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Sliding Luttinger liquid phases
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We study systems of coupled spin-gapped and gapless Luttinger liquids. First, we establish the existence of
a sliding Luttinger liquid phase for a system of weakly coupled parallel quantum wires, with and without
disorder. It is shown that the coupling catabilizea Luttinger liquid phase in the presence of disorder. We
then extend our analysis to a system of crossed Luttinger liquids and establish the stability of a non-Fermi-
liquid state: the crossed sliding Luttinger liquid phase. In this phase the system exhibits a finite-temperature,
long-wavelength, isotropic electric conductivity that diverges as a power law in tempefaaisi€— 0. This
two-dimensional system has many properties of a true isotropic Luttinger liquid, though at zero temperature it
becomes anisotropic. An extension of this model to a three-dimensional stack exhibits a much higher in-plane
conductivity than the conductivity in a perpendicular direction.
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[. INTRODUCTION wires® Coupled Luttinger liquids have been studied exten-
sively for the past thirty years, mostly in the context of quasi
For over two decades a central theme in the study obne-dimensional conductors. Single-particle hoppings as
correlated electronic systems has been the drive to undewell as pair-hopping correlations were shown to destabilize
stand and classify electronic states that do not conform tthe Luttinger liquid phase. Following Anderson’s sugges-
Landau’'s Fermi-liquid theory. A clear example of suchtions regarding high-temperature superconductors, there
“non-Fermi liquid” physics occurs in one dimensid@D),"  have been a series of studies on coupled quantum chains,
where arbitrarily weak interactions destroy the Fermi surfaceuhich confirm this vieW® though the issue remains
and invalidate the notion of independent quasiparticles agontroversial! It has recently been proposéd® that for a
low energy. Away from charge- and spin-density-wave instayange of interwire charge and current interactions, there is a
bilities, the 1D interacting electron gas forms a LUtt'ngersmectic-meta[SM) phase in which Josephson, charge- and
liquid. The discontinuity in pccupqtion at the Fermi energy i_Sspin—density—wave, and single-particle couplings arel-
replaced by a power-law singularity, and the low-lying exci- o, 2t This phase is a two or three-dimensional anisotropic

Lit:rnz c?éioﬁolseomc collective modes in which spin andsliding Luttinger liquid whose transport properties exhibit

Ingthis papgr 'We investigate how such non-Fermi quuiolpower-law singularities like those of a 1D Luttinger liquid. It

. L . . is the quantum analog of the sliding phases of coupled clas-

beha_vu_)r could arise in two- and _three-d|me_n3|onal SySterT-‘Sical X(i( models first ?dentified in tﬁepcontext of hgses of
consisting of arrays of quantum wires or chains. Our analy3|§ P

. 4,15 ;
is largely motivated by the unusual normal-state propertie@NA-lipid complexes.*** The study of coupled Luttinger
of high T. materials. Prominent among these are liquids becomes particularly relevant in the context of striped

(1) Resistivity perpendicular to the CyQplane much phases,swhich have recently been found in quantum Hall
larger than the in-plane resistivity. §ystem§ and in the cuprate;’s?Thege phases are character-
(2) Linear temperaturéT) dependence of resistivity along zed by inhomogeneous distributions of charge and spin,
the conducting planes, and T¥ divergence of the Hall Where, for example, the charge carriers might be confined to
angle® separate linear regions, thus resembling stripes. Sliding Lut-
(3) Angle-resolved photoemission data showing atinger liquid phases might also be relevant for a variety of
pseudogap and absence of dispersion inctéection? other systems such as quasi-one-dimensional organic con-
(4) Linear temperature dependence of the nuclear magductors and ropes of nanotubes.
netic resonance relaxationT}/° The work on sliding Luttinger liquid phases has also been
Anderson has suggested that these unusual normal-statgtended to a square network of 1D wires formed by cou-
properties of the cuprates are the result of non-Fermi-liquighling two perpendicular smectic metdfswhich has been
physics in two dimensionsThe study of non-Fermi liquids shown to exhibit acrossed sliding Luttinger liquidCSLL)
in dimensions greater than one has, however, proven to hghase. At finite temperatufg the CSLL phase is a 2D Lut-
quite difficult. Since the Fermi liquid is stable for weak in- tinger liquid with an isotropic long-wavelength conductivity
teractions, perturbative methods about this state fail to locatéhat diverges as a power law ihasT—0. At T=0, it is
non-Fermi liquid state§.Moreover, generalizations of the essentially two independent smectic metals. This model
bosonization technique to isotropic systems in higher dimeneould be realized in man-made structures constructed from
sions have indicated that Fermi-liquid theory survives pro-quantum wires such as carbon nanotubes. The extension of
vided the interactions are not pathologically long ranfjed. the model to a three-dimensional stack may be relevant to
An alternative approach has been to study anisotropic syshe stripe phases of the cuprates. Based on neutron and x-ray
tems consisting of arrays of parallel weakly coupled 1Dscattering measurements, it has been suggested that spin-

0163-1829/2001/64)/04512118)/$20.00 64 045120-1 ©2001 The American Physical Society



RANJAN MUKHOPADHYAY, C. L. KANE, AND T. C. LUBENSKY PHYSICAL REVIEW B 64 045120

charge stripes in the adjacent Cu@lane are orthogonal to interactions that we neglect are expected to be much smaller
each othet’ than those we consider here, their relevance becomes impor-
In order to understand the nature of the sliding phase, it i$2nt only at very small temperatures. We delay a more com-
easiest to think in terms of the classical analog. Imagine ®lete study of their effects to a future publication. Through-
stack of 2DXY models coupled by the Josephson couplingout the paper we will use the term “stable” somewhat
cos@,— 6,.1) Where 6, is the XY-angle variable in layen. !oosely _to refer t(_) stability with re_spe_ct to a _restrlcted set of
Such a system always goes directly from a 3D ordered phaégteractmns that include all tvyo—wwe mFeracpons. In Sec. Il
to a completely disordered phase as a function of the temd@ extend the above analysis to two identical coupled Lut-
peratureT. However in the presence of interlayer gradienttinger liquid arrays, arranged such that the wires of one array
coupling terms of the forrV 6,,- V 6,,, the system may have un _perpendlcul_gr to those of the other. In this case we es-
an intermediate sliding phasethat exhibits an in-plane 2D tablish the stability of a CSLL phase to a large class of op-
order with power-law decay of correlations along the planeserators. The interarray density-density couplings effectively
In the absence of Josephson couplings, in the sliding phaskgnormalize the intraarray couplings; however, the stability
¢ in neighboring layers freely slide over each other with noof the CSITL phase turns out to be identical to t_he stablllty of
energy cost, and two-point correlation functions are identicafn® smectic-metal phase for each array, but with the intraar-
in form to those of a stack of decoupled 2D layers. Wherf@Y couplings replaced by the renormalized couplings. We
interlayer Josephson couplings are present, though irrelevarif!en generalize our analysis to a three-dimensional stack of
two-point correlation functions decay exponentially perpen-27Tays, with wires on each array running perpendicular to the
dicular to the layers. Thus the sliding phase has in-plane 2[%1"€S of the consecutive array, and obtain once more a slid-
order but is disordered in the third direction. For sliding Lut- INg phase that appears stable. In Sec IV we explore the trans-
tinger liquid models, the 2D layers are replaced by 1D quanPOrt properties of sliding phases. In particular, we focus on
tum wires, and interwire, current-current, and density-density€ Power-law singularities of the conductivity as a function
couplings play the role of the gradient couplings. Thus, in®f T @sT—0. Finally Sec V sums up our principal results.
the sliding Luttinger liquid phases, the correlation functionsAPPendix A sketches out the steps used to obtain intrawire
along a given wire exhibit the same power-law functiona|correla_tlon functions, Appendlces B and C present deta_||s of
form as in a 1D Luttinger liquid. some integrals used in Secs. Il and Ill, and Appendix D
In this paper, we review and discuss in detail, results orPresents details of conductivity calculations using the Kubo

