localized in an may focus on the points= K, +q, wherea= =1, K, are

individual tube. Due to the translational symmetry of an in-at the corners of the Brillouin zone shown in Fig. 2, dnd
dividual tube, the eigenstates may be indexed by atube index —1 0,1. In theu-v system, thek, vectors can be written

a and a two-dimensional momentukn Of course the peri-
odic boundary conditions imposed by wrapping the graphene aK,=aKy(cosw, ,sinw,), 2.7
sheet into a cylinder will give a constraint on the possible
values ofk. In the following, we wish to express the Hamil- Where
tonian in terms of this plane-wave basis. We will focus on
eigenstates with low energy, which hakenear one of the

2
. : . =—I+ .
corners of the graphite Brillouin zone. “173 I+o 28
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FIG. 2. Brillouin zone of a graphene shekt., |I=—1, 0, and 1,
label the three equivalent Fermi points, afdbs the chiral angle of
the tube formed by wrapping the sheet in thélirection.

is the angle that theth Fermi vector makes with the axis.
We will now focus on the pointKk,. For small q,

Yaky+q= — (V3a/2)(aa,—idy). Introducing a spinom,q
=Craky+q the Hamiltonian may then be written

HO:U‘qu(aqux_"qyO’y) (ﬁaqv 2.9

wherev = \/3t,a/2, and they indices are suppressed.
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eXF{iaaKala'(Pa"‘ MaTa)

—iapKp - (ppt 7p7)]

Xt (2.19

agKyq) g apKpy Ty

We shall also find it useful to express the tunneling
Hamiltonian in a basis in which the bare Hamiltonian de-
scribing the tubes is diagonal. This is accomplished by per-
forming a rotation in the sublattice index space to make Eq.
(2.9 diagonal. Specifically, for a tube with a chiral angle
the eigenstates will have momentuki= aKy+q, with
(ax,dy) =q(cosé,sind). Equation(2.9) is then

Ho=vilqaq(e o™ +e% )y, (215
Using the transformatiog,q=U(«, 6) ,,, with
U(a,6) :e—i(1/2)a0(rze—i(77/4)aa'y, (2.16
the Hamiltonian becomes
Ho=0A(Voqrdaqr™ VagL Paql)- (217

The tunneling Hamiltonian may similarly be expressed inin the (R,L) basis, the tunneling matrix has the form

this plane-wave basis. Using E@.4) the term in Eq.2.3
for the bond connecting tubesandb is

- >ty et nkar (2.10

brpky»
N & &, anaky "b7pkpy

where 7, ,, label the sublattice of the lattice sitg ;.

The sums over lattice sites may be evaluated by introduc-
ing a Fourier transform of the tunneling matrix element. As

detailed in the Appendix, we may write

He= E 2 el CGa' (Pat 7a7a) = Gp* (P T 71 7h)

GaGp a7
.
X+ Gkt G, C ok, Cpkyy (211
where
— 1 2 2 —ikg-ratiky-ry
Uy ky = N AZ d7radrpt(ra,rp)e "ata :
Acell

(2.12

andG is a reciprocal-lattice vector.

T'(Ofa??éQa| ap Mp0p) = UT(aa 10a) 7704
X T(@analal @p7p0) U (@, Ob) )
(2.18

which may be written as

1
T'(Ofa?/éQa| ab’?k’)qb) =| lE

alb™

exqiaaKala'Pa

~lapKpi Poltayk, +ay.apkp, +ay

We now specialize to eigenstates in the vicinity of the@nd

Fermi pointsk= aKy+q. We may express the sum over the
G’s as a sum over equivalent points which are related to
K by a reciprocal-lattice vector. In the following we will see

that this sum is dominated ¢y, K4, andK _4, which lie in
the “first star” in reciprocal space. Sind€,- 7=0, the sum
becomes

