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Sliding Luttinger liquid phases
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We study systems of coupled spin-gapped and gapless Luttinger liquids. First, we establish the existence of
a sliding Luttinger liquid phase for a system of weakly coupled parallel quantum wires, with and without
disorder. It is shown that the coupling canstabilizea Luttinger liquid phase in the presence of disorder. We
then extend our analysis to a system of crossed Luttinger liquids and establish the stability of a non-Fermi-
liquid state: the crossed sliding Luttinger liquid phase. In this phase the system exhibits a finite-temperature,
long-wavelength, isotropic electric conductivity that diverges as a power law in temperatureT asT→0. This
two-dimensional system has many properties of a true isotropic Luttinger liquid, though at zero temperature it
becomes anisotropic. An extension of this model to a three-dimensional stack exhibits a much higher in-plane
conductivity than the conductivity in a perpendicular direction.
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I. INTRODUCTION

For over two decades a central theme in the study
correlated electronic systems has been the drive to un
stand and classify electronic states that do not conform
Landau’s Fermi-liquid theory. A clear example of su
‘‘non-Fermi liquid’’ physics occurs in one dimension~1D!,1

where arbitrarily weak interactions destroy the Fermi surf
and invalidate the notion of independent quasiparticles
low energy. Away from charge- and spin-density-wave ins
bilities, the 1D interacting electron gas forms a Lutting
liquid. The discontinuity in occupation at the Fermi energy
replaced by a power-law singularity, and the low-lying ex
tations are bosonic collective modes in which spin a
charge decouple.

In this paper, we investigate how such non-Fermi liqu
behavior could arise in two- and three-dimensional syste
consisting of arrays of quantum wires or chains. Our analy
is largely motivated by the unusual normal-state proper
of high Tc materials. Prominent among these are

~1! Resistivity perpendicular to the CuO2 plane much
larger than the in-plane resistivity.2

~2! Linear temperature~T! dependence of resistivity alon
the conducting planes, and 1/T2 divergence of the Hall
angle.3

~3! Angle-resolved photoemission data showing
pseudogap and absence of dispersion in thec direction.4

~4! Linear temperature dependence of the nuclear m
netic resonance relaxation 1/T1.5

Anderson has suggested that these unusual normal-
properties of the cuprates are the result of non-Fermi-liq
physics in two dimensions.6 The study of non-Fermi liquids
in dimensions greater than one has, however, proven to
quite difficult. Since the Fermi liquid is stable for weak in
teractions, perturbative methods about this state fail to loc
non-Fermi liquid states.7 Moreover, generalizations of th
bosonization technique to isotropic systems in higher dim
sions have indicated that Fermi-liquid theory survives p
vided the interactions are not pathologically long ranged8

An alternative approach has been to study anisotropic
tems consisting of arrays of parallel weakly coupled
0163-1829/2001/64~4!/045120~18!/$20.00 64 0451
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wires.9 Coupled Luttinger liquids have been studied exte
sively for the past thirty years, mostly in the context of qua
one-dimensional conductors. Single-particle hoppings
well as pair-hopping correlations were shown to destabi
the Luttinger liquid phase. Following Anderson’s sugge
tions regarding high-temperature superconductors, th
have been a series of studies on coupled quantum ch
which confirm this view10 though the issue remain
controversial.11 It has recently been proposed12,13 that for a
range of interwire charge and current interactions, there
smectic-metal~SM! phase in which Josephson, charge- a
spin-density-wave, and single-particle couplings areirrel-
evant. This phase is a two or three-dimensional anisotro
sliding Luttinger liquid whose transport properties exhib
power-law singularities like those of a 1D Luttinger liquid.
is the quantum analog of the sliding phases of coupled c
sical XY models first identified in the context of phases
DNA-lipid complexes.14,15 The study of coupled Luttinge
liquids becomes particularly relevant in the context of strip
phases, which have recently been found in quantum H
systems16 and in the cuprates.17 These phases are characte
ized by inhomogeneous distributions of charge and sp
where, for example, the charge carriers might be confine
separate linear regions, thus resembling stripes. Sliding
tinger liquid phases might also be relevant for a variety
other systems such as quasi-one-dimensional organic
ductors and ropes of nanotubes.

The work on sliding Luttinger liquid phases has also be
extended to a square network of 1D wires formed by c
pling two perpendicular smectic metals,18 which has been
shown to exhibit acrossed sliding Luttinger liquid~CSLL!
phase. At finite temperatureT, the CSLL phase is a 2D Lut
tinger liquid with an isotropic long-wavelength conductivi
that diverges as a power law inT as T→0. At T50, it is
essentially two independent smectic metals. This mo
could be realized in man-made structures constructed f
quantum wires such as carbon nanotubes. The extensio
the model to a three-dimensional stack may be relevan
the stripe phases of the cuprates. Based on neutron and
scattering measurements, it has been suggested that
©2001 The American Physical Society20-1
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charge stripes in the adjacent CuO2 plane are orthogonal to
each other.17

In order to understand the nature of the sliding phase,
easiest to think in terms of the classical analog. Imagin
stack of 2DXY models coupled by the Josephson coupl
cos(un2un11) whereun is theXY-angle variable in layern.
Such a system always goes directly from a 3D ordered ph
to a completely disordered phase as a function of the t
peratureT. However in the presence of interlayer gradie
coupling terms of the form“um•“un , the system may have
an intermediate sliding phase,15 that exhibits an in-plane 2D
order with power-law decay of correlations along the plan
In the absence of Josephson couplings, in the sliding ph
u in neighboring layers freely slide over each other with
energy cost, and two-point correlation functions are ident
in form to those of a stack of decoupled 2D layers. Wh
interlayer Josephson couplings are present, though irrelev
two-point correlation functions decay exponentially perpe
dicular to the layers. Thus the sliding phase has in-plane
order but is disordered in the third direction. For sliding Lu
tinger liquid models, the 2D layers are replaced by 1D qu
tum wires, and interwire, current-current, and density-den
couplings play the role of the gradient couplings. Thus,
the sliding Luttinger liquid phases, the correlation functio
along a given wire exhibit the same power-law function
form as in a 1D Luttinger liquid.

In this paper, we review and discuss in detail, results
the sliding Luttinger liquid phase. Our discussion of the p
allel Luttinger liquids follows Ref. 13, but it establishes th
stability of the sliding phase to a more complete set of int
wire operators and also to disorder. For the CSLL phase,
provide detailed calculations that were presented only bri
in Ref. 18. The stability and transport properties of the CS
phase form the central results of the paper. We also ex
the analysis to a three-dimensional stack of crossed Luttin
liquids, and show that we can still obtain a sliding Lutting
liquid phase, with hopping between planes being irreleva
In this phase, the in-plane and perpendicular conducti
can be quite different and exhibit different temperature
pendencies. This could be of relevance to the normal stat
the cuprates.

This paper is organized as follows. In Sec. II we explo
the stability of the sliding phase for an array of paral
coupled Luttinger liquids with respect to a large~but not
complete! set of interwire operators. For a one-dimension
system of interacting spin-1/2 fermions, the spin excitatio
could either be gapped or gapless. In the spin-gapped Lut
Emery regime, the system can by described by a single
tinger liquid for charge. In the gapless case, both spin
charge are dynamical degrees of freedom, and there are
Luttinger parameters (ks , kr), and two velocities (vs , vr).
We study coupled Luttinger liquids, both for the spin-gapp
and the gapless case, and in each case demonstrate th
bility of the sliding phase. In addition, we study the effect
disorder. We find that density-density and current-current
teractions that stabilize the sliding phase, also make diso
more strongly irrelevant. Note, however, that in this pap
we do not establish stability with respect to all multiwi
operators. Since the overall strength of these higher-o
04512
is
a

se
-

t

s.
e,

l
n
nt,
-
D

-
ty

s
l

n
-

-
e
y

nd
er
r
t.
y
-
of

l

l
s
er-
t-
d

wo

d
sta-

-
er
r,

er

interactions that we neglect are expected to be much sm
than those we consider here, their relevance becomes im
tant only at very small temperatures. We delay a more co
plete study of their effects to a future publication. Throug
out the paper we will use the term ‘‘stable’’ somewh
loosely to refer to stability with respect to a restricted set
interactions that include all two-wire interactions. In Sec.
we extend the above analysis to two identical coupled L
tinger liquid arrays, arranged such that the wires of one ar
run perpendicular to those of the other. In this case we
tablish the stability of a CSLL phase to a large class of o
erators. The interarray density-density couplings effectiv
renormalize the intraarray couplings; however, the stabi
of the CSLL phase turns out to be identical to the stability
the smectic-metal phase for each array, but with the intra
ray couplings replaced by the renormalized couplings.
then generalize our analysis to a three-dimensional stac
arrays, with wires on each array running perpendicular to
wires of the consecutive array, and obtain once more a s
ing phase that appears stable. In Sec IV we explore the tr
port properties of sliding phases. In particular, we focus
the power-law singularities of the conductivity as a functi
of T as T→0. Finally Sec V sums up our principal result
Appendix A sketches out the steps used to obtain intraw
correlation functions, Appendices B and C present details
some integrals used in Secs. II and III, and Appendix
presents details of conductivity calculations using the Ku
formula.