the sliding Luttinger liquid phase. Our discussion of the parformula.
allel Luttinger liquids follows Ref. 13, but it establishes the
st_ability of the sliding phase to a more complete set of inter- Il. COUPLED PARALLEL LUTTINGER LIQUIDS
wire operators and also to disorder. For the CSLL phase, we
provide detailed calculations that were presented only briefly Our goal is to construct non-Fermi-liquid electron sys-
in Ref. 18. The stability and transport properties of the CSLLtems in two and three dimensions. Our basic building blocks
phase form the central results of the paper. We also extenakre one-dimensional quantum wires that exhibit Luttinger-
the analysis to a three-dimensional stack of crossed Luttingdiquid phases with non-Fermi-liquid power-law decay of cor-
liquids, and show that we can still obtain a sliding Luttinger relation functions. We couple these wires together in arrays
liquid phase, with hopping between planes being irrelevantin such a way that they retain their one-dimensional non-
In this phase, the in-plane and perpendicular conductivityrermi-liquid character yet allow nonvanishing interwire
can be quite different and exhibit different temperature deelectron transport at nonzero frequency or temperature. We
pendencies. This could be of relevance to the normal state afill consider several types of arrays, and it is useful to in-
the cuprates. troduce a nomenclature for them. The long axis of parallel
This paper is organized as follows. In Sec. Il we explorewires defines one direction in space. The wires can be ar-
the stability of the sliding phase for an array of parallelranged in either a one- or a two-dimensional Bravais lattice
coupled Luttinger liquids with respect to a largleut not  of points in the plane perpendicular to that direction. We,
complete set of interwire operators. For a one-dimensionaltherefore introduce the notatiah :1 to denote an array of
system of interacting spin-1/2 fermions, the spin excitationgarallel wires centered on lattice points irda-dimensional
could either be gapped or gapless. In the spin-gapped Luthespace. The resulting structure occupies, a1 dimensional
Emery regime, the system can by described by a single Luspace. Thus a 1:1 array is a planar array of equally spaced
tinger liquid for charge. In the gapless case, both spin angarallel wires, and a 2:1 array is a three-dimensional colum-
charge are dynamical degrees of freedom, and there are twwar array of wires. As stated, we will restrict our attention to
Luttinger parametersd(,, «,), and two velocities¢,,, v,). arrays in which the wires lie on d, -dimensional periodic
We study coupled Luttinger liquids, both for the spin-gappedattice. For 2:1 arrays, we will only consider, in detail, those
and the gapless case, and in each case demonstrate the &tased on a two-dimensional rectangular lattice. Both 1:1 and
bility of the sliding phase. In addition, we study the effect of 2:1 arrays can exhibit anisotropic sliding phases for an ap-
disorder. We find that density-density and current-current inpropriate choice of interwire potentials.
teractions that stabilize the sliding phase, also make disorder In this section we will consider anisotropic sliding metal
more strongly irrelevant. Note, however, that in this paperphases in 1:1 and 2:1 arrays. In the succeeding sections, we
we do not establish stability with respect to all multiwire will discuss how crossed 1:1 and 2:1 arrays can produce two
operators. Since the overall strength of these higher-ordeand three-dimensional sliding phases with), symmetry and
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isotropic long-wavelength finite-temperature conductivity. Ky , 1 )
We begin our discussion with a review of 1D Luttinger lig- Sp,qS:?J dx dr|v,(dxp,) "+ U—(ﬁ#ﬁp) :
uids. P

1 1
A. Review of one-dimensional Luttinger liquids Sp,ﬁzif dx dr| v, (3x6,)%+ U—(ﬁﬁp)z}- (2.9
p p
One-dimensional Luttinger liquids are most easily de- . . . .
In the spin sector, we might either have a spin gap corre-

scribed in terms of collective bosonic charge and spin- ding 1o the Luther-E . h |
density modes. The bosonized form of the fermion operator§pon Ing to the Luther-=mery regime, or have a gapiess
hase where the spin excitations are described by a Hamil-

the left and right Fermi points &f P
near the feft and night -ermi points are tonian of the same form as E.4) with the parametersg,,

. andv, . In the gapless phas8U(2) symmetry imposes the
Rj(X)= — nRsteikerwR,s,j(X), constraintx,=1.

B. The spin-gapped 1:1 array

o In this subsection we consider the simplest array of quan-
Lej(X)= —=—==1 5 € F*e'PLsi®), (2.1  tum wires, the two-dimensional 1:1 array of Luttinger liquids
vame in the spin-gapped phase. It has been suggested that this case
might describe the striped phases of high-temperature
' ) o ) i superconductor: In this subsection, all bosonic variables
respectivelysis the spin indexj denotes the wire numbes,  refer 19 the charge sector, and we do not write explicitly the
is some intrachain cutoff, anglg,_ s ; are the Klein factors. subscript p. In general, we expect density-density and

We can write down an effective theory for the low-energy ¢, irent-current interactions between the wires, which can be
excitations in terms of the boson operatdrs It is conve- represented by an action of the form

nient to define

whereR andL stand for the right and left moving electrons,

1 _ - N

b= (Prs;+ P s )/ Vo, szin% f dX 7] (%, )W, (N=N")j 00 (X,7),
2.7

b5 = (Prs = PoLs ) VA, (22 where j, ,=[pn(X,7),dp(x.7)] With py=de(x,7) the

, , ) i density andl,=d,60,(x,7) the current on thexth wire. The
whereds ; 'S a phase variable, anf ; is the conjugate den- yensity-density interaction is an effective interaction gener-
S|ty varl_able. Since the bosonic e>_<C|tat|0_ns_can be charac-yeq by both the screened Coulomb and the electron-phonon
terized in terms of charge and spin excitations, we furthefnieraction. In the striped phases, stripe fluctuations lead to
define current-current interactiorfs. These current-current and

density-density interactions are marginal and should be in-
0,i=(0,;+0,)IN2, 6,;=(6,;—0,)IN2, 2.3  cluded in the fixed-point action. They are invariant under the
“sliding” transformations ¢,— ¢,+ @, and 6,— 6,+ «;, .
and similarly for the¢ variables. Herep characterizes the Equations(2.4) and(2.7) define the fixed-point action of the
charge excitations, and the spin excitations. For a single smectic-metal phasg,which can be written as
Luttinger liquid, we can write down an effective Hamiltonian

for the charge sector 5:2 f dx dr
n

v,
sz dX7

whereu , is the velocity, andc, is a Luttinger liquid param-  ypon integration overp,, or 6,,, respectively, the effective
eter (this is the inverse of the usual Luttinger liquid param- 4tion for g and ¢,, become
n n

eter g). Alternately, we could write down the action, in a
path-integral formulation, as d*Q 1 1
S(;:f [

= 2
(o 20|y o786 |6

; vf(axenwxanﬂwg V(3xbn)
(946,)?

+Kp((9)(¢p)21|l (24)

X(dxn+j) +2i(dx0n) () |. (2.8

p

(946,)?
Kp

+ Kp(ax%)z} —2i(0,8,)

1%
S,= | dxdr =
”JXT{Z #o 1 T, L, .
b (277_)3 2K(ql) U(qL)w +v(qL)QH |0(Q)| )
X(wp)]. 25 2.9
where Q=(w,q,q,), with g, the momentum along the
Integrating out either thé, or the ¢, variables, we obtain  chain andq, perpendicular to the chains. Here
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k(q,)= \/V(ﬁ(QL)/V&(QL),
v(d,)="vV%a,)V«a,), (2.10

whereV?(q,) andV%(q,) are the Fourier transforms Mf’
andvf with respect to the wire index Equations2.8) and
(2.9 define the action of the ideal 2D sliding Luttinger liquid
or SM phase. Even though they include interwire interactions
described by Eq(2.7), they yield power-law correlations n
characteristic of a 1D Luttinger liquid.

We could consider, for example, correlation functions in-
volving the density variable. We note that

PHYSICAL REVIEW B 64 045120

p=yTy=R'R+LTL+[LTR+c.c]=d,¢
+{exfdiZkex+iV2mp(x,7)]+c.cl.  (2.1D)

Thus the density has two pieces: the first piece is the course-
grained density and the second is modulatediat,2vhere

kF is the Fermi wave vector. Corresponding|y, the density_ FIG. 1. A schematic depiction of a two-dimensional array of
density correlation has two pieces. We consi@g(x,7); ~ quantum wires.

the component of the density-density correlation function
with 2kg modulation. Thus

G y(x, 1) =(expi V27 #;(x,7) — ¢;(0,0)]+i2kex}) +c.C.

It easy to show that for large (see Appendix A

Hsc,n:; f dX[(RT LT+ R LT DRy jinky jin

+Rjinlyjsn)]+coC, (2.1

and
A;cog 2kgx)
G4(x,0)~ —loow (212 : N i
Heown= 2 J dX[(R; ;L1 i +Ry L (L 4Ry j4n
where .
dq 1 +LT 4 aRy i)+ coc. (2.18
T aq,
Acow== f_ o <(q,)’ (213 Atlow temperatures, the spin variabde, is effectively fro-
i + zen, and these interactions depend onlyfponTheir associ-
andA, is a constant. Alternately, for large ated actions can be expressed as
G4(0,7)~Ayr Acows, (2.14

Sscp= jnz f dx drcog V27 (6;— 6; )],
whereA, is a different constant. In gener&,,(x,7) can be :
written in the scaling form

Scown=W3 | dxdrcog \@m(gi— o).

