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Electronic structure of carbon nanotube ropes

A. A. Maarouf, C. L. Kane, and E. J. Mele
Department of Physics, Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvan

~Received 21 September 1999!

We present a tight-binding theory to analyze the motion of electrons between carbon nanotubes bundled into
a carbon nanotube rope. The theory is developed starting from a description of propagating Bloch waves on
ideal tubes, and the effects of intertube motion are treated perturbatively on this basis. Expressions for the
interwall tunneling amplitudes between states on neighboring tubes are derived which show the dependence on
chiral angles and intratube crystal momenta. We find that conservation of crystal momentum along the tube
direction suppresses interwall coherence in a carbon nanorope containing tubes with random chiralities. Nu-
merical calculations are presented which indicate that electronic states in a rope are localized in the transverse
direction, with a coherence length corresponding to a tube diameter.
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I. INTRODUCTION

A carbon nanotube is a cylindrical tubule formed
wrapping a graphene sheet. Single-wall carbon nanotu
~SWNT’s! can be synthesized in structures 1 nm in diame
and microns long.1 There has been particular interest in t
electronic properties of SWNT’s, which are predicted to e
ist in both conducting and semiconducting forms.2 Remark-
ably, it is possible to probe this behavior experimentally
contacting individual tubes with lithographically pattern
electrodes or by tunneling spectroscopy on single tub3

However, most methods for synthesizing carbon nanotu
do not produce isolated tubes; instead the tubes s
assemble to form a hierarchy of more complex structures
the molecular scale tubes pack together to form bundle
‘‘ropes’’ which can contain 10–200 tubes. X-ray diffractio
reveals that a bundle contains tubes close packed in a t
gular lattice,1 and measurements of the lattice constant a
tube form factor led initially to the suggestion that the
ropes contain primarily (10,10) nanotubes, a species
dicted to be metallic.2 Subsequent work has demonstrat
that the ropes likely contain a distribution of tube diamet
and chiralities.4 On larger scales the ropes bend and entan
so that the macroscopic morphology of a carbon nanot
sample is that of an entangled mat. Carbon nanotubes
also formed in various thick multiwalled species which e
hibit their own unique electronic behavior.5

The electronic properties of isolated SWNT’s are co
trolled by the tube’s wrapping vector, curvature, a
torsion.6 However, in ropes and in multiwalled tubes the i
teractionsbetweengraphene surfaces is expected to play
major role. This is the case even for crystalline graphite
the Bernal structure. Although an isolated graphene shee
zero gap semiconductor, the small residual interactions
tween neighboring graphene sheets with the orderedA-B
stacking sequence lead to a small overlap of bands nea
Fermi energy and eventually to conducting behavio7

Graphite is an ordered three-dimensional crystal for wh
weak intersurface interactions are sufficient to estab
quantum coherence for electronic states on neighbo
sheets. Thus the electrons can delocalize both parallel to
graphene sheet and perpendicular to it.
PRB 610163-1829/2000/61~16!/11156~10!/$15.00
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Recognizing this, several groups have attempted to e
mate the energy scale for similar effects in nanotube rop8

Here the situation is much more delicate, since the struc
of a (10,10) nanotube does not permit perfect registry
tween neighboring tubes when they are packed into a tr
gular lattice. Nevertheless, it is possible to construct a na
tube crystal, a hypothesized ordered structure in which e
~10,10! tube adopts the same orientation, and to study
electronic properties with conventional band theore
methods.8 Theoretical studies on nanotube ropes show t
intertube interactions in a nanotube crystal lead to a mix
of forward- and backward-propagating electronic states n
the Fermi energy. The level repulsion between the
branches leads to a suppression or ‘‘pseudogap’’ in the e
tronic density of states, on an energy scale estimated to
few tenths of an electron volt. It should be noted that the
effects are qualitatively different from those found in grap
ite, where intersurface interactions lead to bandoverlapand
thus an enhancement of the Fermi-level density of states

It has not yet been possible to extend these ideas to
bon nanotube ropes which contain a mixture of tubes w
various diameters and chiralities. A direct calculation of t
electronic structure for such a rope, which we define
‘‘compositionally disordered,’’ is quite complicated since th
system has no translational symmetry either along the r
axis or perpendicular to it.

In this paper we develop a tight-binding theory for th
coupling between tubes. In the absence of intertube coup
the electronic states on an isolated tube are essentially
Bloch waves of the graphene sheet wrapped onto the sur
of a cylinder and indexed by a two-dimensional crystal m
mentumk. The essence of our theory is to develop the
fects of intertube interactionst(k1 ,k2) perturbatively. We
find that the effects of intertube interactions in a disorde
rope are quite different from what one obtains for a cryst
line rope. In fact, we find that compositional disorder intr
duces an important energy barrier to intertube hopp
within a rope, so that intertube coherence is strongly s
pressed. We are led to conclude that eigenstates in a com
sitionally disordered rope are strongly localized on in
vidual tubes, though they can extend over large distan
along the tube direction. Numerical results illustrating th
11 156 ©2000 The American Physical Society
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PRB 61 11 157ELECTRONIC STRUCTURE OF CARBON NANOTUBE ROPES
effect will be presented in this paper. We believe this phys
underlies the experimental observation that charge trans
at low temperature occurs by hopping conduction in na
tube ropes and mats.