Hr= E

T( aanaqa|ab77bqb) w; 7 )
@aMa% MpYalb “a’aa 2o

(2.13
with

XM”:;”E)' (2.19
where

(il e

a a
MZE fla flor fla glor | (2.20

T @ % T @ T %

fl =e'®+ae ¥, (2.21)
1

$=5 (27— w)). (2:22

B. Tunneling matrix elements

For simplicity, we suppose that the matrix elemegjt$or
tunneling between atoms on different tubes depend only on
the distance between the atoms, and are of the form
(2.23

i :toe_dij lag

whered;; is the distance between atomand].
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— _ 2
v v ity =t g, @ V0 (2.2
Ou, LINO) with
tT=—7T aoe‘b’aOe‘“’z)baOtho. (2.29
A
cell
b Using Eq.(2.27), we then arrive at a final expression for the
-— tunneling matrix element relating eigenstates on two tubes:
FIG. 3. Cross section of two parallel tubes of radRjswith a 1
separatiorb. T(aq 7]aqa| apMyQy) = tTI IE exfdi aaKaIa' (Pat 1aTa)

alb™
It is useful to introduce two-dimensional coordinates

. . . . - —ianKy - + )
which are oriented relative to the tube’s axis. Let us define a @Koty (ot 7070) 10k, ke,

two-dimensional vector =(u,v), whereu is the distance « @~ (UA)Rag(ka, ~kp,)2

down the tube axis, and is the distance around the tube IKa(o)=a(b)

measured from the “contact line” as shown in Fig. 3. _ (2.30
Suppose the two tubes have a separalicas shown in *Kaly (1) dao)

Fig. 3. Then the distance is given by
C. Estimate oft; from the band structure of graphite

2
d(ra,rp)?=(uy—up)?+ Rsinv—l_j— Rsinv—Rb) The tunneling model described above may be used to de-
scribe the coupling between flat graphene sheets. Since the
Va vp) 2 transverse bandwidth of graphite is well known, this allows
+ b+2R—RcosE—RcosE) us to estimate the prefactof in the tunneling matrix ele-

ment. The coupling between two flat graphene sheets is de-
(2.24 scribed by theR— oo limit of the above theory. In this case,

Since the range of the tunneling interactiap is of order ﬂlle Gal:(ssi%nf dep_ent_dence kg —ky, can be written as a
0.5 A, whileR~7 A andb~3.4 A, it is useful to expand (kroneckey & function:

Eq. (2.24) for u,v<b,R: a
0 _ _ 2
Vgqre nele el =6, (23D

|ra_rb|2 vfﬁ-v%

d(ra,rp)=b+ . 2.2

(Fa.rs) 2b 2R 223 We thus obtain
It follows that the tunneling matrix element has a Gaussian L =tes (2.32
dependence on, andry: Kakp ™ "G Zkakyp? :

with
t(ra,rp) =t p( b/ 1[|ra_rb|2+vg+vﬁ
I’a,rb = OeX - a0_§ .
2b 2R 2mbag ., 2
(2.26 te= toeP/a0g~ (V2Pagks, (2.33

cell
We may now use Eq(2.26) to evaluate the Fourier trans- . . N .
form of the matrix elements. The Gaussian form allows this For this calculation, we find it most convenient to use the

to be done simply. Using the fact that the total area of theouPlattice basis for the electronic eigenstates. Using Eq.
graphene sheet is given BYA.=27RL, we find Eﬁeznn the tunneling Hamiltonian for two graphene sheets is

_ 2mbay
tkakb a Acell

2 2
e D/aoe (bao 14kl 2+ ksl
HT: 2 T(aﬂaQ|a7IbQ)¢;anaq¢baan ’ (234)

qanamp

dp 2
" o (Rag/4)(ky, —kp,)
1-RE 3 0 S e (227  where
We now use Eq(2.27) to evaluate the low-energy tunneling

matrix elements. Due to the exponential dependend&gh
the sum orK, in Eq.(2.11) will be dominated by three terms ) )
K in the “first star” in which |K|=Ko=4/(3a). Specifi-  andAp=pa—py,. For AB stacking of graphiteAp=r, so,
cally, estimating the parametees=2.5 A, b=3.4 A, and  USiNgZk expiaK-7=0 the only nonzero term is
ag=0.5 A, the exponent of the last term is approximately e —
8m?bag/9a’~2.4. Thus the next star af3K, will be sup- T(algla—10)=3t6. (2.39
pressed by a factor of ekp2(2.4)]=0.01, justifying the Thus tunneling only connects th& sublattice on the “A”
first star approximation. FOKg )= @amw)Kaimbj)+ daw)» We  sheet to theB sublattice on the “B” sheet. This is to be
then have expected, since an atom on tBesublattice of the A sheet