II. COUPLED PARALLEL LUTTINGER LIQUIDS

Our goal is to construct non-Fermi-liquid electron sy
tems in two and three dimensions. Our basic building blo
are one-dimensional quantum wires that exhibit Lutting
liquid phases with non-Fermi-liquid power-law decay of co
relation functions. We couple these wires together in arr
in such a way that they retain their one-dimensional n
Fermi-liquid character yet allow nonvanishing interwi
electron transport at nonzero frequency or temperature.
will consider several types of arrays, and it is useful to
troduce a nomenclature for them. The long axis of para
wires defines one direction in space. The wires can be
ranged in either a one- or a two-dimensional Bravais latt
of points in the plane perpendicular to that direction. W
therefore introduce the notationd' :1 to denote an array o
parallel wires centered on lattice points in ad'-dimensional
space. The resulting structure occupies ad'11 dimensional
space. Thus a 1:1 array is a planar array of equally spa
parallel wires, and a 2:1 array is a three-dimensional colu
nar array of wires. As stated, we will restrict our attention
arrays in which the wires lie on ad'-dimensional periodic
lattice. For 2:1 arrays, we will only consider, in detail, tho
based on a two-dimensional rectangular lattice. Both 1:1
2:1 arrays can exhibit anisotropic sliding phases for an
propriate choice of interwire potentials.

In this section we will consider anisotropic sliding met
phases in 1:1 and 2:1 arrays. In the succeeding sections
will discuss how crossed 1:1 and 2:1 arrays can produce
and three-dimensional sliding phases withC4v symmetry and
0-2
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SLIDING LUTTINGER LIQUID PHASES PHYSICAL REVIEW B64 045120
isotropic long-wavelength finite-temperature conductivi
We begin our discussion with a review of 1D Luttinger li
uids.

A. Review of one-dimensional Luttinger liquids

One-dimensional Luttinger liquids are most easily d
scribed in terms of collective bosonic charge and sp
density modes. The bosonized form of the fermion opera
near the left and right Fermi points are19

Rs, j~x!5
1

A4pe
hR,s, je

ikFxeiFR,s, j (x),

Ls, j~x!5
1

A4pe
hL,s, je

2 ikFxeiFL,s, j (x), ~2.1!

whereR andL stand for the right and left moving electron
respectively,s is the spin index,j denotes the wire number,e
is some intrachain cutoff, andhR/L,s, j are the Klein factors.
We can write down an effective theory for the low-ener
excitations in terms of the boson operatorsF. It is conve-
nient to define

us, j5~FR,s, j1FL,s, j !/A4p,

fs, j5~FR,s, j2FL,s, j !/A4p, ~2.2!

whereus, j is a phase variable, andfs, j is the conjugate den
sity variable.20 Since the bosonic excitations can be char
terized in terms of charge and spin excitations, we furt
define

ur, j5~u↑, j1u↓, j !/A2, us, j5~u↑, j2u↓, j !/A2, ~2.3!

and similarly for thef variables. Herer characterizes the
charge excitations, ands the spin excitations. For a singl
Luttinger liquid, we can write down an effective Hamiltonia
for the charge sector

Hr5E dx
vr

2 F ~]xur!2

kr
1kr~]xfr!2G , ~2.4!

wherevr is the velocity, andkr is a Luttinger liquid param-
eter ~this is the inverse of the usual Luttinger liquid param
eter g). Alternately, we could write down the action, in
path-integral formulation, as

Sr5E dx dtH vr

2 F ~]xur!2

kr
1kr~]xfr!2G22i ~]xur!

3~]tfr!J . ~2.5!

Integrating out either theur or thefr variables, we obtain
04512
.

-
-
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Sr,f5
kr

2 E dx dtFvr~]xfr!21
1

vr
~]tfr!2G ,

Sr,u5
1

2kr
E dx dtFvr~]xur!21

1

vr
~]tur!2G . ~2.6!

In the spin sector, we might either have a spin gap co
sponding to the Luther-Emery regime, or have a gapl
phase where the spin excitations are described by a Ha
tonian of the same form as Eq.~2.4! with the parametersks

andvs . In the gapless phase,SU(2) symmetry imposes the
constraintks51.

B. The spin-gapped 1:1 array

In this subsection we consider the simplest array of qu
tum wires, the two-dimensional 1:1 array of Luttinger liquid
in the spin-gapped phase. It has been suggested that this
might describe the striped phases of high-tempera
superconductors.21 In this subsection, all bosonic variable
refer to the charge sector, and we do not write explicitly t
subscript r. In general, we expect density-density a
current-current interactions between the wires, which can
represented by an action of the form

Sint5
1

2 (
n,n8,m

E dxdt j m,n~x,t!W̃m~n2n8! j m,n8~x,t!,

~2.7!

where j m,n5@rn(x,t),Jn(x,t)# with rn5]xf ,n(x,t) the
density andJn5]xun(x,t) the current on thenth wire. The
density-density interaction is an effective interaction gen
ated by both the screened Coulomb and the electron-pho
interaction. In the striped phases, stripe fluctuations lead
current-current interactions.21 These current-current an
density-density interactions are marginal and should be
cluded in the fixed-point action. They are invariant under
‘‘sliding’’ transformations fn→fn1an and un→un1an8 .
Equations~2.4! and~2.7! define the fixed-point action of the
smectic-metal phase,12 which can be written as

S5(
n
E dx dtF(

j
Vj

u~]xun!~]xun1 j !1(
j

Vj
f~]xfn!

3~]xfn1 j !12i ~]xun!~]tfn!G . ~2.8!

Upon integration overfn or un , respectively, the effective
action forun andfn become

Su5E d3Q

~2p!3

1

2
k~q'!H 1

v~q'!
v21v~qW'!qi

2J uf~Q!u2,

Sf5E d3Q

~2p!3

1

2k~q'! H 1

v~q'!
v21v~qW'!qi

2J uu~Q!u2,

~2.9!

where Q5(v,qi ,q'), with qi the momentum along the
chain andq' perpendicular to the chains. Here
0-3
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k~q'!5AVf~q'!/Vu~q'!,

v~q'!5AVf~q'!Vu~q'!, ~2.10!

whereVu(q') andVf(q') are the Fourier transforms ofVj
u

andVj
f with respect to the wire indexj. Equations~2.8! and

~2.9! define the action of the ideal 2D sliding Luttinger liqu
or SM phase. Even though they include interwire interactio
described by Eq.~2.7!, they yield power-law correlations
characteristic of a 1D Luttinger liquid.

We could consider, for example, correlation functions
volving the density variabler. We note that

r[c†c5R†R1L†L1@L†R1c.c.#.]xf

1$exp@ i2kFx1 iA2pf~x,t!#1c.c.%. ~2.11!

Thus the density has two pieces: the first piece is the cou
grained density and the second is modulated at 2kF , where
kF is the Fermi wave vector. Correspondingly, the dens
density correlation has two pieces. We considerGf(x,t);
the component of the density-density correlation funct
with 2kF modulation. Thus

Gf~x,t![^exp$ iA2p@f j~x,t!2f j~0,0!#1 i2kFx%&1c.c.