In Sec. II we develop the tunneling model for describi
tight-binding coupling between neighboring tubes in a ro
In this section we derive an analytic expression giving
tunneling amplitudet(k1 ,k2) between Bloch states on neigh
boring tubes indexed by momentak1 andk2. In Sec. III we
apply the method to study the electronic structure of a r
crystal, and show that the model reproduces well the res
of more complete band theoretic calculations on this orde
system. In Sec. IV we then extend the method to study
low-energy electronic structure in acompositionally disor-
deredrope, and analyze the effects of intertube interactio
perturbatively. We will also present direct numerical calc
lations on a compositionally disordered rope which probe
transverse localization of the electronic states. A brief d
cussion of the relation of these results to experimental da
given in Sec. V.

II. TUNNELING MODEL

In this section we derive an effective tight-binding mod
which describes the coupling between the low-energy e
tronic states on neighboring tubes. This coupling depend
the chirality and orientation of the tubes. Our starting poin
a microscopic tight-binding model which describes the c
pling of the carbonp orbitals both within a tube and betwee
tubes:

H5H01HT . ~2.1!

H0 is a nearest-neighbor tight-binding model describing
coupled tubes,

H052(
a

(̂
i j &

tpcai
† ca j , ~2.2!

where the indexa labels the tubes and̂i j & is a sum over
nearest-neighbor atoms on each tube. Tunneling betw
tubes is also represented by

HT5(
^ab&

(
i j

tai,b jcai
† cb j1H.c. ~2.3!

In the following we will assume thattai,b j5t rai ,rb j
depends

on the positions and relative orientations of thep orbitals on
the i and j atoms.

The eigenstates ofH0 are plane waves localized in a
individual tube. Due to the translational symmetry of an
dividual tube, the eigenstates may be indexed by a tube in
a and a two-dimensional momentumk. Of course the peri-
odic boundary conditions imposed by wrapping the graph
sheet into a cylinder will give a constraint on the possi
values ofk. In the following, we wish to express the Hami
tonian in terms of this plane-wave basis. We will focus
eigenstates with low energy, which havek near one of the
corners of the graphite Brillouin zone.
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A. Plane-wave basis

It is useful to express the eigenstates of the individ
tubes in a basis of plane-wave states localized on either thA
or B sublattice. Let us first focus on a single tube. The eig
states may be described by considering a two-dimensio
graphene sheet with periodic boundary conditions. We w
find it useful to consider two coordinate systems for the tw
dimensional graphene sheet. As shown in Fig. 1, thex andy
axes are oriented with respect to the armchair and zig
axes of the graphene sheet. Theu and v axes, on the other
hand, are oriented with respect to the tube, withu pointing
down the tube andv pointing around the circumference. Fo
armchair tubes these axes coincide, and in general the a
between the axes is equal to the chiral angle of the tube

Suppressing the tube index, for the moment, we let

ci5
1

AN
(

k
eik•r ich( i )k , ~2.4!

whereh specifies theA or B sublattice andN is the number
of graphite unit cells on the tube. In this basis, the Ham
tonian for an isolated tube may be written

H052tp(
k

gkcAk
† cBk1H.c., ~2.5!

where

gk5(
j 51

3

eik•dj . ~2.6!

Heredj are the three nearest-neighbor vectors connecting
A and B sublattices indicated in Fig. 1. At low energy w
may focus on the pointsk5aK l1q, wherea561, K l are
at the corners of the Brillouin zone shown in Fig. 2, andl
521,0,1. In theu-v system, theK l vectors can be written

aK l5aK0~cosv l ,sinv l !, ~2.7!

where

v l5
2p

3
l 1u ~2.8!

FIG. 1. A graphene sheet. Thex and y axes are oriented with
respect to the armchair and zigzag axes, while theu and v axes
point in directions along and around the tube, respectively. T
vectorsdi are the three nearest-neighbor vectors connecting thA
and B sublattices, andr is the vector pointing to the center of
hexagon.u is the chiral angle.
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is the angle that thel th Fermi vector makes with theu axis.
We will now focus on the pointK0. For small q,

gaK01q52(A3a/2)(aqx2 iqy). Introducing a spinorchaq

5chaK01q the Hamiltonian may then be written

H05vcaq
† ~aqxsx1qysy!caq , ~2.9!

wherev5A3tpa/2, and theh indices are suppressed.
The tunneling Hamiltonian may similarly be expressed

this plane-wave basis. Using Eq.~2.4! the term in Eq.~2.3!
for the bond connecting tubesa andb is