X
~yx A “E =
G (X, 7)~x""cow, F(T), (2.19 (2.19
where The relevance of these terms are determined by the scaling
dimensions of the corresponding operators, [ ¢8sr(6;
F(y)—A; as y—0 —6,.,)] and coby2m(¢p;— ¢i.n) ], which are, respectively,
—Ayyioows  as  y—soo, (2.16

A variety of interactions, other than those of EG.7),
couple neighboring wiregsee Fig. 1 The sliding phase is
stable only if the interactions are irrelevant, that is, only if
they scale to zero with system size. We will now investigate
perturbatively the relevance of these interchain interactions
to determine under what conditions the sliding phase i
stable. Due to the spin gap, single-particle hopping betwee
chains is irrelevant, and the interchain interactions that could
become relevant are the Joseph$6@) and charge-density
wave (CDW) couplings, which are represented by operators
of the form and

= dq,
Ascp= - E(l_coanL)K(qL)a

= dqg, (1—cosnq,)
Acaw,n=J = (2.20

2m k()

_ g 2T

he exponeniA sc,, follows from

<COS\/§( Hi - 0i+n)>:exn:_ 71'<(0| - 0i+n)2>]1
(2.21)

045120-4



SLIDING LUTTINGER LIQUID PHASES PHYSICAL REVIEW B64 045120

3 - - - - where the charge-density varies from wire to wire. For small
but positivex iy, the system is close to the transverse CDW
instability. As pointed out in(Ref. 13, a transverse CDW
would frustrate the crystallization of fermions, sinkg is
now a function of the chain indejx Strong fluctuations of
this kind prevent the locking in of density fluctuations along
the wires. Thus, in order to stabilize the sliding Luttinger
liquid phase, we need to tung,;, to be very small compared
to averagex(q,), so thatAgc, and Acpw, Can both be
made large. Note that in addition, we should also consider
interchain operators of the fornR! ;R /Ry ;R jn-
These interactions, however, turn out to be automatically ir-
relevant if the superconducting and CDW interactions are
irrelevant, and hence merit no further consideration.

In addition to the lowest-order interactions between pairs
of chains described b$sc, andScpy . there can, in prin-

O oz o2 o8 o8 ciple, be higher-order multichain interactions with actions of
' Cgm ' the form
FIG. 2. k(qg) as a function ofg/ 7, with a minimum,x,, atq
o Sy~ 3 [ axarnt, 08 2] S 01|
(6 6.0?) f ci ([0(q,0)[*)[1—coda,n)] 5
50— 0, =| 53 \ —cogq,.n
2 0= bien (2m)3 q,w . SCDW,SPZEi de dTVSpCOS{ 277(% Spg{)”pﬂ,

(2.2

where jsp are the interchain Josephson coupling’§p, the
interchain particle-hol6CDW) interactions, ands, is an

], (222 integer-valued function of the chain numbprsatisfying
3,5,=0. The scaling dimensions of da@(Z,S,6;-p)]

where () denotes averaging with respect $oin Eq. (2.8).  and COE\/ZT(EpSquier)] are, respectively,

The integral in the square brackets diverges logarithmically

7 d
=fﬂ%[x(ql><1—cosqm)

dgde 1
(2m)° vqﬁ-%- w?lv

with system sizé. (~C InL).?? Using this, we find N Jw dq, 5 ,
(082776 = 01.0)) ~ L~ sen, (223 on” | 2 W] 5 S eodPTRA
whereAgc, is given by Eq(2.20. From the above equation,
't follows that Acows,= JW %% > Spsprcos{(p—p’)m}}
(Sscpy~ L% Ascn, (2.24 o )| pp’ 2.27

Similar calculations producAcpy ... For a stable smectic- ) ] )
metal phase, these terms have to be irrelevant, implying 1hese perturbations are irrelevant if

ACDW,n>2! ASC,H’>2 (225) ACDW,SP>2’ ASC,S;’>2 (22&

for all nandn’.
If any Asc,<2, the SM phase is unstable to the forma-for all sets ofs, ands;,. The relevance of higher-order terms
tion of an ahisotropic 2D superconductor. If adyepy,,  Of this form is a subtle issue, and we will elaborate on this in

<2, the SM phase will flow to a 2D longitudinal CDW- @ future publication. However the strength of these terms, as

crystalline phase with &= density modulations along the measured, for example, by, , is small and they become
wires and the phase locked from wire to wire. Notice that ifimportant only at very small temperatures even if they are
k(q,) is uniformly small, theAsc,’s are small and the relevant. In this paper we will restrict ourselves to pairwise
Acpw.'s are large, and for large, theAsc,,’s are large and  CDW couplings of the form given by Eq2.17); however,

the Acpw,n's small. For a stable sliding phase we need all thewe comment on the higher-order superconducting terms be-
Ascp’s andAcpw o's to be greater than two. Our strategy to low.

create a stable sliding phase is to choe$q, ) of the form To explore the regions of stability of the SM phase, we
shown in Fig. 2, withk having a minimum,x.,,, atq,  follow Refs. 13 and 15 and take

=(o- Whenk,, becomes zero, the system undergoes a tran-

sition to a transverse CDW modulation with wave veagr k(q,)=K[1l+N;coqq,)+N,c082q,)]. (2.29
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The parameters; and\, can be tuned to set the valgg of 2 .
g, , at whichx(qg,) reaches a minimum and the minimum
value of k(q,) and k(qe) =KA. For a specific value oA
andk,
o 4(1—A)cosqg P
Y [1+2c02(qy)] M

) (2.30 1\} ! VU V

2:(1+Zco§q0)’

unlessgy=0 or 7, in which case only\;+ \, is fixed byA.
We note that, in the above equatibre., forqy# 0,7), while
N\, is always positive fod <1, A, can be either positive or
negative. Typically positive\’s correspond to repulsive in-

teractions. o ,
In this paper we treaK as the control parameter. For 0.25 0.5 0.75
smallK the system becomes superconducting, while for large q/™
K the system goes into a CDW crystalline phase. We will
show that through judicious tuning af andX, it is possible FIG. 3. Plot of B=Kcpw/Ksc as a function ofgo /7. For g

>1, there exists a region df over which the non-Fermi-liquid
phase is stable.

to have an intermediate window &€ where the smectic-
metal phase is stable. For this purpose, we deﬁ@ne

=Ascs, /K and b,=AcpwK, whereas and b, depend \\nerec has been defined in EG2.34. We setA=10"5.

only on; andA,, and We consider the range of,/ 7 lying between 0.25 and 0.75.
1 This range can be broken into three sections:
a = [S2+ Sp(Spr 1t Sp_ A2 (1) 0.25<qo/m<0.41957: In this ranga ;<0 and|\ |
P 2 >\,. Here the most relevant superconducting term corre-

sponds to the multichain operator E¢&(6;+ 6,1~ 6,3
T Sp(Sp+2F Sp-2)A2/2]. @3y _ 6, 4)1.%% The dimension of this operator sets the minimum

The SM phase becomes unstable to interchain Josephséi as . Thus, in this range, ma =(2+X\;—\2/2) and
couplings forK less tharK o= ma>gp(2/a3p) and unstable to  Kgc=1/(2+X\;—\,/2).

interchain CDW interactions forK greater thanKcpw (2) 0.4195% qo/7<0.5804: In this regiomh,|<\,. We
=min,(b,/2). Thus the smectic-metal phase is stable over dind thatas  is smallest for the sek,= 6,0~ n2- Thus, in
window of K andKgc<K<Kcpw, provided this rangeK gc=2/(1—\,/2).
(3) 0.5804<qq/7m<0.75: Herex;>N\,, and as, is the
_ Keow aspbm| -1 (2.32 smallest for the sed,= 6, 0— O 1. ThusKgc=2/(1—N\4/2).
Ksc 4 'Minwitmés,™ = ' In Fig. 3 we plotg as a function ofy,. The minima of the

curve corresponds = 2#l/m, wherel andm are integers.
YAIso, note that since\; has the same sign as-€osqp),
Shere are regions of stable smectic phase for positive as well
as negative values of;.
a Having established a stable smectic phase for the pure
0§ystem, we now study the relevance of quenched disorder in
this phase. Disorder gives rise to a random electron potential
D(x), with associated action

We note, once more, that in this paper we consider stabilit
with respect to all superconducting terms, but only pairwis
CDW terms of the form given by Eq2.17). If B<1, the

a stable sliding phase, we need to makerery small. The
value of Acpy , for A small is determined by values of;
neargo. We can therefore set(q, )

x(0,)~K[A+C(d, —do)?], (2.33 Sdis=$ J dxdrDj(x)cod V2me]. (2.3
where . . .
D(x) can be treated as a Gaussian random variable, with
K"(o) . zero mean and local fluctuations such that
C=—x =2\,Sirfqg. (2.34 L
D(x)=0,
This gives us
e D(X)D(X")=Apd(x—x"), (2.37
—nd
Acpwn= K[1~cosndo)e ] , (2.35  Where the over line signifies averages over the randomness.
’ JcA By a generalization of the Harris criteriéfjt can be shown
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quite easily thatalso, see Giamarchi and Schiflzdisorder
is irrelevant if Acpy ..>3, where SSC,n:jnf dx dT; cog V2m(0,;—0,+n)]

X COS V27, ) COS 2Ty 4 1),
ACDW,OO = _—— = (238)
Scown=Va | 0x arS, O \m(d,= By 0]

For the range of parameters we are considering where the

SM phase is stableAcpy .. is large and thus disorder is x cog \/E‘%J)COS( ‘/ﬁd’avi*n)' (2.40
strongly irrelevant. This is an important point. For a singleThe ¢, variables now contribute to the dimensions of these
Luttinger liquid in the repulsive regionc>1 and disorder is terms. Because, is constrained to be one, the contribution
always relevant. However, interwire interactions can drivepf the ¢ variables is trivial, and the dimensions of these
disorder irrelevant forx(q, =0)>1, even in regions of terms are given by

phase space where all interactions are repulsive.