It easy to show that for largex ~see Appendix A!

Gf~x,0!'
A1cos~2kFx!

xDCDW,`
, ~2.12!

where

DCDW,`5E
2p

p dq'

2p

1

k~q'!
, ~2.13!

andA1 is a constant. Alternately, for larget,

Gf~0,t!'A2t2DCDW,`, ~2.14!

whereA2 is a different constant. In general,Gf(x,t) can be
written in the scaling form

Gf~x,t!'x2DCDW,`FS x

t D , ~2.15!

where

F~y!→A1 as y→0

→A2yDCDW,` as y→`. ~2.16!
A variety of interactions, other than those of Eq.~2.7!,

couple neighboring wires~see Fig. 1!. The sliding phase is
stable only if the interactions are irrelevant, that is, only
they scale to zero with system size. We will now investig
perturbatively the relevance of these interchain interacti
to determine under what conditions the sliding phase
stable. Due to the spin gap, single-particle hopping betw
chains is irrelevant, and the interchain interactions that co
become relevant are the Josephson~SC! and charge-density
wave ~CDW! couplings, which are represented by operat
of the form
04512
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HSC,n5(
j
E dx@~R↑, j

† L↓, j
† 1R↓, j

† L↑, j
† !~R↑, j 1nL↓, j 1n

1R↓, j 1nL↑, j 1n!#1c.c., ~2.17!

and

HCDW,n5(
j
E dx@~R↑, j

† L↑, j1R↓, j
† L↓, j !~L↑, j 1n

† R↑, j 1n

1L↓, j 1n
† R↑, j 1n!#1c.c. ~2.18!

At low temperatures, the spin variablefs is effectively fro-
zen, and these interactions depend only onu i . Their associ-
ated actions can be expressed as

SSC,n5Jn(
i
E dx dt cos@A2p~u i2u i 1n!#,

SCDW,n5Vn(
i
E dx dt cos@A2p~f i2f i 1n!#.

~2.19!

The relevance of these terms are determined by the sca
dimensions of the corresponding operators, cos@A2p(u i

2u i 1n)# and cos@A2p(f i2f i 1n)#, which are, respectively

DSC,n5E
2p

p dq'

2p
~12cosnq'!k~q'!,

DCDW,n5E
2p

p dq'

2p

~12cosnq'!

k~q'!
. ~2.20!

The exponentDSC,n follows from

^cosA2p~u i2u i 1n!&5exp@2p^~u i2u i 1n!2&#,
~2.21!

and

FIG. 1. A schematic depiction of a two-dimensional array
quantum wires.
0-4
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1

2
^~u i2u i 1n!2&5E d3Q

~2p!3 ^uũ~q,v!u2&@12cos~q'n!#

5E
2p

p dq'

2p H k~q'!~12cosq'n!

3F E dqidv

~2p!2

1

vqi
21v2/vG J , ~2.22!

where ^& denotes averaging with respect toS in Eq. ~2.8!.
The integral in the square brackets diverges logarithmic
with system sizeL (;C ln L).22 Using this, we find

^cosA2p~u j2u j 1n!&;L2DSC,n, ~2.23!

whereDSC,n is given by Eq.~2.20!. From the above equation
it follows that

^SSC,n&;L22DSC,n. ~2.24!

Similar calculations produceDCDW,` . For a stable smectic
metal phase, these terms have to be irrelevant, implying

DCDW,n.2, DSC,n8.2 ~2.25!

for all n andn8.
If any DSC,n,2, the SM phase is unstable to the form

tion of an anisotropic 2D superconductor. If anyDCDW,n
,2, the SM phase will flow to a 2D longitudinal CDW
crystalline phase with 2kF density modulations along th
wires and the phase locked from wire to wire. Notice tha
k(q') is uniformly small, theDSC,n’s are small and the
DCDW,n’s are large, and for largek, theDSC,n’s are large and
theDCDW,n’s small. For a stable sliding phase we need all
DSC,n’s andDCDW,n’s to be greater than two. Our strategy
create a stable sliding phase is to choosek(q') of the form
shown in Fig. 2, withk having a minimum,kmin , at q'

5q0. Whenkmin becomes zero, the system undergoes a tr
sition to a transverse CDW modulation with wave vectorq0,

FIG. 2. k(q) as a function ofq/p, with a minimum,kmin at q
5q0.
04512
ly
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f

e

n-

where the charge-density varies from wire to wire. For sm
but positivekmin , the system is close to the transverse CD
instability. As pointed out in~Ref. 13!, a transverse CDW
would frustrate the crystallization of fermions, sincekF is
now a function of the chain indexj. Strong fluctuations of
this kind prevent the locking in of density fluctuations alo
the wires. Thus, in order to stabilize the sliding Lutting
liquid phase, we need to tunekmin to be very small compared
to averagek(q'), so thatDSC,n and DCDW,n can both be
made large. Note that in addition, we should also consi
interchain operators of the formR↑, j

† R↓, j
† R↑, j 1nR↓, j 1n .

These interactions, however, turn out to be automatically
relevant if the superconducting and CDW interactions
irrelevant, and hence merit no further consideration.

In addition to the lowest-order interactions between pa
of chains described bySSC,n andSCDW,n , there can, in prin-
ciple, be higher-order multichain interactions with actions
the form

SSC,sp
5(

i
E dx dtJsp

cosFA2pS (
p

spu i 1pD G ,
SCDW,sp

5(
i
E dx dtVsp

cosFA2pS (
p

spf i 1pD G ,
~2.26!

where Jsp
are the interchain Josephson couplings,Vsp

the

interchain particle-hole~CDW! interactions, andsp is an
integer-valued function of the chain numberp satisfying
(psp50. The scaling dimensions of cos@A2p((pspu i 1p)#
and cos@A2p((pspf i 1p)# are, respectively,

DSC,sp
5E

2p

p dq'

2p
k~q'!F (

p,p8
spsp8cos$~p2p8!q'%G ,

DCDW,sp
5E

2p

p dq'

2p

1

k~q'! F (p,p8
spsp8cos$~p2p8!q'%G .

~2.27!

These perturbations are irrelevant if

DCDW,sp
.2, DSC,s

p8
.2 ~2.28!

for all sets ofsp andsp8 . The relevance of higher-order term
of this form is a subtle issue, and we will elaborate on this
a future publication. However the strength of these terms
measured, for example, byVsp

, is small and they become
important only at very small temperatures even if they
relevant. In this paper we will restrict ourselves to pairwi
CDW couplings of the form given by Eq.~2.17!; however,
we comment on the higher-order superconducting terms
low.

To explore the regions of stability of the SM phase, w
follow Refs. 13 and 15 and take

k~q'!5K@11l1cos~q'!1l2cos~2q'!#. ~2.29!
0-5
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The parametersl1 andl2 can be tuned to set the valueq0 of
q' , at whichk(q') reaches a minimum and the minimu
value of k(q') and k(q0)5KD. For a specific value ofD
andk,

l152
4~12D!cosq0

@112cos2~q0!#
,

l25
~12D!

~112cos2q0!
, ~2.30!

unlessq050 or p, in which case onlyl11l2 is fixed byD.
We note that, in the above equation~i.e., forq0Þ0,p), while
l2 is always positive forD,1, l1 can be either positive o
negative. Typically positivel ’s correspond to repulsive in
teractions.

In this paper we treatK as the control parameter. Fo
smallK the system becomes superconducting, while for la
K the system goes into a CDW crystalline phase. We w
show that through judicious tuning ofl1 andl2 it is possible
to have an intermediate window ofK where the smectic-
metal phase is stable. For this purpose, we defineasn

5DSC,sn
/K and bn5DCDW,nK, where asn

and bn depend

only on l1 andl2, and

asp
5(

p

1

2
@sp

21sp~sp111sp21!l1/2

1sp~sp121sp22!l2/2#. ~2.31!