1

N (
rarb

(
kakb

t rarb
ei (kb•rb2ka•ra)cahaka

† cbhbkb
, ~2.10!

whereha,b label the sublattice of the lattice sitera,b .
The sums over lattice sites may be evaluated by introd

ing a Fourier transform of the tunneling matrix element.
detailed in the Appendix, we may write

HT5 (
GaGb

(
hahb

eiGa•(ra1hata)2Gb•(rb1hbtb)

3tka1Gakb1Gb
chaka

† chbkb
, ~2.11!

where

tka ,kb
5

1

NAcell
2 E d2r ad2r bt~ra ,rb!e2 ika•ra1 ikb•rb,

~2.12!

andG is a reciprocal-lattice vector.
We now specialize to eigenstates in the vicinity of t

Fermi points,k5aK01q. We may express the sum over th
G’s as a sum over equivalentK points which are related to
K0 by a reciprocal-lattice vector. In the following we will se
that this sum is dominated byK0 , K1, andK21, which lie in
the ‘‘first star’’ in reciprocal space. SinceK0•t50, the sum
becomes

HT5 (
aahaabhbqaqb

T~aahaqauabhbqb!caaahaqa

† cbabhbqb
,

~2.13!

with

FIG. 2. Brillouin zone of a graphene sheet.K l , l 521, 0, and 1,
label the three equivalent Fermi points, andu is the chiral angle of
the tube formed by wrapping the sheet in thev direction.
c-

T~aahaqauabhbqb!5 (
l al b521

1

exp@ iaaKala
•~ra1hata!

2 iabKblb
•~rb1hbtb!#

3taaKala
1qa ,abKblb

1qb
. ~2.14!

We shall also find it useful to express the tunneli
Hamiltonian in a basis in which the bare Hamiltonian d
scribing the tubes is diagonal. This is accomplished by p
forming a rotation in the sublattice index space to make
~2.9! diagonal. Specifically, for a tube with a chiral angleu,
the eigenstates will have momentumk5aK01q, with
(qx ,qy)5q(cosu,sinu). Equation~2.9! is then

H05vcaq
† aq~e2 iaus11eiaus2!caq . ~2.15!

Using the transformationcaq5U(a,u)caq8 , with

U~a,u!5e2 i (1/2)ausz
e2 i (p/4)asy

, ~2.16!

the Hamiltonian becomes

H05vq~caqR8† caqR8 2caqL8† caqL8 !. ~2.17!

In the (R,L) basis, the tunneling matrix has the form

T8~aaha8qauabhb8qb!5U†~aa ,ua!h
a8ha

3T~aahaqauabhbqb!U~ab ,ub!hbh
b8
,

~2.18!

which may be written as

T8~aaha8qauabhb8qb!5 (
l al b521

1

exp@ iaaKala
•ra

2 iabKblb
•rb#taaKala

1qa ,abKblb
1qb

3Mh
a8h

b8
, ~2.19!

where

M5
1

2 F f aa

l a f ab

l b* f aa

l a f
2ab

l b*

f
2aa

l a f ab

l b* f
2aa

l a f
2ab

l b* G , ~2.20!

f a
l 5eif l1ae2 if l, ~2.21!

and

f l5
1

2
~2p2v l !. ~2.22!

B. Tunneling matrix elements

For simplicity, we suppose that the matrix elementst i j for
tunneling between atoms on different tubes depend only
the distance between the atoms, and are of the form

t i j 5t0e2di j /a0, ~2.23!

wheredi j is the distance between atomsi and j.
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It is useful to introduce two-dimensional coordinat
which are oriented relative to the tube’s axis. Let us defin
two-dimensional vectorr5(u,v), where u is the distance
down the tube axis, andv is the distance around the tub
measured from the ‘‘contact line’’ as shown in Fig. 3.

Suppose the two tubes have a separationb as shown in
Fig. 3. Then the distance is given by

d~ra ,rb!25~ua2ub!21S R sin
va

R
2R sin

vb

R D 2

1S b12R2R cos
va

R
2R cos

vb

R D 2

.

~2.24!

Since the range of the tunneling interactiona0 is of order
0.5 Å, while R'7 Å and b'3.4 Å, it is useful to expand
Eq. ~2.24! for u,v!b,R:

d~ra ,rb!5b1
ura2rbu2

2b
1

va
21vb

2

2R
. ~2.25!

It follows that the tunneling matrix element has a Gauss
dependence onra and rb :

t~ra ,rb!5t0 expS 2b/a02 1
2 F ura2rbu2

2b
1

va
21vb

2

2R G D .

~2.26!

We may now use Eq.~2.26! to evaluate the Fourier trans
form of the matrix elements. The Gaussian form allows t
to be done simply. Using the fact that the total area of
graphene sheet is given byNAcell52pRL, we find

tkakb
5

2pba0

Acell
t0e2b/a0e2(ba0 /4)(ukau21ukbu2)

3A a0

4pR
e2(Ra0 /4)(kav2kbv)2

dkaukbu
. ~2.27!