Thus, there is a small but finite region of phase space Agcn=AE0+1,
where the smectic-metal phase appears stable. We should
note that over a larger region of phase space, the only rel- ACDW,nzAQS\‘,)\}’nJr 1, (2.41

evant operators involve nonlocal interactions of the form (gap) (gap) )
V,co$\27 (i — bi+.)], whereV, is expected to be expo- W_hereACDW’n andAgz, are given by Eqs(2.13 and(2.14
nentially small, for largen, in the bare Hamiltonian. Though With « replaced by, . _
relevant, these operators would only play a role kgfl Since the o variables are no longer gapped, single-
smaller than some energy scale setiby So, for example, electron _tunneInjg is no longer |rrelevant.TSmgle-partlcle
there will be a range of temperatures, where we will only"OPPINg is described by operators suctRasR;. , ;, which
need to consider the relevance Wf and J;. These can be ~C¢an be represented by terms of the form
made irrelevant over a reasonably large region of phase -

space(see Ref. 1B Thus, even though the region of phase :J F{_- \ﬁ g
space where the smectic phase is strictly stable is highly Sin dXdT; Tnex) =N 3 Pos = bpien)
restricted, at finite temperature and for weak coupling, we

expect a much larger region of phase space whose behavior Xex;{ i \/E(e 0 )
is governed by the sliding Luttinger liquid ground state. 207l TedEn

) T
C. The gapless 1:1 array X{GXF{ =1 \[E( boi= bojinT 00— 0sjin) ] :

We now consider 1:1 arrays of wires in which both charge (2.42)
and spin excitations are gapless. In this case, there are two
Luttinger liquid parametersx(, , ) for the charge and spin The expectation value of the term in the curly bracket goes
modes, respectively, and two velocities,(v,) on each as L~ as system sizel goes to infinity. Thus(Se)

wire. To maintain gapless Luttinger liquids aBdJ(2) spin ~L2"%en, where
symmetry, we do not include any marginal spin-spin cou- N .
pling terms in the Hamiltonian. Thus the spin degrees of Ael,n:Z[Agg\’;\;,n“LA(S%ﬁ)]Jr?' (243
freedom are represented by the fixed-point action Regions of phase space, whé&g. , is relevant, corresponds
to the superconducting phase, whereas regions of relevance
(9. 1)2 of Scpw,n correspond to the CDW crystal phase. Regions
Sp.o= K(,Z f dx dr vo(ax¢0,j)2+ TU—”J where both of these are irrelevant, but single-particle hop-
J o

ping is relevant, correspond to the Fermi-metal phase. For a
(2.39 stable smectic-metal phase, we require that all these opera-
tors be irrelevant. The superconducting and CDW coupling
with k,=1. In a more general treatment, one could includeterms are irrelevant if
spin-spin coupling terms and consider their relevance, main-
taining, however, theSU(2) symmetry of the spin sector. AGR>1, AR >1, (2.44
We leave that for a future consideration. The charge mod
are still represented by Ed2.9), with x(q,) andv(q,)
replaced by ,(q,) andv ,(q,). The form ofk, is still given
by Eg.(2.29. (gap)_1_ A (9ap)
We again consider the relevance of single-particle, CDW Ascnt Acown=6 (249
and SC tunneling. The SC and CDW tunneling were alreadyor all n.
considered in the previous subsection. When the spin vari- We now proceed exactly as for the gapped case, assuming
ables are included, Eq&.11) and(2.12 become K, to have a form as given by E(R.29. As before, we may

eﬁ')r all nandn’ The condition for single-particle hopping to
be irrelevant is that
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' ' ' =(n4,n,). We will focus on the spin-gapped case, though
extensions to the gapless case proceed exactly as in the pre-
vious section. Taking into account interwire density-density

0.69 and current-current interactions, we could write down an ac-
tion of the form(2.7), but where we now have sums over
columns in a 2D lattice, with , n(X,7)—], n(X,7) andn

B =(ny,ny). When transformed to Fourier space, this action
;o SC becomes
10 d*Q R .
0.67 |
S=3 f GVl o?+ v afl 4I°
—ioq{0* $+c.cl], (2.48
whereQ=(w,q,q,) with g, a vector in the first Brillouin
zone of the 2D lattice of columns. We choose traxis to lie

0.65 > along wires, so thadj, =(qy,q,). The § or the ¢ variables

may be integrated out, giving us the effective actions
FIG. 4. A plot of the phase diagram igy, K space withA d4Q 1 . 1 5 -, 5
=105, SC stands for superconducting, FL for Fermi-liquid, SM  Sp= f WEK(qL) —— o +v(dq.)q] [p(Q)I7,
for smectic metal, and CDW for charge-density wave crystal. v(ay)

. d4 1 -
write A@S@vfan/K, A_(sggﬁ)=an, Ksc=max,(1/a,), and Sy= . Q2 _ - w2+v(qL)qﬁ 16(Q)|2,
Kcpw=min,(b,). ProvidedKpw/Ksc>1, there is a win- (2m) 2k(g,) (v(q,)
dow of K, Kgc<K<Kcpw, Where the system is stable with (2.49
respect to both the CDW and superconducting couplings. F here
the smectic-metal phase to be stable, the single-particle hop-
ing has to be irrelevant as well, which indicates that > = =
Ping k(6,) = V(A V(L)
an - = Y
K TPaK=6. (249 0(d)= V(A )V(d)). (250
This condition is violated foK lying betweenK _ andK , In three dimensions it turns out that the stability of the slid-
whereK_=min,K_ ,, andK, =maxK . ,, with ing phase with respect to the complete set of operators, re-
’ ’ quires an even further fine-tuning of the generalized current-
3+\9—a,b, current coupling terms. In particulat(qy ,q,) should have a
Ken=——H (247 minimumKA at someq,=qo,, d,= 0o, With bothA and
n

the second derivative of/K being much smaller than unity

The single electron hopping is relevant in a large region ofat the minimum. Let us consider two examples of the form
phase space, indicating an instability towards a Fermi-liquidhat «(q,,q,) could assume in order to obtain a stable slid-
FL phase. We write\; and\, as functions ofA andq, [see  ing phase(see Fig. 5.
Eq. (2.30] and setA=10"°. Higher-order terms involving The first example is one that is symmetric with respect to
¢, and ¢, in general, are less relevant in this case, and wej, andg,. We assume that the wires are arranged in a square
do not need to consider the whole set of operatdBepend-  or rectangular pattern, and align titeandz- axes along the
ing onqg, we have the following possibilities for phaseskas edges of the rectangle. We consider the form
is increased{(l) SC —FL— CDW crystal, (2) SC —SM
— CDW crystal, (3) SC —FL—SM— CDW crystal, and k(dy,d,) =K[1+\;cogqy)+Aic0gd,)
(4) SC —-SM—FL—SM— CDW crystal. 2

The phase diagram is complicated, and we plot a region +hac08qy)cod,) I (253
of K, go space in Fig. 4, in the absence of disorder. Back-\; and\, are adjusted such that has a minimumkKA? at
scattering due to disorder is irrelevant fb@&’,’\}’m>2, which  gqy,=0q,=q,. This gives
is automatically satisfied in the SM phase.

(1-4)
D. The three-dimensional anisotropic sliding phase T cogqp)’
We now turn to three-dimensional 2:1 arrays with 9wires (1-A)
on a periodic 2D lattice with primitive translation vectas )\zzm. (2.52

anda,. Each wire occupies a positiona; +n,a, on a 2D
lattice and is labeled by the integer valued vector Close to @ ,d,) =(do.do), We can expand as
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FIG. 6. Schematic depiction of a two-dimensional crossed array.

plane conductivities at finite temperature are isotropic at long
wavelengths. In this section we demonstrate the existence of
a sliding phase in the crossed arrays that is stable if the
sliding phase in the constituent arrays is stable. The correla-
tion functions in this phase exhibit power-law decay along
the planes, and the electric conductivity diverges as a power
law in temperaturdl asT—0.