The SM phase becomes unstable to interchain Josep
couplings forK less thanKSC5maxsp

(2/asp
) and unstable to

interchain CDW interactions forK greater thanKCDW
5minn(bn/2). Thus the smectic-metal phase is stable ove
window of K andKSC,K,KCDW, provided

b[
KCDW

KSC
5

asp
bm

4
umin. wrt.m& sp

.1. ~2.32!

We note, once more, that in this paper we consider stab
with respect to all superconducting terms, but only pairw
CDW terms of the form given by Eq.~2.17!. If b,1, the
system goes directly from a 2D SC phase to a CDW cry
asK is increased, without passing through the SM phase.
a stable sliding phase, we need to makeD very small. The
value ofDCDW,n for D small is determined by values ofq'

nearq0. We can therefore setk(q')

k~q'!'K@D1C~q'2q0!2#, ~2.33!

where

C[
k9~q0!

2K
52l2sin2q0 . ~2.34!

This gives us

DCDW,n.
K@12cos~nq0!e2nAD/C#

ACD
, ~2.35!
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whereC has been defined in Eq.~2.34!. We setD51025.
We consider the range ofq0 /p lying between 0.25 and 0.75
This range can be broken into three sections:

~1! 0.25,q0 /p,0.41957: In this rangel1,0 and ul1u
.l2. Here the most relevant superconducting term cor
sponds to the multichain operator cos@A2p(u i1u i 112u i 13
2u i 14)#.23 The dimension of this operator sets the minimu
of asp

. Thus, in this range, minasp
5(21l12l2/2) and

KSC51/(21l12l2/2).
~2! 0.41957,q0 /p,0.5804: In this regionul1u,l2. We

find thatasp
is smallest for the setsn5dn,02dn,2 . Thus, in

this rangeKSC52/(12l2/2).
~3! 0.5804,q0 /p,0.75: Herel1.l2, and asp

is the

smallest for the setsn5dn,02dn,1 . ThusKSC52/(12l1/2).
In Fig. 3 we plotb as a function ofq0. The minima of the

curve corresponds toq052p l /m, wherel andm are integers.
Also, note that sincel1 has the same sign as (2cosq0),
there are regions of stable smectic phase for positive as
as negative values ofl1.

Having established a stable smectic phase for the p
system, we now study the relevance of quenched disorde
this phase. Disorder gives rise to a random electron poten
D(x), with associated action

Sdis5(
j
E dx dtD j~x!cos@A2pf j #. ~2.36!

D(x) can be treated as a Gaussian random variable, w
zero mean and local fluctuations such that

D~x!50,

D~x!D~x8!5DDd~x2x8!, ~2.37!

where the over line signifies averages over the randomn
By a generalization of the Harris criterion,24 it can be shown

FIG. 3. Plot of b[KCDW /KSC as a function ofq0 /p. For b
.1, there exists a region ofK over which the non-Fermi-liquid
phase is stable.
0-6
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quite easily that~also, see Giamarchi and Schulz25! disorder
is irrelevant ifDCDW,`.3, where

DCDW,̀ [E
2p

p dq

2p

1

k~q!
.

1

K

1

ACD
. ~2.38!

For the range of parameters we are considering where
SM phase is stable,DCDW,` is large and thus disorder i
strongly irrelevant. This is an important point. For a sing
Luttinger liquid in the repulsive region,k.1 and disorder is
always relevant. However, interwire interactions can dr
disorder irrelevant fork(q'50).1, even in regions of
phase space where all interactions are repulsive.

Thus, there is a small but finite region of phase sp
where the smectic-metal phase appears stable. We sh
note that over a larger region of phase space, the only
evant operators involve nonlocal interactions of the fo
Vncos@A2p(f i2f i 1n)#, whereVn is expected to be expo
nentially small, for largen, in the bare Hamiltonian. Thoug
relevant, these operators would only play a role forkBT
smaller than some energy scale set byVn . So, for example,
there will be a range of temperatures, where we will on
need to consider the relevance ofV1 andJ1. These can be
made irrelevant over a reasonably large region of ph
space~see Ref. 13!. Thus, even though the region of pha
space where the smectic phase is strictly stable is hig
restricted, at finite temperature and for weak coupling,
expect a much larger region of phase space whose beh
is governed by the sliding Luttinger liquid ground state.

C. The gapless 1:1 array

We now consider 1:1 arrays of wires in which both char
and spin excitations are gapless. In this case, there are
Luttinger liquid parameters (kr ,ks) for the charge and spin
modes, respectively, and two velocities (vr ,vs) on each
wire. To maintain gapless Luttinger liquids andSU(2) spin
symmetry, we do not include any marginal spin-spin co
pling terms in the Hamiltonian. Thus the spin degrees
freedom are represented by the fixed-point action

Sf,s5ks(
j
E dx dtFvs~]xfs, j !

21
~]tfs, j !

2

vs
G
~2.39!

with ks51. In a more general treatment, one could inclu
spin-spin coupling terms and consider their relevance, m
taining, however, theSU(2) symmetry of the spin sector
We leave that for a future consideration. The charge mo
are still represented by Eq.~2.9!, with k(q') and v(q')
replaced bykr(q') andvr(q'). The form ofkr is still given
by Eq. ~2.29!.

We again consider the relevance of single-particle, CD
and SC tunneling. The SC and CDW tunneling were alre
considered in the previous subsection. When the spin v
ables are included, Eqs.~2.11! and ~2.12! become
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SSC,n5JnE dx dt(
j

cos@A2p~ur, j2ur, j 1n!#

3cos~A2pfs, j !cos~A2pfs, j 1n!,

SCDW,n5VnE dx dt(
j

cos@A2p~fr, j2fr, j 1n!#

3cos~A2pfs, j !cos~A2pfs, j 1n!. ~2.40!

The fs variables now contribute to the dimensions of the
terms. Becauseks is constrained to be one, the contributio
of the s variables is trivial, and the dimensions of the
terms are given by

DSC,n5DSC,n
(gap)11,

DCDW,n5DCDW,n
(gap) 11, ~2.41!

whereDCDW,n
(gap) andDSC,n

(gap) are given by Eqs.~2.13! and~2.14!
with k replaced bykr .

Since the s variables are no longer gapped, singl
electron tunneling is no longer irrelevant. Single-partic
hopping is described by operators such asRj ,↑Rj 1n,↑

† , which
can be represented by terms of the form

Sel,n5E dx dt(
j

TnexpF2 iAp

2
~fr, j2fr, j 1n!G

3expF2 iAp

2
~ur, j2ur, j 1n!G

3H expF2 iAp

2
~fs, j2fs, j 1n1us, j2us, j 1n!G J .

~2.42!

The expectation value of the term in the curly bracket go
as L21/2 as system sizeL goes to infinity. Thus^Sel&
;L22Del,n, where

Del,n5 1
4 @DCDW,n

(gap) 1DSC,n
(gap)#1 1

2 . ~2.43!

Regions of phase space, whereSSC,n is relevant, correspond
to the superconducting phase, whereas regions of relev
of SCDW,n correspond to the CDW crystal phase. Regio
where both of these are irrelevant, but single-particle h
ping is relevant, correspond to the Fermi-metal phase. F
stable smectic-metal phase, we require that all these op
tors be irrelevant. The superconducting and CDW coupl
terms are irrelevant if

DSC,n
(gap).1, DCDW,n8

(gap)
.1, ~2.44!

for all n andn8 The condition for single-particle hopping t
be irrelevant is that

DSC,n
(gap)1DCDW,n

(gap) .6 ~2.45!

for all n.
We now proceed exactly as for the gapped case, assum

kr to have a form as given by Eq.~2.29!. As before, we may
0-7
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write DCDW,n
(gap) 5an /K, DSC,n

(gap)5bnK, KSC5maxn(1/an), and
KCDW5minn(bn). ProvidedKCDW/KSC.1, there is a win-
dow of K, KSC,K,KCDW, where the system is stable wit
respect to both the CDW and superconducting couplings.
the smectic-metal phase to be stable, the single-particle
ping has to be irrelevant as well, which indicates that

an

K
1bnK.6. ~2.46!