1
T(anglang) =tg >, €rdrta-m (235
1==1
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sits above a hexagon on the B sheet. The Hamiltonian for an N (E)

AB stacked crystal of graphene planes then has the form

H= Es 1% w;aq( aQyox+ qyo'y) ’psaq

T T
+3te >, Yasanq2s+1aBqT Yosang¥2s—1aBq >
s E (eV)

(2.37) 0.3 <0.2 0.1 0.1 0.2 0.3

wheres indexes the graphene sheets. This can be simplified
by introducing a transformation which interchanges the
and B sublattices of the graphene lattice wher —1, fol-
lowed by a transformation which interchanges theand B
sublattices on the odd 2 1) graphene layers. The Hamil-

FIG. 4. Density of states of a (10,10) crystal. A pseudogap of
about 0.09 eV develops at the Fermi level.

Similarly, for aB-B bond,

tonian then has the simpler form . 3
T amaglana)=5tr(1-0y). 33
H=S vila-oust S, Stul(1+ac)y
~ VYsq- o &2 GYs\ 1T a0z) s - For a hexagon-hexagon bond, we have=0, so
2.3
o d (233 TAB( et amytl) =3ty 3.4
Thi . .
's leads to an energy dispersion The Hamiltonian describing the transverse motion will then
E(0,9,) =3t cosba, = \u?[q[*+ (3t cosbg,)2 have the form
(2.39
The bandwidth for transverse motion is théh=12ts. Ex- HT:% (yi+y2) T oy1—v2)+204ys, (3.9
perimentally, the bandwidth of graphite is in the range
=1.2-1.6 eV This leads to an estimatg=0.1 eV. where
Comparing Egs(2.29 and(2.33 we may relate the tube _
tunneling matrix element to that of graphite: 7i=6trC0sq- 5, (3.6
whereg; are the three nearest-neighbor vectors in the trian-
_ [ % gular tube lattice. Then,
=V a.gle: (240

E(Qy,q)= Y1+ y2= —2y3) %+ (y1— 2)*.
For a tube with radiuR=7 A, we find (@ =72t 722 V(00— 272"+ (127 72)

tt=7.5 meV. (2.41)  From the above estimate df=7.5 meV, the density of
states is plotted in Fig. 4, showing a pseudogap feature, as-
sociated with an energy of ordert42-0.09 eV. The energy
scale of this pseudogap agrees well with the results of more

We now apply the tunneling model described above to thesophisticated electronic structure calculatibns.
problem of the electronic structure of nanotube ropes. We

IIl. ELECTRONIC STRUCTURE OF A ROPE CRYSTAL

begin by considering the simpler problem of an orientation- IV. COMPOSITIONAL DISORDER
ally ordered crystal of (10,10) tubes. We then consider a » ) ) )
compositionally disordered rope. A compositionally disordered rope contains a random dis-

(10,10) tubes can be arranged in a triangular lattice ir{ribution of chiral tubes. Since tubes with different chiralities

which each tube has the same orientation, and the tubes faf@ve different periodicities, Bloch's theorem is of little use
each other viaA-A coupling, B-B coupling, and hexagon- for describing the eigenstates of the entire rope. Nonetheless,
hexagon coupling. For tunr;eling in the same subbdaqg in the absence of coupling between the tubes, we know that

=k, . Again, we find it useful to use the sublattice basis forth€ eigenstates on each tube are plane waves. Our approach

the tube eigenstates. For each bond, the tunneling betwedh [0 describe the coupling between these plane waves per-

; ; ; ; turbatively. We begin by considering the simpler problem of
th f tub d bed b .27), with ; X
@ pair of tubes is described by B@.27, wi the electronic structure of two coupled nanotubes of different

1 chirality.
T(anglan,g) =ty >, eerbrratm (37)
=1 A. Coupling between two tubes of different chirality

For anA-A bond it is only nonzero for,= 7,=1. Using a The electronic coupling between two tubes of different
matrix notation for then indices, chirality conserves the momentum along the tube up to
reciprocal-lattice vectors in either tube. As we argued in Sec.
Il, the sum over reciprocal-lattice vectors is dominated by