FIG. 5. A three-dimensional array of quantum wires.

k=K[A+X\5(0y—do)(d,— o) ]?. (2.53

As beforeAgc ,=Kap, andAcpy ,=Kb,, wherem andn A. Crossed two-dimensional sliding phase

are now vectors. The sliding phase is stable provided We consider now a square grid of wires, starting again

Keow  @mbn with the spin-gapped case. The system consists of two arrays
B= K :T|m‘”- witman> 1. (2549  of quantum wires, th&- andY- arrays running, respectively,
s¢ parallel to thex andy directions. Each wire sees a periodic
For A=10"2 (or smallej there is a large range ofy, where  one-electron potential from the array of wires crossing it. For
the sliding phase is stable. simplicity we assume that this periodicity is commensurate
One could also consider the highly anisotropic form  with bands in the wire. This leads to a new band structure
with new band gaps. It is assumed that the Fermi surface is
w(Gy,dz) = K{[1+xlcos(qy)+)\zcos(2qy)]2 between gaps so that the wires are conductors in the absence
+N3[1+cogq,)]}. (2.55 of further interactions. By removing degrees of freedom with
wavelengths smaller than the inverse wire separation, we ob-
tain a new effective theory whose form is identical to the

stable sliding phase. We conclude by noting that in thre(?heory before the periodic potential was introduced. Thus, in

dimensions, obtaining a sliding phase, requires an even fin e .
adjustment of parameters than in 2D. At finite temperature%e absence of two-particle interactions between crossed ar-

as before, the region of phase space controlled by thgays, the sy_stem C(.JUId be in-a phase consisting of two
crossed, noninteracting smectic-metal states.

zg:;ctm metal fixed point is expected to expand consider We will now demonstrate the existence of a stable sliding
phase in the crossed arrays. In addition to the interwire cou-
plings within each array, we need to consider Coulomb in-
teractions between wires on thearray and wires on th¥
Having established regions of stability of the sliding metalarray. These interarray couplings are marginal and should be
phases formed from arrays of quantum wires, we now turn téhcluded in the fixed point. They do not, however, change the
the investigation of sliding phases formed from crossed ardimensions of the operators, except by renormalizi(g, ).
rays of wires. We consider two basic configurations: one &or a stable sliding phase, additional interactions between
two-dimensional system formed from two coupled 2D slid-the two arrays, such as the Josephson and CDW couplings,
ing phaseg1:1 array$ oriented at right angles to each other have to be irrelevant. We will show that it is possible to tune
and the other a 3D system formed by stacking the crossedl(q.) such that this is indeed the casee Fig. 6.
two-dimensional system. The latter three-dimensional sys- The Coulomb interactions between electrons on intersect-
tem can be constructed from two interpenetrating 3D anisoling Wwires give rise to a term in the Hamiltonian of the form
tropic sliding phase$2:1 array$, of the type discussed in Vﬁm(x,y)px,m(x)py,n(y), where py n(X) [py.m(Y)] is the
Sec 2D, oriented at right angles to each other. Both the 2@lectron density on thenth wire in theX(Y)-array at posi-
and 3D systems hav€,, symmetry. As a result, their in- tion x (y). We expectvfn’n(x,y) to have the formVve(x

Again, for any\;, one can adjusk; and\, to produce a

Ill. CROSSED SLIDING LUTTINGER LIQUID PHASE

045120-9



RANJAN MUKHOPADHYAY, C. L. KANE, AND T. C. LUBENSKY

—nay—ma), wherea is the distance between parallel wires.

Thus, we represent the interaction betweenXtandY array
as

f dx dyf dxdy mVE(X—na,y—mb)dy ey 1.

If all parameters for theX and Y arrays are the same, the
crossed-grid action as a functional of theand ¢ variables,

can be written as

dwdg,dgy

= Tr[ve(qymilax|2+v0<qx>q§|0y|2

+V¢<qy>q§|¢x|2+v<”<qx)q§| byl?
+VO(ay,0y)axay{ Pxpy +C.CY—iway{ O Pyt c.cl
—i0qy{ 6] ¢y +c.cl] (3.1

with obvious definitions forg,= ¢,(w,qy,d,), ¢y, 05, and

6y . It should be noted that this is an effective theory with
—m/a<qy,qy</a. Integrating out thep variables, we are
left with an effective action, which is conveniently expressed

in matrix form as

1
SH:EJ d?k dw0,(G ™ 1) ,p0F | (3.2
wherea=x,y andb=x,y. Here
2
= w_+qu>2<) —Vgw?
Ky \ Ux
G 1= , (3.3
c 1 [ w?
_VR 2 K—y(v—y-i‘qu)z,)
where
() = [ y(a)
V=NV V()"
~ N%ay)¥(a)
vy(q)= Va)
¢, Vi(a)
VR(Q)——,y(q) ,
(@) =V V(ay) —[Vi(a)]? (3.4

and Ky(q) kx(PQ), Uy(q) Ux(Pq) where Pg=P(qy vqy)
=(0y,0y). From Eq.(3.3) for G™ -, we can calculate

1 [ w?
il BN c 2
G 1| &ylvy quy> RO 3.5
D Vcwz i (1)_2+U q , .
R Kelvy, X

where

PHYSICAL REVIEW B 64 045120

w2
XqX

is the determinant o6~ 1.

In order to determine the dimensions of operators, we
calculate the leading dependence of correlation functions
such(#2(r,t)) on system sizé. Thus we can consider the
function

1

KxKy

—+quy) ~ (V' (36

w2

qxdqydw ( vy
(2m)?

yqy)
KyD

(65(r,0)= 37
The leadingL dependence is related to the infrared diver-
gence of the integral just introduced. This infrared diver-
gence comes purely from the integration oggrw. We can
write the integrand as,/(w?/v,+v,q2) plus a remaining
part. The integral of the remaining part is free of infrared
singularities(see Appendix C for detailsThus, it is easy to
see that the leading dependence goes as

d
<0§>~wln(L)f Z—?Tyx(qy), (3.9
wherex(dy) = x,(0,dy). Notice that this is precisely what we
had for a single array of parallel wires. A similar analysis
yields (67)=(6%). Also note that cross correlations of the
form 6,-6, are finite ad. goes to infinity.

We also need to consider correlation functions in the
variables. To do so, we start with the action of E}1), and
integrate out the variables. The effective action as a func-
tional of the ¢ variables is

dwdqg,dqg
o3| S g i, (39
with a=x,y andb=x,y. Here
- w2 T2 C
Ky| = 1t vy0x \% axQy
Ux
G,'= 2 , (310
— W — 5
V®a,ay Ky(_ +quy)
y

where
x(a,)=[V%a,)/V’q,) 12

v(gy)=[V¥(q,)V’(q,) ]2 (3.11

Note thatx is different fromx defined for thed correlation
functions. FromGj/,l, we calculate

_ wz — .
Kyl = tvyqy -V 0xdy
1 Uy
G‘/’:: 2 y
D c — W — 5
-V axQy Ky| = 1t vy0x
Ux

(3.12
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where
S) f dr 7XYood V2] by m(n@) = Oy n(ma) I},
m,n
—_ —— w2 — w2 —
D= Kkyky U_—+vxq)2<) U_—+qu§)—(V°)2q)2<q§
" ’ (313 Sthw= f d7VXYcos V2] ¢y m(N@) — by,n(ma) ]
is the determinant 06,*. G, can be used to calculate di- +2ke(ma—na)}. (3.17
i f involving. F le, th -
mensions of operators involving. For example, the expec The dimensions of the cosine operators in the integrands are,
tation value .
respectively,
Kyl = +v,02 _|" _q =
20 ¢ _J dg,dg,do | v, yqy) a1 Asc,w—fw S K@) =K,
<¢x(r! )>_ (277)3 5 ) ( . 4)
= dg 1 1 1
where again we taker/L</|q,/,|qy[,|o|. In the integral, as Acowg= j_w e Tq)z K \/ﬁ (3.18

before, the infrared divergence comes purely from the inte-
gral overg, ,w. Once more, the infrared divergent part goes

oA where we assume tha{q) has the form given by Ed3.17),

A is defined as before, and=«"(kq)/2K. If « is chosen
such that Eq(3.16 is satisfied for each array, th&§y and
()~ In(L)j day | (315 Scow are automatically irrelevant. Thus, we do not need any
27 k(qy) further fine tuning ofx to get a stable CSLL phase.