This condition is violated forK lying betweenK2 andK1 ,
whereK25minnK2,n andK15maxnK1,n , with

K6,n5
36A92anbn

bn
. ~2.47!

The single electron hopping is relevant in a large region
phase space, indicating an instability towards a Fermi-liq
FL phase. We writel1 andl2 as functions ofD andq0 @see
Eq. ~2.30!# and setD51025. Higher-order terms involving
us andfs , in general, are less relevant in this case, and
do not need to consider the whole set of operators.26 Depend-
ing onq0, we have the following possibilities for phases asK
is increased:~1! SC →FL→ CDW crystal, ~2! SC →SM
→ CDW crystal, ~3! SC →FL→SM→ CDW crystal, and
~4! SC →SM→FL→SM→ CDW crystal.

The phase diagram is complicated, and we plot a reg
of K, q0 space in Fig. 4, in the absence of disorder. Ba
scattering due to disorder is irrelevant forDCDW,`

(gap) .2, which
is automatically satisfied in the SM phase.

D. The three-dimensional anisotropic sliding phase

We now turn to three-dimensional 2:1 arrays with wir
on a periodic 2D lattice with primitive translation vectorsaW 1

andaW 2. Each wire occupies a positionn1aW 11n2aW 2 on a 2D
lattice and is labeled by the integer valued vectorn

FIG. 4. A plot of the phase diagram inq0 , K space withD
51025. SC stands for superconducting, FL for Fermi-liquid, S
for smectic metal, and CDW for charge-density wave crystal.
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5(n1 ,n2). We will focus on the spin-gapped case, thou
extensions to the gapless case proceed exactly as in the
vious section. Taking into account interwire density-dens
and current-current interactions, we could write down an
tion of the form ~2.7!, but where we now have sums ove
columns in a 2D lattice, withj m,n(x,t)→ j m,n(x,t) and n
5(nx ,ny). When transformed to Fourier space, this acti
becomes

S5
1

2E d4Q

~2p!4 @Vu~qW'!qi
2uuu21Vf~qW'!qi

2ufu2

2 ivqi$u* fx1c.c.%#, ~2.48!

whereQ5(v,qi ,qW') with qW' a vector in the first Brillouin
zone of the 2D lattice of columns. We choose thex axis to lie
along wires, so thatqW'5(qy ,qz). The u or thef variables
may be integrated out, giving us the effective actions

Su5E d4Q

~2p!4

1

2
k~qW'!H 1

v~qW'!
v21v~qW'!qi

2J uf~Q!u2,

Sf5E d4Q

~2p!2

1

2k~qW'!
H 1

v~qW'!
v21v~qW'!qi

2J uu~Q!u2,

~2.49!

where

k~qW'!5AVf~qW'!/Vu~qW'!,

v~qW'!5AVf~qW'!Vu~qW'!. ~2.50!

In three dimensions it turns out that the stability of the sl
ing phase with respect to the complete set of operators
quires an even further fine-tuning of the generalized curre
current coupling terms. In particular,k(qy ,qz) should have a
minimum KD at someqy5q0,y , qz5q0,z , with both D and
the second derivative ofk/K being much smaller than unity
at the minimum. Let us consider two examples of the fo
that k(qy ,qz) could assume in order to obtain a stable sl
ing phase~see Fig. 5!.

The first example is one that is symmetric with respect
qy andqz . We assume that the wires are arranged in a squ
or rectangular pattern, and align they- andz- axes along the
edges of the rectangle. We consider the form

k~qy ,qz!5K@11l1cos~qy!1l1cos~qz!

1l2cos~qy!cos~qz!#
2. ~2.51!

l1 andl2 are adjusted such thatk has a minimumKD2 at
qy5qz5q0. This gives

l152
~12D!

cos~q0!
,

l25
~12D!

cos2~q0!
. ~2.52!

Close to (qy ,qz)5(q0 ,q0), we can expandk as
0-8
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k.K@D1l2~qy2q0!~qz2q0!#2. ~2.53!

As beforeDSC,m5Kam andDCDW,n5Kbn , wherem andn
are now vectors. The sliding phase is stable provided

b[
KCDW

KSC
5

ambn

4
umin. wrt.m& n.1. ~2.54!

For D51022 ~or smaller! there is a large range ofq0, where
the sliding phase is stable.

One could also consider the highly anisotropic form

k~qy ,qz!5K$@11l1cos~qy!1l2cos~2qy!#2

1l3@11cos~qz!#%. ~2.55!

Again, for anyl3, one can adjustl1 and l2 to produce a
stable sliding phase. We conclude by noting that in th
dimensions, obtaining a sliding phase, requires an even
adjustment of parameters than in 2D. At finite temperatu
as before, the region of phase space controlled by
smectic-metal fixed point is expected to expand consid
ably.

III. CROSSED SLIDING LUTTINGER LIQUID PHASE

Having established regions of stability of the sliding me
phases formed from arrays of quantum wires, we now tur
the investigation of sliding phases formed from crossed
rays of wires. We consider two basic configurations: on
two-dimensional system formed from two coupled 2D sl
ing phases~1:1 arrays! oriented at right angles to each oth
and the other a 3D system formed by stacking the cros
two-dimensional system. The latter three-dimensional s
tem can be constructed from two interpenetrating 3D an
tropic sliding phases~2:1 arrays!, of the type discussed in
Sec 2 D, oriented at right angles to each other. Both the
and 3D systems haveC4v symmetry. As a result, their in

FIG. 5. A three-dimensional array of quantum wires.
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plane conductivities at finite temperature are isotropic at lo
wavelengths. In this section we demonstrate the existenc
a sliding phase in the crossed arrays that is stable if
sliding phase in the constituent arrays is stable. The corr
tion functions in this phase exhibit power-law decay alo
the planes, and the electric conductivity diverges as a po
law in temperatureT asT→0.

A. Crossed two-dimensional sliding phase

We consider now a square grid of wires, starting ag
with the spin-gapped case. The system consists of two ar
of quantum wires, theX- andY- arrays running, respectively
parallel to thex andy directions. Each wire sees a period
one-electron potential from the array of wires crossing it. F
simplicity we assume that this periodicity is commensur
with bands in the wire. This leads to a new band struct
with new band gaps. It is assumed that the Fermi surfac
between gaps so that the wires are conductors in the abs
of further interactions. By removing degrees of freedom w
wavelengths smaller than the inverse wire separation, we
tain a new effective theory whose form is identical to t
theory before the periodic potential was introduced. Thus
the absence of two-particle interactions between crossed
rays, the system could be in a phase consisting of
crossed, noninteracting smectic-metal states.

We will now demonstrate the existence of a stable slid
phase in the crossed arrays. In addition to the interwire c
plings within each array, we need to consider Coulomb
teractions between wires on theX array and wires on theY
array. These interarray couplings are marginal and should
included in the fixed point. They do not, however, change
dimensions of the operators, except by renormalizingk(q').
For a stable sliding phase, additional interactions betw
the two arrays, such as the Josephson and CDW coupli
have to be irrelevant. We will show that it is possible to tu
k(q') such that this is indeed the case~see Fig. 6!.

The Coulomb interactions between electrons on inters
ing wires give rise to a term in the Hamiltonian of the for
Vm,n

c (x,y)rx,m(x)ry,n(y), where rx,m(x) @ry,m(y)# is the
electron density on themth wire in theX(Y)-array at posi-
tion x (y). We expectVm,n

c (x,y) to have the formVc(x

FIG. 6. Schematic depiction of a two-dimensional crossed arra
0-9
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2na,y2ma), wherea is the distance between parallel wire
Thus, we represent the interaction between theX andY array
as

E dx dy@]xfx,mVc~x2na,y2mb!]yfy,n#.