3
AA _ >
T analanya)= 2tT(1+UZ)' (3.2 the terms in whichk+ G are near the first star d€ points.
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kv AE (meV)
1900 (9.,9) (11,8) (10;10) (12.,9)
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.(13,4) *
800 (16,4)
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600 *
(17,2)
400 .
(16,1)
200 °
(18,0)
125 13 135 14 145 DP{om
. E o FIG. 7. A plot showing the minimum energy mismatalE for
VY \ W\ different metallic tubes with radii lying between 1.2 and 1.5 nm.
\ K The energy offset is taken at a zigzag tube (18,0).
I " h u
/\ /\ ] /\ with the minimum momentum mismatch, for the uncoupled

systenFig. 6(@)], and the coupled or{&ig. 6(b)]. To lowest

FIG. 5. Brillouin zones of two tubes of different chiralities. The order, the effect of the coupling is only important near points
zones are rotated such that theanduy, axes coincide. In the lower Of degeneracy, i.e., where we have band crossing. This oc-
part of the figure we show the low-energy band structure of the twacurs in two cases. The first, which we refer to as a “back-
metallic tubes. Solid bands belong to one tube, and dotted bandicattering gap,” occurs when the right- and left-moving
belong to the other tube. The bands are replicated three times, réands on each tube cross. The second, which we refer to as a
flecting the three equivalet points. “tunneling gap” occurs when the left-moving band on one
tube crosses the right-moving band on the other tube.

When the coupling between the tubes is weak, it is useful to The effect of the coupling depends on two crucial energy
view this asmomentum-conservingoupling between states Scales:(1) the tunneling matrix elemertt which we esti-
located near the three equivaléttpoints. It must be keptin Mated in Eq.(2.27) to be less than 7.5 meV, ar@) the
mind that two state,+q and K,+q in the vicinity of ~ €nergy mismatch
differentK’s are actually the same state.

Figure 5 shows the Brillouin zones of two nanotubes with AE=v[aa(Kq) )y— an(Kp)ul, 4.0
chiral anglesd, and 6,,, oriented so that tha, andu, axes

coincide. Since the tunneling Hamiltonian conserkgsit is which determines the energy at which the right- and left-

convenient to view the band structure of the pair of tubes a%%\gngc?]aggseonn d;ugﬁﬁgdc?]ﬁ;?i:ﬁ n gae:de;al’o?tﬁeetr\]ﬁégy
a function ofk,. Consider first the band structure in the P T 9”% el
tubes as well as the Fermi point indideandj. In Fig. 7 we

absence of coupling. The solid bands describe the Iowé ow the variation of the energy mismatsk with the tube
energy states on one tube, while the dotted bands show t irality for all the metallic tubes with diameters between 1.2

states on the other tube. Each set of bands is replicated thrgnd 15 nm. Tubes which are mirror images of one another
times, reflecting the three equivaleitpoints. In Fig. 6 we . ' g

show the band structure in the vicinity of the Fermi pointshave the same d|§1meter and energy d|ffere.n.ce. The offset of

the u momentum is taken at a zigzag tube; in that case we
have an (18,0) tube. As we see the typical energy mismatch
is a few hundred meV. The fact thac AE simplifies the
problem considerably and justifies our perturbative approach.
Of course it breaks down in special cases whAé&nis zero or
very small, which occurs, for instance, when the two tubes
t are mirror images of each other.

t4AE k The tunneling Hamiltonian couples left and right movers
/\/\ in first order, and therefore the tunneling gap is linear in the
tunneling strength. The gap opens akE/2, and since is

much smaller tham\E, one concludes that tube-tube cou-
pling has a small effect near the Fermi energy.

FIG. 6. (a) Band structure of the twéuncoupled tubes in the Backscattering gaps form through second-order coupling
vicinity of the Fermi point with the minimum momentum mismatch P€tween left and right movers on the same tube, and hence
Ak, which defines the important energy scAE=vAk. (b) Band  the gap is second order in the tunneling strengy;
structure of the coupled tubes near the Fermi energy. Backscattering t*/AE, which is of order 1 meV. Furthermore, because the
gaps open quadratically with the tunneling strenigtwhereas tun-  tunneling matrix elements are not invariant under the inter-
neling gaps are linear ih In general, backscattering gaps open atchange of the two tubes, the backscattering gap of each tube
different energies. opens at a different energy. This means that the effect on the