Having established a region of stability of the CSLL
where x(q,) = x(0,,) is the same function appearing in phase, we now investigate the nature qf the correlation func-
(62), Eq.(3.9. tions. Consider once more the correlation function

Thus, correlation functions foé, and 6, can be calcu- X ) )
lated directly from Eq.(3.2. 6,-6, cross correlations are ~ Gy(X,y=ma)=(exi by m(X,7) =1 ¢ o(0,7) + 2Kex])
nonsingular, wherea#,-6, and ,-6, correlations have sin- tec (3.19
gular parts with exactly the same functional forms as they o ‘

have in the absence of coupling between layers, but with thg hich corresponds to the component of the density-density
«(q) function in expressions for the scaling exponents reéqrelation function modulated atk2. In the absence of

placed by terms such asty,y, this correlation function vanishes for

y#0. Thus, though irrelevant, the presencegj,, changes
k(0)=kx(0,0,)=ry(dy,0). (3.16  the nature of the correlation functions. In its presence, to

lowest order inV*Y, we obtain

The same holds fo#-¢ correlation functions. Thus correla-

tion functions within a given array have the same functional X

form as forV¢=0 but with different definitions of. Other Gy(X,y)~

than renormalizinge(q), the couplingvy, , between the two

arrays leaves the dimensions of all operatarghanged

This means that it is possible to choose interchain interac-

tions within theX andY grids so that these grids form 2D

XY)2
el 2Ke(x+y)

X J dxy[ {expfi \/ﬁ[cﬁx(x,y: ma)

anisotropic sliding phases even in the presence of the inter- — ¢u(X1,y=ma)]})o(expli V27| dy(X1,y)
grid couplingvﬁm. Equations(3.2) and(3.16 define a 2D _ i 2

non-Fermi-liquid with scaling properties to be discussed in $y(X1.0 T o eXpli V27 5(x1,0)

the next section. — $4(0,01})o] +c.c., (3.20

First, however, we must verify that it is possible to choose
potentials so that this 2D non-Fermi liquid is stable with where() is the expectation value with respect to the CSLL
respect to perturbations. All pairwise couplings within afixed point. We need the asymptotic form of the correlation
given array, i-e-Séc,n’ SéDW,nv S:\s(c,n andséow,n defined as  function for largex, y. Following Eq.(2.12, we obtain, for
obvious generalizations of Eq.19, can be rendered irrel- €xample,
evant by choosinge(q,), as in the case of an individual

array. We must also consider Josephson and CDW couplings . _ A

between the two arrays, which operate at the points of cross- (expiv27l ¢x(x,0) = ¢x(0,0]})o~ N (3.23)
ing (x,y)=(na,ma) of wire min the X array and wiren of

the Y array, respectively. These take the form Similarly
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002

vy(Q)

i 1 1 dodgcdgy| 1 5
<exq| \/Z[ ¢y(XaY)_ ¢X(Xvo)]}>0~ )m S()_EJ (277)3 Kx(q) (UX(C])qx+

(3.22 2

+i(v (a)a5+ )le 2
Ky(q) Y Y Uy(q) Y

Jiae

Note that in the sliding phasé cpw , is greater than unity

and thus in Eq(3.20), the largest contribution to the integral
comes fromx, close to 0 and to. It thus follows that for —{VR"(9)0?0,6; +c.c}|, (3.29
largex andy, G, goes as
where
«_ Ccog2ke(x+y)] - \/ (9)
Co™ (xy)foow> (3.29 D= Vg, 4V (ay.a0°
0

whereC is a constant that is proportional t&’{")2. Thus v,(Q)= M,
the correlation functiorG, decays as a power law in all V®(0x.dz)
directions. Notice thatG, is not isotropic but exhibits a VXY(q)
squareC,, symmetry. VéY(q)= 4 7

The stability of the CSLL phase for the gapless case fol- ¥(a)
lows along the same lines. If there are no marginal interarray “y12
spin-dependent coupling terms, thep=1, and we define a V(Q)=V¢(QX)V¢(%)_ V] (3.2

renormalizedx,(q,). The stability of the CSLL phase is 44 Ky(0) = Ky (PO) vy(q) =vy(P) where Pq

identical to the stability of the smectic phase on a single_ p _ " Proceedina exactlv as in the
array, with a fixed-point action described by the renormal—pre\sgﬁ'géfszg V\(/gyf}gé,gf;t g y

ized functionx,(q, ). Also, proceeding as in Eq§3.20 to

(3.23, we now expect the single-electron correlation func- daq, dg
tions to exhibit power-law decay in all directions. <0§)~7rln(L)j (2y )22 k(00,,0,)  (3.29
a
B. Crossed 2:1 array and
The above analysis can also be extended quite easily to a 5 day da, 1
three-dimensional stack of alternate 20andY arrays. We (p)~mIn(L) (3.28

> .
could also think of such a stack as a three-dimension array of (2m? #x(08y.02)
wires running along th& axis, intermeshed with a 3D array The stability of the three-dimensional crossed stack is pre-
of wires running in theY direction. Thus the fixed point cisely the same as the stability of a three-dimensional stack
action would be of the fornsy+ Sy + Sxy whereSy andSy  of parallel quantum wires with the Luttinger liquid parameter
are the actions for the 3D arrays formed by wires running(q,,q,) set equal tox,(0.dy,q,) of the crossed stack. As
along theX axis andY axis, respectively, wher8yy repre-  before, there are no additional singularities due to the cou-
sents the interarray Coulomb interactions. Thus the fixedpling between the crossed arrays.

point action is

IV. TRANSPORT PROPERTIES

We now investigate the transport properties of the sliding

1 (dwdgcdg,da, 21 n |2
S=3 2m)? [V(ay,az)a5 6x Luttinger liquid phases. The conductivities of an array of
parallel wires has been considered by Emetal!? In a
+VOay,0,) 05| 62+ V?(ay,0,) a5l ¢l pure system, the conductivity along a wire is infinite. In the
s 24 12 <y N presence of impurities, the resistivity along the wires van-
+V2(ay, A Ky by *+{V*"(ax, 0y, 02) Uy Px Py ishes a2
+e.ci—iwa 65 dytc.ci—iwq {6 dy+c.cll, py~Tel, 4.1)
329 \ith
a”:ACDW,oc_Z- (4.2)

where¢, , and 6, , are functions of, g, g,, andqg,, and

V*¥(qy,qy,d;) represents the interactions betweenX@nd  The conductivity perpendicular to the wires for an array of
Y arrays. For interactions only between nearest-neighbor laysarallel wire can be calculatéf’ using the Kubo formula,
ers, we obtainv*¥(qy,qy,d,) =V°(dy,qy)(1+€'%). Inte-  giving us

grating out the¢ variables, we are left with an effective

action o ~T% (4.3
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where 7% and 7" are current densitie$current/aren in-
jected, respectively, into thé andY grids. If no currents are
injected, then this equation is solved Wf=VY=—E-x to
produce a total in-planar current density

I=+3= (o +of)Ej=(oy+o)E;. (48

Thus under a uniform electric field, the double layer behaves
like an isotropic 2D material with in-plane conductivity
=0+ o, =0, or equivalently with an isotropic resistivity
that vanishes agj~T*I.

We could also consider currents that are spatially nonuni-
X form, as they are, for example, when current is inserted at
one point and extracted from another. In that case, there is a

FIG. 7. A schematic depiction of the 2D non-Fermi liquid as a crossover from isotropic to anisotropic behavior at length
resistor network, with two parallel arrays of wire running along the gcgle

x andy axes, with nodes in the direction.

g
with (Ref. 28 a, =2Agc— 3, whereA g is the minimum of I =«':1\/;~T““”“c)’2 (4.9
AsciandAgc,. (For details see Appendix DThe conduc- ¢
tanceo, arising from the Josephson coupling at the contacthat diverges a3 — 0. To illustrate this crossover, we calcu-
between the crossed wires, can be calculated similarly usinigite explicitly the case where a currdris inserted at a point
the Kubo formula, and satisfies r, on theX array and extracted at another poiaton theX

array. Then
o~ T%, (4.9
T*=1[&(r—ry)—8(r—ry)],

where a;=2Agc..—3. In this section we focus on the
gapped case. In the gapless cage,o, , ando still exhibit TY=0. (4.10

power-law behavior even though the major contribution to, . .
perpendicular conductivities may come from single-particleusIng Eqs(4.7) and(4..10),.0ne can solve for the resistance
hopping. between these two points:

Thus we can model our 2D non-Fermi liquid as the resis-

X _ X 2 _ iq(r —r5)
tor network depicted in Fig. 7 with nodes at the vertical R= Vi(ry) —V7(ra) — d q2 1-e™= 2 ,
Josephson junctions between the arraysxa)= (na,ma). | (2m) g(a)
The nodes of theX(Y) array are connected by nearest- (4.1

neighbor resistors with conductanceg= pH_J', if they are  where
parallel to thex(y) axis ando, , if they are perpendicular to
the x axis (y axis). Nearest-neighbor nodes of tikeand Y

O¢
arrays are connected by resistors of conductanceln the ;[(UH—’_O—L)QE(—’_(O—H—FO—L)Q)Z/]
continuum limit, the 2D current densities in the plane of the g(q)=
@ grids (a=X,Y) is Ji'=o{jE]", where O¢ 2 2
g_O-J_QX_O-”qy
x_ |7l 0 ) (4.5 2 2 2 2
7o o) : _(Uqu+U||qy)(U||qx+o'qu). 412
Oc 2 2
o, 0 — T 0.0y~ o0y
o'= , (4.6) a
0 o
For

andE® is the in-plane electric field in plane. The current ) )
per unit area passing between the planesjs (o./a?) ocla®>o|q%, (4.13
X (VX=VY), whereV is the local voltage. In this limit, the