If all parameters for theX and Y arrays are the same, th
crossed-grid action as a functional of theu andf variables,
can be written as

S5
1

2E dv dqx dqy

~2p!3 @Vu~qy!qx
2uuxu21Vu~qx!qy

2uuyu2

1Vf~qy!qx
2ufxu21Vf~qx!qy

2ufyu2

1Vc~qx ,qy!qxqy$fxfy* 1c.c.%2 ivqx$ux* fx1c.c.%

2 ivqy$uy* fy1c.c.%# ~3.1!

with obvious definitions forfx5fx(v,qx ,qy),fy ,ux , and
uy . It should be noted that this is an effective theory wit
2p/a,qx ,qy,p/a. Integrating out thef variables, we are
left with an effective action, which is conveniently express
in matrix form as

Su5
1

2E d2k dvua~G21!abub* , ~3.2!

wherea5x,y andb5x,y. Here

G215S 1

kx
S v2

vx
1vxqx

2D 2VR
c v2

2VR
c v2 1

ky
S v2

vy
1vyqy

2D D , ~3.3!

where

kx~q!5A g~q!

Vf~qx!V
u~qy!

,

vx~q!5AVu~qy!g~q!

Vf~qx!
,

VR
c ~q!5

Vc~q!

g~q!
,

g~q!5Vf~qx!V
f~qy!2@Vc~q!#2, ~3.4!

and ky(q)5kx(Pq), vy(q)5vx(Pq) wherePq5P(qx ,qy)
5(qy ,qx). From Eq.~3.3! for G21, we can calculate

G5
1

DS 1

ky
S v2

vy
1vyqy

2D VR
c v2

VR
c v2 1

kx
S v2

vx
1vxqx

2D D , ~3.5!

where
04512
d

D5
1

kxky
S v2

vx
1vxqx

2D S v2

vy
1vyqy

2D2~VR
c !2v4 ~3.6!

is the determinant ofG21.
In order to determine the dimensions of operators,

calculate the leading dependence of correlation functi
such^ux

2(r ,t)& on system sizeL. Thus we can consider th
function

^ux
2~r ,t !&5E dqx dqy dv

~2p!3

S v2

vy
1vyqy

2D
kyD . ~3.7!

The leadingL dependence is related to the infrared dive
gence of the integral just introduced. This infrared dive
gence comes purely from the integration overqx ,v. We can
write the integrand askx /(v2/vx1vxqx

2) plus a remaining
part. The integral of the remaining part is free of infrar
singularities~see Appendix C for details!. Thus, it is easy to
see that the leadingL dependence goes as

^ux
2&;p ln~L !E dqy

2p
k~qy!, ~3.8!

wherek(qy)5kx(0,qy). Notice that this is precisely what w
had for a single array of parallel wires. A similar analys
yields ^uy

2&5^ux
2&. Also note that cross correlations of th

form ux-uy are finite asL goes to infinity.
We also need to consider correlation functions in thef

variables. To do so, we start with the action of Eq.~3.1!, and
integrate out theu variables. The effective action as a fun
tional of thef variables is

Sf5
1

2E dv dqx dqy

2p3
fa~Gf

21!abfb , ~3.9!

with a5x,y andb5x,y. Here

Gf
215S k̄xS v2

v̄x

1 v̄xqx
2D Vcqxqy

Vcqxqy k̄yS v2

v̄y

1 v̄yqy
2D D , ~3.10!

where

k̄~qy!5@Vf~qy!/Vu~qy!#1/2,

v̄~qy!5@Vf~qy!Vu~qy!#1/2. ~3.11!

Note thatk̄ is different fromk defined for theu correlation
functions. FromGf

21 , we calculate

Gf5
1

D̄ S k̄yS v2

v̄y

1 v̄yqy
2D 2Vcqxqy

2Vcqxqy k̄xS v2

v̄x

1 v̄xqx
2D D ,

~3.12!
0-10
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where

D̄5k̄xk̄yS v2

v̄x

1 v̄xqx
2D S v2

v̄y

1 v̄yqy
2D 2~Vc!2qx

2qy
2

~3.13!

is the determinant ofGf
21 . Gf can be used to calculate d

mensions of operators involvingf. For example, the expec
tation value

^fx
2~r ,t !&5E dqx dqy dv

~2p!3

k̄xS v2

v̄y

1 v̄yqy
2D

D̄ , ~3.14!

where again we takep/L,uqxu,uqyu,uvu. In the integral, as
before, the infrared divergence comes purely from the in
gral overqx ,v. Once more, the infrared divergent part go
as

^fx
2&;p ln~L !E dqy

2p

1

k~qy!
, ~3.15!

where k(qy)5kx(0,qy) is the same function appearing
^ux

2&, Eq. ~3.8!.
Thus, correlation functions forux and uy can be calcu-

lated directly from Eq.~3.2!. ux-uy cross correlations are
nonsingular, whereas,ux-ux anduy-uy correlations have sin
gular parts with exactly the same functional forms as th
have in the absence of coupling between layers, but with
k(q) function in expressions for the scaling exponents
placed by

k~q'!5kx~0,q'!5ky~q',0!. ~3.16!

The same holds forf-f correlation functions. Thus correla
tion functions within a given array have the same functio
form as forVc50 but with different definitions ofk. Other
than renormalizingk(q), the couplingVm,n

c between the two
arrays leaves the dimensions of all operatorsunchanged.
This means that it is possible to choose interchain inte
tions within theX and Y grids so that these grids form 2D
anisotropic sliding phases even in the presence of the in
grid couplingVm,n

c . Equations~3.2! and ~3.16! define a 2D
non-Fermi-liquid with scaling properties to be discussed
the next section.

First, however, we must verify that it is possible to choo
potentials so that this 2D non-Fermi liquid is stable w
respect to perturbations. All pairwise couplings within
given array, i.e.,SSC,n

X , SCDW,n
X , SSC,n

Y andSCDW,n
Y defined as

obvious generalizations of Eqs.~2.19!, can be rendered irrel
evant by choosingk(q'), as in the case of an individua
array. We must also consider Josephson and CDW coupl
between the two arrays, which operate at the points of cr
ing (x,y)5(na,ma) of wire m in the X array and wiren of
the Y array, respectively. These take the form
04512
-

y
e
-

l

c-

r-

n

e

gs
s-

SSC
XY5(

m,n
E dt J XYcos$A2p@ux,m~na!2uy,n~ma!#%,

SCDW
XY 5(

m,n
E dt V XYcos$A2p@fx,m~na!2fy,n~ma!#

12kF~ma2na!%. ~3.17!

The dimensions of the cosine operators in the integrands
respectively,

DSC,̀ [E
2p

p dq

2p
k~q!5K,

DCDW,̀ [E
2p

p dq

2p

1

k~q!
.

1

K

1

ACD
, ~3.18!

where we assume thatk(q) has the form given by Eq.~3.17!,
D is defined as before, andC[k9(k0)/2K. If k is chosen
such that Eq.~3.16! is satisfied for each array, thenSSC

XY and
SCDW

XY are automatically irrelevant. Thus, we do not need a
further fine tuning ofk to get a stable CSLL phase.

Having established a region of stability of the CSL
phase, we now investigate the nature of the correlation fu
tions. Consider once more the correlation function

Gf
X~x,y5ma![^exp@ ifx,m~x,t!2 ifx,0~0,t!12kFx#&

1c.c., ~3.19!

which corresponds to the component of the density-den
correlation function modulated at 2kF . In the absence of
terms such asSCDW

XY , this correlation function vanishes fo
yÞ0. Thus, though irrelevant, the presence ofSCDW

XY changes
the nature of the correlation functions. In its presence,
lowest order inV XY, we obtain

Gf
X~x,y!'

~V XY!2

4
ei2kF(x1y)

3E dx1@^exp$ iA2p@fx~x,y5ma!

2fx~x1 ,y5ma!#%&0^exp$ iA2p@fy~x1 ,y!

2fy~x1,0!#%&0^exp$ iA2p@fx~x1,0!

2fx~0,0!#%&0#1c.c., ~3.20!

where^&0 is the expectation value with respect to the CS
fixed point. We need the asymptotic form of the correlati
function for largex, y. Following Eq.~2.12!, we obtain, for
example,

^exp$ iA2p@fx~x,0!2fx~0,0!#%&0'
A

xDCDW,`
. ~3.21!

Similarly
0-11
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^exp$ iA2p@fy~x,y!2fx~x,0!#%&0;
1

yDCDW,`
.

~3.22!