)
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density of states near the Fermi energy is weakened by theential is due to the fact that the tubes face each other from
wiggling of the gaps. In what follows, we present quantita-the outside. As we see from Fig. 7, the average energy sepa-
tive arguments justifying our expectations. ration AE~300 meV, whereas the tunneling gaﬁg

We focus first on the tunneling gaps. The movers on each: 30 mev. This means that in a rope with a random distri-
tube couple in first order. In general, crossing occurs at thregytion of chiralities, the opening of such gaps will have a
different energies, as dictated by the momentum m'smatchegligible effect near the Fermi level.
between the Ferm_i points of .the two tukisse Fig. 5 Since_ Now we focus on the backscattering gaps which form
we are ultimately interested in the effect of tube interactions, ... the Fermi level. Since left- and right-moving states on

on'the states nearest to the Fe”?“ level, we only considefnhe same tube do not couple in first order, we use second-
points with the lowest-lying crossing. We denote these by '

Ky and Ky T find the magnitude of the gaps and 4 7 JEEREEE PO e ot oo e e the offet
their offsets, we need to diagonalize the first-order perturba—fth Y In order t lculate th g 9ap dto di i
tion matrix. We thus consider the Hamiltonian which couples0 € gap. In orderto calcufate these, we need to diagonalize

the right-moving states on tulzewith the left-moving states the matrix which arises from the second—ordgr coupling be-
on tubeb, and we diagonalize the matrix tween the states. In general, we have tunneling between all

Fermi points on each tube. Since the magnitude of the back-
v(q— azKaiy T’(aaRqa|aqub)} scattering gaps varies quadratically with the tunneling
’% o . ' strength and inversely with the energy differensg, the
T'*(a3Raa|aplp) v(q— apKp))y most effective contributions are those with the highest tun-
neling strength and lowes&tE. This argument makes us only

where q is measured from the Fermi point of tulse For include the set of nearekt points. Therefore, we diagonal-
as,ap=+1, the magnitude of the tunneling gap is ize

Ha=

1
E;=2|T,;L|=4tTexr<—ZRaOKS(sinwai+sinwbj)2) X .
v(g— a@aKq0)yt+ Err ErL

a a
LR —v(g— aaKao)y T E[L
. 4.3 (4.4

Waj . Wpj
COS——SIin——

X
2 2

It is centered about an enerds}=AE/2 above the Fermi
energy. Notice that the- sign in the argument of the expo- where

[T’ (@ahOa aplop) T'* (k" daf apl0p) = T (aaN Qo] apRAp) T'* (N ' o @pRap) ]

Er\ = , (45
M (Ialp) U(aaKaIa_abelb)u 4.=0
and\,\"=R,L.
Diagonalizing, we obtain
ElL+ERr EfL—E&r|°
Ei(q):Ti U(q_aaKaO)u_T +|E?{L|2- (4.6
The backscattering gap Ej=2|Eg,|, and it opens around an energy off&&gt= (Ezz+ E} )/2. We thus find
1 2 : ; 2
4t$ exp — ERaOKO(aaS|nwa|a+ ap Slnwb|b)
a_ 7 .
" oke | ) 12 COS0y_— iy COS g, Sinwg, COSwy, | , 4.7
and
2 ex —ERaOKZ(a sinwg + ap, Sinwp) )?
2t-|- 2 o\l %a aly b bl

Ed=—1r COSwp), . (4.9
UKo (1,1, aaCOSwa|a— ap COSwmb
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Equations(4.7) and (4.8) show that, in general, the gap
offsetE, is greater than the gdp, . In addition, one expects
that the offsets and gaps of both tubes will generally be dif-
ferent. This means that the gaps “wiggle” around the Fermi
energy as the chiral angle is changed, leading to the conclu
sion that in a rope formed of a random collection of chirali-
ties, the effect on the density of states aroufd is very
small.