We now use Eq.~2.27! to evaluate the low-energy tunnelin
matrix elements. Due to the exponential dependence onukau2
the sum onKa in Eq. ~2.11! will be dominated by three term
Kai in the ‘‘first star’’ in which uK u5K054p/(3a). Specifi-
cally, estimating the parametersa52.5 Å, b53.4 Å, and
a050.5 Å, the exponent of the last term is approximate
8p2ba0/9a2'2.4. Thus the next star atA3K0 will be sup-
pressed by a factor of exp@22(2.4)#50.01, justifying the
first star approximation. Forka(b)5aa(b)Kai(b j)1qa(b) , we
then have

FIG. 3. Cross section of two parallel tubes of radiusR, with a
separationb.
a

n

s
e

tkakb
5tTdkaukbu

e2(1/4)Ra0(kav2kbv)2
, ~2.28!

with

tT5
2pba0

Acell
e2b/a0e2(1/2)ba0K0

2
t0 . ~2.29!

Using Eq.~2.27!, we then arrive at a final expression for th
tunneling matrix element relating eigenstates on two tube

T~aahaqauabhbqb!5tT (
l al b521

1

exp@ iaaKala
•~ra1hata!

2 iabKblb
•~rb1hbtb!#dkau ,kbu

3e2(1/4)Ra0(kav2kbv)2

uka(b)5aa(b)

3Kala(blb)1qa(b)
. ~2.30!

C. Estimate of tT from the band structure of graphite

The tunneling model described above may be used to
scribe the coupling between flat graphene sheets. Since
transverse bandwidth of graphite is well known, this allo
us to estimate the prefactortT in the tunneling matrix ele-
ment. The coupling between two flat graphene sheets is
scribed by theR→` limit of the above theory. In this case
the Gaussian dependence onkav2kbv can be written as a
~kronecker! d function:

A a0

4pR
e2(1/4)Ra0(kav2kbv)2→dkavkbv

. ~2.31!

We thus obtain

tkakb
5tGdkakb

, ~2.32!

with

tG5
2pba0

Acell
t0e2b/a0e2(1/2)ba0K0

2
. ~2.33!

For this calculation, we find it most convenient to use t
sublattice basis for the electronic eigenstates. Using
~2.27! the tunneling Hamiltonian for two graphene sheets
then

HT5 (
qahahb

T~ahaquahbq!caahaq
† cbahbq , ~2.34!

where

T~ahaquahbq!5tG (
l 521

1

eiaK l•[Dr1(ha2hb)t] , ~2.35!

and Dr5ra2rb . For AB stacking of graphite,Dr5t, so,
using(K expiaK•t50 the only nonzero term is

T~a1qua21q!53tG . ~2.36!

Thus tunneling only connects theA sublattice on the ‘‘A’’
sheet to theB sublattice on the ‘‘B’’ sheet. This is to be
expected, since an atom on theB sublattice of the A shee



r a

fie

l-

th
W
n

r

i
fa

-

fo
e

en

an-

as-

ore

is-
s
e

less,
that
oach
per-
of
ent

nt
to

ec.
by

of

11 160 PRB 61A. A. MAAROUF, C. L. KANE, AND E. J. MELE
sits above a hexagon on the B sheet. The Hamiltonian fo
AB stacked crystal of graphene planes then has the form

H5(
s

vcsaq
† ~aqxsx1qysy!csaq

13tG(
s

c2saAq
† c2s11aBq1c2saAq

† c2s21aBq ,

~2.37!

wheres indexes the graphene sheets. This can be simpli
by introducing a transformation which interchanges theA
andB sublattices of the graphene lattice whena521, fol-
lowed by a transformation which interchanges theA and B
sublattices on the odd (2s61) graphene layers. The Hami
tonian then has the simpler form

H5(
s

vcs
†q•scs1 (

^ss8&

3

2
tGcs

†~11asz!cs8 .

~2.38!

This leads to an energy dispersion

E~q,qz!53tG cosbqz6Av2uqu21~3tG cosbqz!
2.
~2.39!

The bandwidth for transverse motion is thenW512tG . Ex-
perimentally, the bandwidth of graphite is in the rangeW
51.2–1.6 eV.7 This leads to an estimatetG50.1 eV.

Comparing Eqs.~2.29! and~2.33! we may relate the tube
tunneling matrix element to that of graphite:

tT5A a0

4pR
tG . ~2.40!

For a tube with radiusR57 Å, we find

tT57.5 meV. ~2.41!

III. ELECTRONIC STRUCTURE OF A ROPE CRYSTAL

We now apply the tunneling model described above to
problem of the electronic structure of nanotube ropes.
begin by considering the simpler problem of an orientatio
ally ordered crystal of (10,10) tubes. We then conside
compositionally disordered rope.