Note that in the sliding phase,DCDW,n is greater than unity
and thus in Eq.~3.20!, the largest contribution to the integra
comes fromx1 close to 0 and tox. It thus follows that for
largex andy, Gf goes as

Gf
X'

C cos@2kF~x1y!#

~xy!DCDW,`
, ~3.23!

whereC is a constant that is proportional to (V XY)2. Thus
the correlation functionGf decays as a power law in a
directions. Notice thatGf is not isotropic but exhibits a
squareC4v symmetry.

The stability of the CSLL phase for the gapless case
lows along the same lines. If there are no marginal interar
spin-dependent coupling terms, thenks51, and we define a
renormalizedkr(q'). The stability of the CSLL phase i
identical to the stability of the smectic phase on a sin
array, with a fixed-point action described by the renorm
ized functionkr(q'). Also, proceeding as in Eqs.~3.20! to
~3.23!, we now expect the single-electron correlation fun
tions to exhibit power-law decay in all directions.

B. Crossed 2:1 array

The above analysis can also be extended quite easily
three-dimensional stack of alternate 2DX andY arrays. We
could also think of such a stack as a three-dimension arra
wires running along theX axis, intermeshed with a 3D arra
of wires running in theY direction. Thus the fixed poin
action would be of the formSX1SY1SXY whereSX andSY
are the actions for the 3D arrays formed by wires runn
along theX axis andY axis, respectively, whereSXY repre-
sents the interarray Coulomb interactions. Thus the fix
point action is

S5
1

2E dv dqx dqy dqz

~2p!4 @Vu~qy ,qz!qx
2uuxu2

1Vu~qx ,qz!qy
2uuyu21Vf~qy ,qz!qx

2ufxu2

1Vf~qx ,qz!ky
2ufyu21$VXY~qx ,qy ,qz!qxqyfxfy*

1c.c.%2 ivqx$ux* fx1c.c.%2 ivqy$uy* fy1c.c.%#,

~3.24!

wherefx,y andux,y are functions ofv, qx , qy , andqz , and
VXY(qx ,qy ,qz) represents the interactions between theX and
Y arrays. For interactions only between nearest-neighbor
ers, we obtainVXY(qx ,qy ,qz)5Vc(qx ,qy)(11eiqz). Inte-
grating out thef variables, we are left with an effectiv
action
04512
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Su5
1

2E dv dqx dqy

~2p!3 F 1

kx~q! S vx~q!qx
21

v2

vx~q! D uuxu2

1
1

ky~q! S vy~q!qy
21

v2

vy~q! D uuyu2

2$VR
XY~q!v2uxuy* 1c.c.%G , ~3.25!

where

kx~q!5A g~q!

Vu~qy ,qz!V
f~qx ,qz!

,

vx~q!5AVu~qy ,qz!g~q!

Vf~qx ,qz!
,

VR
XY~q!5

VXY~q!

g~q!
,

g~q!5Vf~qx!V
f~qy!2uVXYu2 ~3.26!

and ky(q)5kx(Pq), vy(q)5vx(Pq), where Pq
5P(qx ,qy ,qz)5(qy ,qx ,qz). Proceeding exactly as in th
previous case, we find that

^ux
2&;p ln~L !E dqy dqz

~2p!2
kx~0,qy ,qz! ~3.27!

and

^fx
2&;p ln~L !E dqy dqz

~2p!2

1

kx~0,qy ,qz!
. ~3.28!

The stability of the three-dimensional crossed stack is p
cisely the same as the stability of a three-dimensional st
of parallel quantum wires with the Luttinger liquid paramet
k(qy ,qz) set equal tokx(0,qy ,qz) of the crossed stack. As
before, there are no additional singularities due to the c
pling between the crossed arrays.

IV. TRANSPORT PROPERTIES

We now investigate the transport properties of the slid
Luttinger liquid phases. The conductivities of an array
parallel wires has been considered by Emeryet al.12 In a
pure system, the conductivity along a wire is infinite. In t
presence of impurities, the resistivity along the wires va
ishes as:25

r i;Ta i, ~4.1!

with

a i5DCDW,`22. ~4.2!

The conductivity perpendicular to the wires for an array
parallel wire can be calculated12,27 using the Kubo formula,
giving us

s';Ta' ~4.3!
0-12
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with ~Ref. 28! a'52DSC23, whereDSC is the minimum of
DSC,1 andDSC,2. ~For details see Appendix D.! The conduc-
tancesc , arising from the Josephson coupling at the cont
between the crossed wires, can be calculated similarly u
the Kubo formula, and satisfies

sc;Tac, ~4.4!

where ac52DSC,̀ 23. In this section we focus on th
gapped case. In the gapless case,r i , s' , andsc still exhibit
power-law behavior even though the major contribution
perpendicular conductivities may come from single-parti
hopping.

Thus we can model our 2D non-Fermi liquid as the res
tor network depicted in Fig. 7 with nodes at the vertic
Josephson junctions between the arrays at (x,y)5(na,ma).
The nodes of theX(Y) array are connected by neares
neighbor resistors with conductancess i5r i

21 , if they are
parallel to thex(y) axis ands' , if they are perpendicular to
the x axis (y axis!. Nearest-neighbor nodes of theX and Y
arrays are connected by resistors of conductancesc . In the
continuum limit, the 2D current densities in the plane of t
a grids (a5X,Y) is Ji

a5s i j
a Ej

a , where

sX5S s i 0

0 s'
D , ~4.5!

sY5S s' 0

0 s i
D , ~4.6!

andEa is the in-plane electric field in planea. The current
per unit area passing between the planes isJn5(sc /a2)
3(VX2VY), whereV is the local voltage. In this limit, the
local voltages satisfy

2s i j
X] i] jV

X1
sc

a2
~VX2VY!5T X,

2s i j
Y] i] jV

Y2
sc

a2
~VX2VY!5T Y, ~4.7!

FIG. 7. A schematic depiction of the 2D non-Fermi liquid as
resistor network, with two parallel arrays of wire running along t
x andy axes, with nodes in thez direction.
04512
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where T X and T Y are current densities~current/area! in-
jected, respectively, into theX andY grids. If no currents are
injected, then this equation is solved byVX5VY52E•x to
produce a total in-planar current density

Ji[Ji
X1Ji

Y5~s i j
X1s i j

Y !Ej5~s i1s'!Ei . ~4.8!

Thus under a uniform electric field, the double layer beha
like an isotropic 2D material with in-plane conductivitys
5s i1s'.s i , or equivalently with an isotropic resistivity
that vanishes asr i;Ta i.

We could also consider currents that are spatially nonu
form, as they are, for example, when current is inserted
one point and extracted from another. In that case, there
crossover from isotropic to anisotropic behavior at leng
scale

l 5aAs i

sc
;T2(a i1ac)/2 ~4.9!

that diverges asT→0. To illustrate this crossover, we calcu
late explicitly the case where a currentI is inserted at a point
r1 on theX array and extracted at another pointr2 on theX
array. Then

T X5I @d~r2r1!2d~r2r2!#,

T Y50. ~4.10!

Using Eqs.~4.7! and~4.10!, one can solve for the resistanc
between these two points:

R5
VX~r1!2VX~r2!

I
52E d2q

~2p!2

12eiq(̇r22r2)

g~q!
,

~4.11!

where

g~q!5

sc

a2
@~s i1s'!qx

21~s i1s'!qy
2#

sc

a2
2s'qx

22s iqy
2

2
~s'qx

21s iqy
2!~s iqx

21s'qy
2!

sc

a2
2s'qx

22s iqy
2

. ~4.12!