Let us now have a closer look at the contributions of
different tunneling points. In general, only one set of Fermi
points will dominate, unless the tubes are mirror images of
each other. We now argue that in a case when the tubes have
different chiralities, it is a certain set of Fermi points thatis ~ o (@) A compositionally disordered metallic rope. Differ-

actually important. _ o ent gray scales indicate different tube chiralitigs.A composition-

We want to understand which tubes significantly coupleyy gisordered rope with onefthird of its tubes metallic. The vacant
to each other, and for those tubes, the Fermi points at whicgircles denote semiconducting tubes. It is clear that the semicon-
the coupling is most effective. To do this, we study the quanducting tubes percolate along the rope.
tity

B. Compositionally disordered rope

1 In this section we study the electronic structure of a nano-
2 ; ; 2 tube rope composed of tubes with a random distribution of
t tr exp{ 4 ReoKp(aaSinwa, + ap Siwp,) diameteprs and (E,)hiralities. We expect that the momentum mis-
AE vKq a, COSw,, — ap, COSwp, : match between the Fermi points of neighboring tubes will
é b (4.9 suppress the tunneling and lead to localization. In real ropes,
' we expect two-thirds of the tubes to be semiconducting. As
indicated in Fig. 8, this will make the localization effects
This quantity will be dominated by the exponential factor,even stronger. To emphasize our point, we consider a com-
and in cases where different sets of points have nearly equabsitionally disordered rope with only metallic tubes.
exponential contribution, the denominator will dominate. To solve the problem, we employ the “dominant Fermi
For nearly armchair tubes, the maximum isagfy, .y  POINt approximation™” introduced in Sec. IVA. In this ap-
~0, i.e., around the&k, points (Ko-Ko tunneling. In'that  proximation, the momenturk=Kg,+q is conserved by the
case, the exponential factor is approximately 1, and the dgunneling Hamiltonian. We may thus write
nominator takes its minimum value-(7 meV) as the two
’s are closest to zero. As the tubes shift from being in the HZZ Hi+2 M, (4.10
armchair region, the denominator increases as the Fermi i a
points rotate away from the axis, thereby making the tun- with
neling less effective.
For tubes which are nearly mirror images of each other,

the dominant set is alsi y-Ky. While moving away from Hi=2 v(k—aK'OU)(wiTath//iakR— l,biTakL’;DiakL)y

the armchair region does not significantly change the expo- ak 41
nential contribution, it makes the denominator larger hence (4.1
making the coupling less important. and

For tubes which are nearly zigzaput are not mirror
images of each othgrtunneling is the least effective, as both
the exponential argument and the denominator are larger. In
some of these cases, tig)-Ky tunneling may not be the
dominant one. whereT' is the tunneling matrix given by

We thus conclude that tunneling is most effective between
tubes which are nearly in the armchair region, and that the -, 1 5 . )
Ko-K, tunneling is the most important one, and heiigg, T'=2trexp — 7 RaKg(sinwip+sinw;o)
(and similar sums are dominated by one term. In other

Hij= > T'(6”7{|a?ij/)lﬂizk,?irlﬂjaknj" (4.12

‘177{ 77j’k

words, the sum over reciprocal-lattice vectors in the tunnel- Wi wjo . Wjp . Wjo

ing Hamiltonian is dominated by a single term. If we ignore COS7-COS—H~  1C0SsSin—>~

the other terms, then there is no reciprocal-lattice vector sum, X

and the system effectively has translational invariance in the Cisin2i00si0  gipLio g, Li0
direction parallel to the tubes. This “dominant Fermi point 2 2 2 2
approximation” simplifies our problem considerably, since it (4.13

allows us to assign a conserved momentum to each state.
This will allow us to compute the band structure for an entire  The Hamiltonian may now be diagonalized for e&chy
rope in Sec. IVB. diagonalizing a M X 4N matrix, whereN is the number of
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E(eV) V. CONCLUSION

002 NE) In this paper we have shown that the constraints of energy

12 and crystal momentum conservation severely restrict the

1 electronic coupling between carbon nanotubes. The elec-

08 tronic coupling between two nanotubes is only effective
Ky s when the eigenstates near the Fermi energy have the same
::: momentum, which requires that the graphene sheets of the

- 0.01 i E(eV) two nanotubes are oriented parallel to one another. This only
03 0z 0 010z 03 occurs when the two tubes are mirror images of one another.
- 002 Thus, in contrast to a crystalline rope of armchair nanotubes,
in which eigenstates are extended throughout the rope, we

(@ (b) find that the electronic eigenstates of a compositionally dis-

ordered rope are strongly localized on individual nanotubes.