¢ 9(q) takes the simple formd+ o, ). If [r;—r,[>1, with
local voltages satisfy

| defined in Eq(4.9), then the integral oveg in Eq. (4.11) is
dominated by smally satisfying Eq.(4.13. Thus for |ry
—r,|>1, the system has approximately the same resistance
as anisotropic conductor with conductivityo . If we in-
serted current at a point on thearray and extracted it from
- the Y array, we would have the form E¢4.11) for the re-
— U?J(aiajvv_ _;(VX_VY):TY' (4.7  Sistance with a different fgnctloq’(q) whose small limit

a is still given by (o+ o, )g”. Thus for|r;—r,[>1, the resis-

g
— o ,0,V*+ a—;(VX—VY)zTX,
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tance is approximately independent of whether the current iknowledge useful discussions with S. Kivelson, E. Fradkin,
inserted into(or extracted fromthe X or theY array. More  and A. Vishwanath.

generally, in a region wheré= 0, by inspection of Eq4.7)

it can be seen that inhomogeneities in the voltagediffer- APPENDIX A

ence betweew* andVY) would heal over the lengthscalle ] ) )

as defined in Eq(4.9), and at longer lengthscales the system [N this appendix we sketch out the steps leading to the
would behave isotropically. This length diverges Bs:0  asymptotic form for the correlation functidd,(x, 7=0) for
and atT=0, current can only be carried along the wires; thelargex [see Eqs(2.12 and(2.13].

resistance between wires in a grid or between grids is infi-

nite. G 4(%,0)=(expli V27 #;(x,00— $(0,0]+i2kex}) + c.C.
We could, in addition, investigate the frequency- = exp{— 2([ 6;(X) — b;(0) ]2} )cos 2kex). (AL)

dependent zero-temperature conductivity. By arguments _ J )
similar to those used with Eq#4.1) to (4.4), we obtain It can be easily checked that

p(w)~w, ([¢;(x)— ;(0)]%)

dgydq, d 1-—cogx
o ()~ 0%, :ZJ 9 dq. do <xq)) 2 2
(2) ., o
a'c(w)~wa°. (41‘9 K(qL) v(qL)qH U(Ch_)

@), a, , anda, are the same as before, though the coeffi-Next we carry out the integration ovej and » obtaining,
cients are now differentand complex, in generalAt finite  for largex,
w, the long-wavelength resistivity is isotropic as before, and

vanishes ap|(w)~ o dg; do 1—cosxq)) S mlog(x) +E(q)
We could also consider extensions of these calculations to. , W k(dy) e

three-dimensional stacks of crossed arrays. As we saw in the w(au)fv(a,)gf+ U(qL)}

previous section, it is possible to get a stable sliding phase in (A3)

such a system. The conductivity now has a three-dimensional , i )
character, with conductivity along the planes givendgyd, whereF(q, ) is some function ofy, , which depends o,
d being the separation between adjackrarrays, but with  Y(d.), and the momentum cutoff. From Ed#\1) and (A3)
conductivity in the third direction given by, /a. Thus the It follows that
conductivity along the planes is much larger than the perpen-

) S 2 da,
dicular conductivity. ([¢;(x)— ¢;(0)] >_[ 2 K@) log(x) + const.
V. CONCLUSION (A4)
In conclusion, we have demonstrated the existence Olstmg this, we obtain
non-Fermi metallic phases in two and three dimensions, that A,cog 2KeX)
are stable with respect to a wide class of perturbations. We G4(x,0)~ —Boowe (A5)
consider both spin-gapped systems and gapless systems that
exhibit spin-charge separation. Our central results pertain towhere
the stability and properties of the CSLL phase. This is a
remarkable phase, which could be identified as a two- =dq, 1
dimensional Luttinger liquid. The correlation functions in ACDW#”ZJ_W% k(g (AB)

this phase exhibit power-law decay along the planes, and the

finite-temperature long-wavelength electric conductivity, Equations(2.14) and(2.19 follow along similar lines.
which is isotropic along the planes, diverges as a power law

in temperaturel as T—0. The importance of this paper is APPENDIX B

that it provides a perturbative access to non-Fermi-liquid . .

fixed points in two- and three-dimensional systems, some- Here we outline how the integral

thing that has proven to be quite difficult in the pagthis = dq (1—cosnq)
paper could be of significant relevance for higher- I :f a9 —q'
dimensional strongly correlated electron systems in general, ") 2m f(q)

ZQSI; the normal conducting phases of the cuprates in Par o ded to calculatd cown, can be solved exactly. Here

(B1)

f(q)=1+A;c04q)+A,c042q), (B2)
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where APPENDIX C
17\ Here we consider the infrared divergence of the integral
+ 1 .
u ==|=——=iD|, (B4)
Z[ZM dg,da, do (0/vy+vy07)
and (27r) kyD
2 where
pro_ M2, 24 (B5)
Kg A2 Ap _ 1 w’ 2|, 2 2 c\2, 4
D= — o0 [(0 vy +vyqy) — (VR) ‘0.
. KyKy \ Ux
It is easy to check that (€2
1 At first sight, it may be appear that the integral is divergence
lh=- ImJ; (B6)  free, since by power counting, there are two powersQof
V2AN, [where Q= (w,dy,0y)] in the numerator multiplyingd®Q,
ith and four powers ofQ in the denominator. This seems to
wi indicate that the integral is finite &s—. Notice, however,
e . . X
b szdq 1-cogng) 1 o :Ersat if Vg is set equal to zero i@, the integral can be written
"~ o 27 uTrcosq ittt Izal

szdqxdqydw Kx(quqy) (C3)

5 é dz 27 wzlvx-l—vxqi'
1n 1+2utz+2z? o . : .
which is clearly infrared divergent. This divergence comes
) purely from the integration over, ,. It turns out that even
1 jg dz [1+2z°"]

Jo=— = — (B7) in the presence o5, the divergence comes purely from the
a2 ] p1t2utze integration overy, . To obtain the infrared divergent part
_ we write
wherez=¢€'9, and thez integral is over the unit circle cen-
t_er%d +abczuF the origin. The integrands have polesz at (w?lv+ vxq)z() _ xx(0,y) ‘R (Ca
=(020.2): kxD wzlvx"'vxcﬁ ’
Zo=—u"*iJy1-(u")2 (B8)  whereRis the remaining piece, and our task is to show that

its integral has no infrared divergence. Let us wike R;

Using Eq.(B8), it is easy to check thaty Xz, =1. Thus, +R,, where
eitherzy or z; lies inside the contour of integratidthe unit
circle). Using the method of residues, it is now straightfor-
ward to calculate the integrals. We simply need to sum over
the residues of the poles enclosed within the contour of in-
tegration. In order to express our results, we distinguish two
cases: )

(1) |z5]<1. Then Ky

— Ky(Ox :qy) - Kx(ouqy)

R, =
! w2/vy+qu§

:(w2/0y+qu§) i_ KyKy
D (’lvy o) (wvy+oyal)]
C5

2

(zg—25)

Ji=

(1+(zg)M] & 1 The integral ofR; has no infrared divergence. To check that
2(zg)" =0 (zg)™ (zo)" ™ this is true fquz as well, we note that in the expression for
R, the term in the square brackets can be written as

2
=—[1-(z)"]. (B9 Ky Vgo?
(29— 2p) 2 2N/, 2 2
D(wlvytvydy) (@ vy +vyqy)

(C6)

(2) [zo|<1. In this case Now, by noticing the powers ab,qy, it is easy to see that

the integration ofR, has no divergence. Thus the infrared

3 2 (1+(zg)2”)} E:l 1 divergent part ofl can be written as
nT = % - 2(z )0 - - o F\m+1l,,—\n-m
(zg —24) (zo) m=0 (29)™" *(2o) f docdaydo Ky (0gy) o
2 (2m)°  wPugtug?
=——[1-(2)"]. (B10)
(20 —25) Equation(3.8) now follows easily.
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APPENDIX D The next step is to calculate the Matsubara correlator

We demonstrate explicitly the leading dependence of th?r}[ol\g)(pj(ihgs; ;gt\?veegelrr: x;:ggwfoﬂgl\%;;nigg ;rgi:je;t—nelghbor

perpendicular conductivity on temperature. According to the
Kubo formula, the transverse conductivity is given by

2

ne My(x,1)=2 (3.(x,j,13.(000), (DD
0 ]
IT, (o) + m

: (D1)

o (w)=

[
w
i i . where

where the first term represents the paramagnetic contribution

with : .