(10,10) tubes can be arranged in a triangular lattice
which each tube has the same orientation, and the tubes
each other viaA-A coupling, B-B coupling, and hexagon
hexagon coupling. For tunneling in the same subband,kav
5kbv . Again, we find it useful to use the sublattice basis
the tube eigenstates. For each bond, the tunneling betw
the pair of tubes is described by Eq.~2.27!, with

T~ahaquahbq!5tT (
l 521

1

eiaK l•[Dr1(ha1hb)t] . ~3.1!

For anA-A bond it is only nonzero forha5hb51. Using a
matrix notation for theh indices,

TAA~ahaquahbq!5
3

2
tT~11sz!. ~3.2!
n

d

e
e
-
a

n
ce

r
en

Similarly, for aB-B bond,

TBB~ahaquahbq!5
3

2
tT~12sz!. ~3.3!

For a hexagon-hexagon bond, we haveDr50, so

TAB~ahaquahbq!53tTsx . ~3.4!

The Hamiltonian describing the transverse motion will th
have the form

HT5(
q

~g11g2!1sz~g12g2!12sxg3 , ~3.5!

where

g i56tT cosq•ai , ~3.6!

whereai are the three nearest-neighbor vectors in the tri
gular tube lattice. Then,

E~qx ,q!5g11g26A~vqx22g3!21~g12g2!2.
~3.7!

From the above estimate oftT57.5 meV, the density of
states is plotted in Fig. 4, showing a pseudogap feature,
sociated with an energy of order 12tT'0.09 eV. The energy
scale of this pseudogap agrees well with the results of m
sophisticated electronic structure calculations.8

IV. COMPOSITIONAL DISORDER

A compositionally disordered rope contains a random d
tribution of chiral tubes. Since tubes with different chiralitie
have different periodicities, Bloch’s theorem is of little us
for describing the eigenstates of the entire rope. Nonethe
in the absence of coupling between the tubes, we know
the eigenstates on each tube are plane waves. Our appr
is to describe the coupling between these plane waves
turbatively. We begin by considering the simpler problem
the electronic structure of two coupled nanotubes of differ
chirality.

A. Coupling between two tubes of different chirality

The electronic coupling between two tubes of differe
chirality conserves the momentum along the tube up
reciprocal-lattice vectors in either tube. As we argued in S
II, the sum over reciprocal-lattice vectors is dominated
the terms in whichk1G are near the first star ofK points.

FIG. 4. Density of states of a (10,10) crystal. A pseudogap
about 0.09 eV develops at the Fermi level.
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When the coupling between the tubes is weak, it is usefu
view this asmomentum-conservingcoupling between state
located near the three equivalentK points. It must be kept in
mind that two statesK01q and K11q in the vicinity of
different K ’s are actually the same state.

Figure 5 shows the Brillouin zones of two nanotubes w
chiral anglesua andub , oriented so that theua andub axes
coincide. Since the tunneling Hamiltonian conservesku , it is
convenient to view the band structure of the pair of tubes
a function of ku . Consider first the band structure in th
absence of coupling. The solid bands describe the l
energy states on one tube, while the dotted bands show
states on the other tube. Each set of bands is replicated
times, reflecting the three equivalentK points. In Fig. 6 we
show the band structure in the vicinity of the Fermi poin

FIG. 5. Brillouin zones of two tubes of different chiralities. Th
zones are rotated such that theua andub axes coincide. In the lowe
part of the figure we show the low-energy band structure of the
metallic tubes. Solid bands belong to one tube, and dotted b
belong to the other tube. The bands are replicated three times
flecting the three equivalentK points.

FIG. 6. ~a! Band structure of the two~uncoupled! tubes in the
vicinity of the Fermi point with the minimum momentum mismatc
Dk, which defines the important energy scaleDE5vDk. ~b! Band
structure of the coupled tubes near the Fermi energy. Backscatt
gaps open quadratically with the tunneling strengtht, whereas tun-
neling gaps are linear int. In general, backscattering gaps open
different energies.
to

s

-
he
ree

with the minimum momentum mismatch, for the uncoupl
system@Fig. 6~a!#, and the coupled one@Fig. 6~b!#. To lowest
order, the effect of the coupling is only important near poin
of degeneracy, i.e., where we have band crossing. This
curs in two cases. The first, which we refer to as a ‘‘bac
scattering gap,’’ occurs when the right- and left-movin
bands on each tube cross. The second, which we refer to
‘‘tunneling gap’’ occurs when the left-moving band on on
tube crosses the right-moving band on the other tube.