This conclusion has important consequences for the trans-
jort properties of nanotube ropes. In particular, it provides a
natural explanation of the nonlocal effects observed by
Bockrathet al® in their multiterminal conductance measure-

) ) ments. These effects can arise when different electrical leads
tubes in the rope. For eadqy the mth eigenstate may be mgake contact to different tubes within a rope, allowing the
described by a “wave functionZ, (i), which is the ampli-  cyrrent in a tube to “bypass” an electrical lead which it does
tude for the particle to be in state, » on tubei. not contact.

A portion of the band structure of the metallic rope is  |n the absence of impurities, the eigenstates will be local-
shown in Fig. @a). It is clear that there is no significant jzed on a single tube, but extend across the entire length of a
change in the vicinity of the Fermi energy. As we arguediybe. Scattering, due either to impurities or tube ends, will
above, the backscattering gaps wiggle around the Fermi efiend to localize the states in the tube direction. Paradoxically,
ergy, thereby negligibly changing the density of statespy relaxing the constraint of momentum conservation such
which is shown in Fig. @). Therefore, no pseudo gap de- scattering willincreasethe coupling between tubes. None-

0.01

FIG. 9. (a) Low-energy band structure of a compositionally dis-
ordered metallic rope, showing tunneling and backscattering gap
The latter wiggle around the Fermi energy, leading to a negligibl
effect on the density of states, which is showr(ln

velops. o _ theless, we are led to a picture lighly anisotropiclocal-
The extent of localization of the eigenstates may be quanzation.
t|tat|Ve|y measured by Computlng the correlation function This picture may he|p to exp|ain some apparent|y para-

doxical transport data on nanotube mats. At low tempera-
tures, nanotube mats are observed to obey the three-
C(r, ,E)= E |g$n(i)|2|g2‘, ,(j)|2 dimensional Mott variable-range hopping lawR
ijmana’ 7' 7 =Ry exp(To/T)Y with T, of order 100 K° If one uses the
bl _ standard formula foiisotropic variable range hopping and
XO(Ri—Ry|—r)6(En—E), (414 knowledge of the nanotube’s density of states, one extracts a
localization length of order 200 A. In contrast, Fuhrer
at the Fermi energy, wheiR, is the position of tubé in the et al* analyzed the scaling of the hopping conductivity with
rope. As shown in Fig. 10, the correlation function decayselectric field and temperatuR(E, T) = f(¢E/T), and argued
exponentially with distanceg(r, ,Eg)xe ?"+ /% indicating  that the localization length is much longer, of order 6000 A.
that the eigenstates are localized perpendicular to the tul®ur picture of anisotropic localization offers a possible reso-
axes with a localization lengtlj, ~10 A. Thus the eigen- |ution to this discrepancy. In the simplest model of aniso-

states are predominantly on a single tube. tropic variable range hoppind;, depends on thgeometric
meanof the localization lengths &£7)" while the scaling
C(r., Ep) with electric field depends on tHengestlocalization length,
&
1le In this paper, we have developed a general framework for
describing the electronic coupling between graphene-based
0.1 structures. This approach should prove useful for other prob-
lems, including the coupling between neighboring shells of
. multiwalled tubes as well as the coupling between crossed
0.01 single walled tubes. Analysis of these problems will be left
. for future work.
0.001
. APPENDIX: LATTICE FOURIER TRANSFORMS
r, (nmy)

0 1 2 3 4 In this appendix, we explicitly work out the Fourier trans-

FIG. 10. The correlation functio©(r, ,Ef) defined by Eq. form of Sec. IIA. As shown in Fig. 1 the positions of the
(4.14, which gives a quantitative measure of the localization of thelattice may be written as;=R+p+ n7, which may be
states on single tubes. specified by a lattice vectdR and a sublattice index=
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+1. The position of the center of the hexagon is giverpby Defining the Fourier transform
Consider first a sum over lattice sites of the form

1 . 1 . 1 .
— > f(rpe k== f(nekT,_g . fi= fdzrt(r)e"k'f, (A3)
\/N i I \/N R r +p+nt Ace“\/ﬁ
(A1)
The sum overR may be performed by introducing we may then write
reciprocal-lattice vector&:
1 2, A—iG ik 1 i i
= > | d¥re i U—pmmf(r)emik T (A2) — > f(rpe k= el®dfg, . (A4)
Ace" N G» N i Gy
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