J(X,j, 1) =adx{sin 0;(X,7) — 0;_1(X,7)]

Hl(w):_iE fdxfw dt@(t)eiwt +sir[0j+1(x,r)—6j(x,7')]}. (D8)
j —

. Here a is the distance between adjacent wires, and the ex-
X([3(x,].1),9.(0.001) (D2) pectation value is taken with respect to the sliding fixed-

being the retarded current-current correlator, and the secorRint Lagrangian. The correlator can be written as
term represents the diamagnetic contribution. The step func-

tion O (t) may be written ag1+sign(t) /2, where signt) is HM(X,7-):j2a2<ei{[91(xyf)*91(0,0)“[90()('7)*ﬁo(ovo)]}>

+1 for positivet, and—1 for negativet. In the spin-gapped > 5

case, the contribution to the paramagnetic part comes from =Ja%exgd —f(x,7)], (D9)
superconducting pair hopping. The paramagnetic and dia-

magnetic terms can be combined to give where

f(X1 7-) :<[ 01()(1 7-) - 01(010)]2_ [ 01()(1 T) - 61(010)]

Q(w):%“ dxf dte @1+ signt) [T (x,t)
X[GO(XIT)_ 00(010)]>

—II5(x,t)]— (0=0) |, (D3) 1
=3 > f da, da{(6(ax,a. @) 6" (dx,0q, @)
where
X[1—cogqux+wT)|X(1l—cosq,)}. (D10
) , Let us first consider a simpler case, where the velagity
In-= _'EJ.: (J(x,j,H3(0,0,0), has no dependence with . Then
I==-i (3(0,0,0J(x,j,1)). (D4)
J

Sincell” —1II~ is odd int, the real part of the conductivity is
given by

Uj_(w)=ia[f dxf dte 11~ (x,t) - T=(x,1)]|.
(D5) 3

Note that the dc transverse conductivity is purely real, and B2
can be obtained fromr| (w) by taking the limito—0. T~

is related by analytic continuation to the Matsubara cor-
relatorIly,(x,r) in the upper-half-plane of complexspace,
andII= is related toll,;(x,7) in the lower-half-plane. Thus
we could view the integral in EGD5) as an integral over the
Keldyish contour shown in Fig.(8). This contour can be
distorted to the contour shown in Fig(t§. Note thatll~ (t B2
+iB12)=11=(t—ipB/2), where 3=1/kgT. Thus, we obtain

b)
’ 1 - iotgi wp > 1B FIG. 8. (a) The Keldyish contour in completplane, with real
ol (w)=—] dx| dte“'sinh —|TT7| x,t+ = ) - O Keldy . plexplane,
w —o 2 2 time along theX axis. In(b) we depict how the contour is deformed

(D6) in order to evaluate the integral.
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My (x,7) ol (w=0)~T4sc13), (D14)
0. 2 (wTalv)?” When the velocity is a function ofq, , the integral can
=a jl{sinr{qu(x/v+ir)]sinr[rrT(x/v— i7" no longer be solved exactly. However, the leadindepen-

dence of the conductivity remains unchanged. To check this,
(D1D)  we follow the previous set of steps and arrive at the expres-

wheren= ds¢,, anday is the spatial cutoff along. Thus we ~ SION
may write sinh( w/2T
_ aizaijiL(ﬂax)zﬂ(ﬂ)*z
, o oSiNN(wpl2) ) s o @
o= leT(WTaX/U) N7T) “v | dxdt
Xj dx dil eft(e/=n
ei?(w/ﬂ)
X poa—— -—, (D12
[cosh{x+t)coshx—1)]” 1
~ ~ X+ 1 X/ —1)12q |’
wherex=7xT/v andt=#tT (Fig. 8. By introducing new a [v(q,)coshix/v+t)coshixiv =) ] s
variablesx+t andx—t, we carry out the above integrals, (D15
giving wherex=7xT, T=tT, andSq Aq =7=Asc 1. The result
sinh( w/2T) can be expressed in the scaling form
a’i=j§a§(vax)2’7—ﬂ'v(7rT)2”73
8w/T ol (0, T)=T"F(alT). (D16)
I2(pl2+iwl4aT)L?(pl2—iwl/47T) In the limit w— 0, the integral is finite and independent,
X T%(7) ' implying F(0) is finite. Thuso, (w=0)~T7, where 7

=Agc 1 for nearest-neighbor hopping. In exactly the same
(D13) manner, we can calculate the contributionstb from next-
where n=Agc 1. The w—0 limit of the above expression nearest neighbor pair hopping. It has the same scaling form

yields as before withA 5 ; replaced byAgc ».

1v.J. Emery, inHighly Conducting One-Dimensional Soljdsd- A.l. Larkin, ibid. 47, 10 461(1993.
ited by J. Devreeset al. (Plenum, New York, 1979 For a more s, Strong, D.G. Clarke, and P.W. Anderson, Phys. Rev. Z8ft.
recent review, see J. Voit, Rep. Prog. PH§8.977 (1995. 1007 (1994).

2For a discussion of High~ Superconductors, see P.W. Ander- 1?S.A. Kivelson, V.J. Emery, and E. Fradkin, Natt®ndor) 393
son, The Theory of Superconductivity in the High-Cuprates 550 (19998; E. Fradkin and S.A. Kivelson, Phys. Rev. 3,
(Princeton University, Princeton, NJ, 1997 8065 (1999.

3T.R. Chien, Z.Z. Wang, and N.P. Ong, Phys. Rev. L&f.2088 By 7. Emery, E. Fradkin, S.A. Kivelson, and T.C. Lubensky, Phys.
(1991). Rev. Lett.85, 2160(2000.; Ashwin Vishwanath and David Car-

4For a review of ARPES data, see, for example, Z.X. Shen, and pentier, cond-mat/0003036; Phys. Rev. L88, 676 (2001).
D.S. Dessau, Phys. Rep53 1 (1995. Also J.C. Campuzano, *L. Golubovic and M. Golubovic, Phys. Rev. LetB0, 4341
M. Randeria, M. Norman, and H. Ding, ithe Gap Symmetry (1998; erratum81, 5704(1998; C.S. O'Hern and T.C. Luben-

and Fluctuations in High-T Superconductorsedited by J. Bod sky, ibid. 80, 4345(1998.

et al. (Plenum, New York, 1998 p. 229. 15C.S. O'Hern, T.C. Lubensky, and J. Toner, Phys. Rev. 183t.
5T. Imai, C.P. Slichter, K. Yoshimura, and K. Kosuge, Phys. Rev. 2745(1999.

Lett. 70, 1002(1993. 18For a recent review, see F. von Oppen, B. I. Halperin, and A.
5p.W. Anderson, Scienc235, 1196(1987). Stern, inAdvances in Quantum Many-Body Theoeglited by
"IR. Engelbrecht, M. Randeria, and L. Zhang, Phys. Re¥5B R.F. Bishop, N.R. Walet, and Y. XiafWorld Scientific 2000,

10135(1992; J.R. Engelbrecht and M. Randeria, Phys. Rev. Vol. 3.

Lett. 65, 1032(1990. see J. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura and S.
8A. Houghton, J.H. Kwon, J.B. Marston, and R. Shankar, J. Phys.: Uchida, Nature (London 375 561 (1999; J. Tranquada,

Condens. Matte6, 4909(1994). Physica B241-243 745 (1997).
°R.A. Klemm and H. Gutfreund, Phys. Rev. B, 1086 (1976); 18R. Mukhopadhyay, C.L. Kane, and T.C. Lubensky, Phys. Rev. B

L.P. Gorkov and |.E. Dzyaloshinskii, Zh.k&p. Teor. Fiz.67, 63, 081103R) (2001).

397 (1974 [Sov. Phys. JETRIO, 198 (1975]. See also X.G. 195ee J. von Delft and H. Schoeller, Ann. Phyiseipzig) 7, 225

Wen, Phys. Rev. Bl2, 6623(1990. (1998.

10\, Fabrizio and A. Parola, Phys. Rev. Lef0, 226 (1993; M.  ?°There has been some inconsistency in the literature regarding the

Fabrizio, Phys. Rev. B8, 15838(1993; A.M. Finkel'stein and definitions of # and ¢. In this paper, we follow the notation of

045120-17



RANJAN MUKHOPADHYAY, C. L. KANE, AND T. C. LUBENSKY PHYSICAL REVIEW B 64 045120

Ref. 12, and defin® as the phase variable, agdas the conju-
gate density variable.

2lyv.J. Emeryet al, Phys. Rev. B56, 6120(1997.

22C.S. O'Hern, T.C. Lubensky, and J. Ton@npublisheil

2|n these expressions;(x) corresponds t@;(x) — 6i 0, Whereg, o
refers to the uniform part ob. Hence, we exclude thg =0
modes from the integrals.

24A.B. Harris, J. Phys. C7, 1671 (1974; A.B. Harris and T.C.
Lubensky, Phys. Rev. LetB3, 1540(1974).

25A. Luther and I. Peschel, Phys. Rev. Le32, 922 (1974. See
also, T. Giamarchi and H. Schulz, Phys. Rev3B 325(1988.

26\e should note, however, that the set of possible interchain op-
erators is huge and we have not explicitly checked for all of
them.

2TA. Georges, T. Giamarchi, and N. Sandler, Phys. Rev61B
16 393(2000; A. Lopatin, A. Georges, and T. Giamarchi, Phys.
Rev. B63, 075109(2001).

28|n this calculation we have ignored the effect of diorder. At low
temperatures, we expect the temperature dependencetofbe
modified due to forward scattering from impurities. In particular,
for very low temperaturesy, =2Agc— 2.

045120-18