The effect of the coupling depends on two crucial ene
scales:~1! the tunneling matrix elementt, which we esti-
mated in Eq.~2.27! to be less than 7.5 meV, and~2! the
energy mismatch

DE5v@aa~Kala
!u2ab~Kblb

!u#, ~4.1!

which determines the energy at which the right- and le
moving bands on tubesa andb cross. In general, this energ
mismatch depends on the chiral anglesua andub of the two
tubes as well as the Fermi point indicesi and j. In Fig. 7 we
show the variation of the energy mismatchDE with the tube
chirality for all the metallic tubes with diameters between 1
and 1.5 nm. Tubes which are mirror images of one anot
have the same diameter and energy difference. The offse
the u momentum is taken at a zigzag tube; in that case
have an (18,0) tube. As we see the typical energy misma
is a few hundred meV. The fact thatt!DE simplifies the
problem considerably and justifies our perturbative approa
Of course it breaks down in special cases whenDE is zero or
very small, which occurs, for instance, when the two tub
are mirror images of each other.

The tunneling Hamiltonian couples left and right move
in first order, and therefore the tunneling gap is linear in
tunneling strengtht. The gap opens atDE/2, and sincet is
much smaller thanDE, one concludes that tube-tube co
pling has a small effect near the Fermi energy.

Backscattering gaps form through second-order coup
between left and right movers on the same tube, and he
the gap is second order in the tunneling strength;Eg
;t2/DE, which is of order 1 meV. Furthermore, because t
tunneling matrix elements are not invariant under the int
change of the two tubes, the backscattering gap of each
opens at a different energy. This means that the effect on

o
ds
re-

ing

t

FIG. 7. A plot showing the minimum energy mismatchDE for
different metallic tubes with radii lying between 1.2 and 1.5 n
The energy offset is taken at a zigzag tube (18,0).
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density of states near the Fermi energy is weakened by
wiggling of the gaps. In what follows, we present quanti
tive arguments justifying our expectations.

We focus first on the tunneling gaps. The movers on e
tube couple in first order. In general, crossing occurs at th
different energies, as dictated by the momentum misma
between the Fermi points of the two tubes~see Fig. 5!. Since
we are ultimately interested in the effect of tube interactio
on the states nearest to the Fermi level, we only cons
points with the lowest-lying crossing. We denote these
aaKai and abKb j . To find the magnitude of the gaps an
their offsets, we need to diagonalize the first-order pertur
tion matrix. We thus consider the Hamiltonian which coup
the right-moving states on tubea with the left-moving states
on tubeb, and we diagonalize the matrix

H a
T5F v~q2aaKai!u T8~aaRqauabLqb!

T8* ~aaRqauabLqb! 2v~q2abKb j!u
G ,

~4.2!

where q is measured from the Fermi point of tubea. For
aa ,ab511, the magnitude of the tunneling gap is

Eg
T52uTRL8 u54tT expS 2

1

4
Ra0K0

2~sinvai1sinvb j!
2D

3Ucos
vai

2
sin

vb j

2 U. ~4.3!

It is centered about an energyEo
T5DE/2 above the Ferm

energy. Notice that the1 sign in the argument of the expo
he
-

h
e
h

s
er
y

a-
s

nential is due to the fact that the tubes face each other f
the outside. As we see from Fig. 7, the average energy s
ration DE;300 meV, whereas the tunneling gapEg

T

,30 meV. This means that in a rope with a random dis
bution of chiralities, the opening of such gaps will have
negligible effect near the Fermi level.

Now we focus on the backscattering gaps which fo
near the Fermi level. Since left- and right-moving states
the same tube do not couple in first order, we use seco
order degenerate perturbation theory. We are intereste
calculating the size of the resulting gap as well as the of
of the gap. In order to calculate these, we need to diagona
the matrix which arises from the second-order coupling
tween the states. In general, we have tunneling between
Fermi points on each tube. Since the magnitude of the ba
scattering gaps varies quadratically with the tunnel
strength and inversely with the energy differenceDE, the
most effective contributions are those with the highest t
neling strength and lowestDE. This argument makes us onl
include the set of nearestK points. Therefore, we diagona
ize

H a5Fv~q2aaKa0!u1ERR
a ERL

a

ELR
a 2v~q2aaKa0!u1ELL

a G ,

~4.4!

where
Ell8
a

5 (
^ l al b&

@T8~aalqauabLqb!T8* ~aal8qauabLqb!2T8~aalqauabRqb!T8* ~aal8qauabRqb!#

v~aaKala
2abKblb

!u
U

qa50

, ~4.5!

andl,l85R,L.
Diagonalizing, we obtain

E6
a ~q!5

ELL
a 1ERR

a

2
6AS v~q2aaKa0!u2

ELL
a 2ERR

a

2 D 2

1uERL
a u2. ~4.6!

The backscattering gap isEg
a52uERL

a u, and it opens around an energy offsetEo
a5(ERR

a 1ELL
a )/2. We thus find

Eg
a5

4tT
2

vK0

U (
^ l al b&

expS 2
1

2
Ra0K0

2~aa sinvala
1ab sinvblb

!2D
aa cosvala

2ab cosvblb

sinvala
cosvblb

U , ~4.7!

and

Eo
a5

2tT
2

vK0
(

^ l al b&

expS 2
1

2
Ra0K0

2~aa sinvala
1ab sinvblb

!2D
aa cosvala

2ab cosvblb

cosvblb
. ~4.8!
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Equations~4.7! and ~4.8! show that, in general, the ga
offsetEo is greater than the gapEg . In addition, one expects
that the offsets and gaps of both tubes will generally be
ferent. This means that the gaps ‘‘wiggle’’ around the Fer
energy as the chiral angle is changed, leading to the con
sion that in a rope formed of a random collection of chira
ties, the effect on the density of states aroundEF is very
small.

Let us now have a closer look at the contributions
different tunneling points. In general, only one set of Fer
points will dominate, unless the tubes are mirror images
each other. We now argue that in a case when the tubes
different chiralities, it is a certain set of Fermi points that
actually important.

We want to understand which tubes significantly cou
to each other, and for those tubes, the Fermi points at w
the coupling is most effective. To do this, we study the qu
tity

t

DE
5

tT

vK0

expS 2
1

4
Ra0K0

2~aa sinvala
1ab sinvblb

!2D
aa cosvala

2ab cosvblb

.

~4.9!

This quantity will be dominated by the exponential facto
and in cases where different sets of points have nearly e
exponential contribution, the denominator will dominate.

For nearly armchair tubes, the maximum is atva(b) l ( l 8)
;0, i.e., around theK0 points (K0-K0 tunneling!. In that
case, the exponential factor is approximately 1, and the
nominator takes its minimum value (;7 meV) as the two
v ’s are closest to zero. As the tubes shift from being in
armchair region, the denominator increases as the Fe
points rotate away from theu axis, thereby making the tun
neling less effective.

For tubes which are nearly mirror images of each oth
the dominant set is alsoK0-K0. While moving away from
the armchair region does not significantly change the ex
nential contribution, it makes the denominator larger he
making the coupling less important.

For tubes which are nearly zigzag~but are not mirror
images of each other!, tunneling is the least effective, as bo
the exponential argument and the denominator are large
some of these cases, theK0-K0 tunneling may not be the
dominant one.

We thus conclude that tunneling is most effective betwe
tubes which are nearly in the armchair region, and that
K0-K0 tunneling is the most important one, and henceERR

1

~and similar sums! are dominated by one term. In othe
words, the sum over reciprocal-lattice vectors in the tunn
ing Hamiltonian is dominated by a single term. If we igno
the other terms, then there is no reciprocal-lattice vector s
and the system effectively has translational invariance in
direction parallel to the tubes. This ‘‘dominant Fermi poi
approximation’’ simplifies our problem considerably, since
allows us to assign a conserved momentum to each s
This will allow us to compute the band structure for an ent
rope in Sec. IV B.
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B. Compositionally disordered rope

In this section we study the electronic structure of a na
tube rope composed of tubes with a random distribution
diameters and chiralities. We expect that the momentum m
match between the Fermi points of neighboring tubes w
suppress the tunneling and lead to localization. In real rop
we expect two-thirds of the tubes to be semiconducting.
indicated in Fig. 8, this will make the localization effec
even stronger. To emphasize our point, we consider a c
positionally disordered rope with only metallic tubes.

To solve the problem, we employ the ‘‘dominant Ferm
point approximation’’ introduced in Sec. IV A. In this ap
proximation, the momentumk5K0u1q is conserved by the
tunneling Hamiltonian. We may thus write

H5(
i

Hi1(̂
i j &

Hi j , ~4.10!

with

Hi5(
ak

v~k2aK0u
i !~c iakR

† c iakR2c iakL
† c iakL!,

~4.11!

and

Hi j 5 (
ah i8h j8k

T̃8~ah i8uah j8!c iakh
i8

†
c j akh

j8
, ~4.12!

whereT̃8 is the tunneling matrix given by

T̃852tT expS 2
1

4
Ra0K0

2~sinv i01sinv j 0!2D

3F cos
v i0

2
cos

v j 0

2
i cos

v i0

2
sin

v j 0

2

2 i sin
v i0

2
cos

v j 0

2
sin

v i0

2
sin

v j 0

2

G .

~4.13!

The Hamiltonian may now be diagonalized for eachk by
diagonalizing a 4N34N matrix, whereN is the number of

FIG. 8. ~a! A compositionally disordered metallic rope. Differ
ent gray scales indicate different tube chiralities.~b! A composition-
ally disordered rope with one/third of its tubes metallic. The vac
circles denote semiconducting tubes. It is clear that the semic
ducting tubes percolate along the rope.
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tubes in the rope. For eachk, the mth eigenstate may be
described by a ‘‘wave function’’zah

m ( i ), which is the ampli-
tude for the particle to be in statea, h on tubei.

A portion of the band structure of the metallic rope
shown in Fig. 9~a!. It is clear that there is no significan
change in the vicinity of the Fermi energy. As we argu
above, the backscattering gaps wiggle around the Fermi
ergy, thereby negligibly changing the density of stat
which is shown in Fig. 9~b!. Therefore, no pseudo gap d
velops.

The extent of localization of the eigenstates may be qu
titatively measured by computing the correlation function

C~r' ,E!5 (
i jmaha8h8

uzah
m ~ i !u2uza8h8

m
~ j !u2

3d~ uRi2Rj u2r'!d~Em2E!, ~4.14!

at the Fermi energy, whereRi is the position of tubei in the
rope. As shown in Fig. 10, the correlation function deca
exponentially with distance,C(r' ,EF)}e22r' /j', indicating
that the eigenstates are localized perpendicular to the
axes with a localization lengthj';10 Å. Thus the eigen-
states are predominantly on a single tube.

FIG. 9. ~a! Low-energy band structure of a compositionally d
ordered metallic rope, showing tunneling and backscattering g
The latter wiggle around the Fermi energy, leading to a neglig
effect on the density of states, which is shown in~b!.

FIG. 10. The correlation functionC(r' ,EF) defined by Eq.
~4.14!, which gives a quantitative measure of the localization of
states on single tubes.
n-
,

n-

s

be

V. CONCLUSION

In this paper we have shown that the constraints of ene
and crystal momentum conservation severely restrict
electronic coupling between carbon nanotubes. The e
tronic coupling between two nanotubes is only effecti
when the eigenstates near the Fermi energy have the s
momentum, which requires that the graphene sheets of
two nanotubes are oriented parallel to one another. This o
occurs when the two tubes are mirror images of one anot
Thus, in contrast to a crystalline rope of armchair nanotub
in which eigenstates are extended throughout the rope,
find that the electronic eigenstates of a compositionally d
ordered rope are strongly localized on individual nanotub

This conclusion has important consequences for the tra
port properties of nanotube ropes. In particular, it provide
natural explanation of the nonlocal effects observed
Bockrathet al.9 in their multiterminal conductance measur
ments. These effects can arise when different electrical le
make contact to different tubes within a rope, allowing t
current in a tube to ‘‘bypass’’ an electrical lead which it do
not contact.

In the absence of impurities, the eigenstates will be loc
ized on a single tube, but extend across the entire length
tube. Scattering, due either to impurities or tube ends, w
tend to localize the states in the tube direction. Paradoxica
by relaxing the constraint of momentum conservation su
scattering will increasethe coupling between tubes. None
theless, we are led to a picture ofhighly anisotropiclocal-
ization.

This picture may help to explain some apparently pa
doxical transport data on nanotube mats. At low tempe
tures, nanotube mats are observed to obey the th
dimensional Mott variable-range hopping law,R
5R0 exp(T0 /T)1/4, with T0 of order 100 K.10 If one uses the
standard formula forisotropic variable range hopping an
knowledge of the nanotube’s density of states, one extrac
localization length of order 200 Å. In contrast, Fuhr
et al.11 analyzed the scaling of the hopping conductivity wi
electric field and temperatureR(E,T)5 f (jE/T), and argued
that the localization length is much longer, of order 6000
Our picture of anisotropic localization offers a possible re
lution to this discrepancy. In the simplest model of anis
tropic variable range hopping,T0 depends on thegeometric
meanof the localization lengths, (j ij'

2 )1/3, while the scaling
with electric field depends on thelongestlocalization length,
j i .

In this paper, we have developed a general framework
describing the electronic coupling between graphene-ba
structures. This approach should prove useful for other pr
lems, including the coupling between neighboring shells
multiwalled tubes as well as the coupling between cros
single walled tubes. Analysis of these problems will be l
for future work.

APPENDIX: LATTICE FOURIER TRANSFORMS

In this appendix, we explicitly work out the Fourier tran
form of Sec. II A. As shown in Fig. 1 the positions of th
lattice may be written asr i5R1r1ht, which may be
specified by a lattice vectorR and a sublattice indexh5

s.
e

e
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61. The position of the center of the hexagon is given byr.
Consider first a sum over lattice sites of the form

1

AN
(

i
f ~r i !e

2 ik•r i5
1

AN
(
Rh

f ~r !eik•rur5R1r1ht .

~A1!

The sum over R may be performed by introducin
reciprocal-lattice vectorsG:

5
1

AcellAN
(
Gh

E d2re2 iG•(r2r2ht) f ~r !e2 ik•r. ~A2!
pp
,

v
.
e

,

A
ss

l-

nc
Defining the Fourier transform

f k5
1

AcellAN
E d2rt ~r !e2 ik•r, ~A3!

we may then write

1

AN
(

i
f ~r i !e

2 ik•r i5(
Gh

eiG•dh f G1k . ~A4!
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