For

sc /a2@s iq
2, ~4.13!

g(q) takes the simple form (s i1s')q2. If ur12r2u@ l , with
l defined in Eq.~4.9!, then the integral overq in Eq. ~4.11! is
dominated by smallq satisfying Eq.~4.13!. Thus for ur1
2r2u@ l , the system has approximately the same resista
as anisotropic conductor with conductivitys i . If we in-
serted current at a point on theX array and extracted it from
the Y array, we would have the form Eq.~4.11! for the re-
sistance with a different functionq8(q) whose smallq limit
is still given by (s i1s')q2. Thus forur12r2u@ l , the resis-
0-13
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tance is approximately independent of whether the curren
inserted into~or extracted from! the X or theY array. More
generally, in a region whereT50, by inspection of Eq.~4.7!
it can be seen that inhomogeneities in the voltage~or differ-
ence betweenVX andVY) would heal over the lengthscalel
as defined in Eq.~4.9!, and at longer lengthscales the syste
would behave isotropically. This length diverges asT→0
and atT50, current can only be carried along the wires; t
resistance between wires in a grid or between grids is i
nite.

We could, in addition, investigate the frequenc
dependent zero-temperature conductivity. By argume
similar to those used with Eqs.~4.1! to ~4.4!, we obtain

r i~v!;va i,

s'~v!;va',

sc~v!;vac. ~4.14!

a i , a' , andac are the same as before, though the coe
cients are now different~and complex, in general!. At finite
v, the long-wavelength resistivity is isotropic as before, a
vanishes asr i(v);va i.

We could also consider extensions of these calculation
three-dimensional stacks of crossed arrays. As we saw in
previous section, it is possible to get a stable sliding phas
such a system. The conductivity now has a three-dimensi
character, with conductivity along the planes given bys i /d,
d being the separation between adjacentX arrays, but with
conductivity in the third direction given bysc /a. Thus the
conductivity along the planes is much larger than the perp
dicular conductivity.

V. CONCLUSION

In conclusion, we have demonstrated the existence
non-Fermi metallic phases in two and three dimensions,
are stable with respect to a wide class of perturbations.
consider both spin-gapped systems and gapless system
exhibit spin-charge separation. Our central results pertai
the stability and properties of the CSLL phase. This is
remarkable phase, which could be identified as a tw
dimensional Luttinger liquid. The correlation functions
this phase exhibit power-law decay along the planes, and
finite-temperature long-wavelength electric conductivi
which is isotropic along the planes, diverges as a power
in temperatureT as T→0. The importance of this paper i
that it provides a perturbative access to non-Fermi-liq
fixed points in two- and three-dimensional systems, som
thing that has proven to be quite difficult in the past.7 This
paper could be of significant relevance for highe
dimensional strongly correlated electron systems in gene
and to the normal conducting phases of the cuprates in
ticular.
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APPENDIX A

In this appendix we sketch out the steps leading to
asymptotic form for the correlation functionGf(x,t50) for
largex @see Eqs.~2.12! and ~2.13!#.

Gf~x,0!5^exp$ iA2p@f j~x,0!2f~0,0!#1 i2kFx%&1c.c.

5exp$22p^@f j~x!2f j~0!#2%&cos~2kFx!. ~A1!

It can be easily checked that

^@f j~x!2f j~0!#2&

52E dqi dq' dv

~2p!3

12cos~xqi!

k~q'!Fv~q'!qi
21

v2

v~q'!G
. ~A2!

Next we carry out the integration overqi and v obtaining,
for largex,

E dqi dv
12cos~xqi!

k~q'!Fv~q'!qi
21

v2

v~q'!G
.

p log~x!

k~q'!
1F~q'!,

~A3!

whereF(q') is some function ofq' , which depends onk,
v(q'), and the momentum cutoff. From Eqs.~A1! and~A3!
it follows that

^@f j~x!2f j~0!#2&.F E dq'

2p

1

k~q'!G log~x!1const.

~A4!

Using this, we obtain

Gf~x,0!'
A1cos~2kFx!

xDCDW,`
, ~A5!

where

DCDW,`5E
2p

p dq'

2p

1

k~q'!
. ~A6!

Equations~2.14! and ~2.15! follow along similar lines.

APPENDIX B

Here we outline how the integral

I n5E
2p

p dq

2p

~12cosnq!

f ~q!
, ~B1!

needed to calculateDCDW,n , can be solved exactly. Here

f ~q!511l1cos~q!1l2cos~2q!, ~B2!

using expression~2.30! for l1 andl2. We can rewrite

f ~q!52l2~cosq1u1!~cosq1u2!, ~B3!
0-14
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where

u65
1

2 F l1

2l2
6 iDG , ~B4!

and

D252
l1

2

4l2
2 1

2

l2
225

2D

l2
. ~B5!

It is easy to check that

I n52
1

A2Dl2

Im Jn
1 ~B6!

with

Jn
15E

0

2p dq

2p

12cos~nq!

u11cosq
5

1

p i
@J1,n1J2,n#,

J1,n5 R dz

112u1z1z2,

J2,n52
1

2 R dz

zn

@11z2n#

112u1z1z2 , ~B7!

wherez5eiq, and thez integral is over the unit circle cen
tered about the origin. The integrands have poles az
5(0,z0

1 ,z0
2):

z0
652u16 iA12~u1!2. ~B8!

Using Eq.~B8!, it is easy to check thatz0
13z0

251. Thus,
eitherz0

1 or z0
2 lies inside the contour of integration~the unit

circle!. Using the method of residues, it is now straightfo
ward to calculate the integrals. We simply need to sum o
the residues of the poles enclosed within the contour of
tegration. In order to express our results, we distinguish
cases:

~1! uz0
1u,1. Then

Jn
15

2

~z0
12z0

2!
F12

~11~z0
1!2n!

2~z0
1!n G2 (

m50

n21
1

~z0
1!m11~z0

2!n2m

5
2

~z0
12z0

2!
@12~z0

2!p#. ~B9!

~2! uz0
2u,1. In this case

Jn
15

2

~z0
22z0

1!
F12

~11~z0
2!2n!

2~z0
2!n G2 (

m50

n21
1

~z0
1!m11~z0

2!n2m

5
2

~z0
22z0

1!
@12~z0

1!p#. ~B10!
04512
r
-
o

APPENDIX C

Here we consider the infrared divergence of the integr

I 5E dqx dqy dv

~2p!3

~v2/vy1vyqy
2!

kyD , ~C1!

where

D5
1

kxky
S v2

vx
1vxqx

2D ~v2/vy 1vyqy
2!2~VR

c !2v4.

~C2!

At first sight, it may be appear that the integral is divergen
free, since by power counting, there are two powers ofQ
@where Q5(v,qx ,qy)] in the numerator multiplyingd3Q,
and four powers ofQ in the denominator. This seems t
indicate that the integral is finite asL→`. Notice, however,
that if VR

c is set equal to zero inD, the integral can be written
as

I 5E dqx dqy dv

2p3

kx~qx ,qy!

v2/vx1vxqx
2 , ~C3!

which is clearly infrared divergent. This divergence com
purely from the integration overqx ,v. It turns out that even
in the presence onVR

c , the divergence comes purely from th
integration overqx ,v. To obtain the infrared divergent pa
we write

~v2/vx1vxqx
2!

kxD 5
kx~0,qy!

v2/vx1vxqx
2 1R, ~C4!

whereR is the remaining piece, and our task is to show th
its integral has no infrared divergence. Let us writeR5R1
1R2, where

R15
2kx~qx ,qy!2kx~0,qy!

v2/vy1vyqy
2 ,

R25
~v2/vy1vyqy

2!

ky
F 1

D 2
kxky

~v2/vx1vxqx
2!~v2/vy1vyqy

2!G .
~C5!

The integral ofR1 has no infrared divergence. To check th
this is true forR2 as well, we note that in the expression f
R2 the term in the square brackets can be written as

kxkyVR
c v4

D~v2/vx1vxqx
2!~v2/vy1vyqy

2!
. ~C6!

Now, by noticing the powers ofv,qy , it is easy to see tha
the integration ofR2 has no divergence. Thus the infrare
divergent part ofI can be written as

E dqx dqy dv

~2p!3

kx~0,qy!

v2/vx1vxqx
2 . ~C7!

Equation~3.8! now follows easily.
0-15
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APPENDIX D

We demonstrate explicitly the leading dependence of
perpendicular conductivity on temperature. According to
Kubo formula, the transverse conductivity is given by

s'~v!5
i

v FP'~v!1
n0e2

m G , ~D1!

where the first term represents the paramagnetic contribu
with

P'~v!52 i(
j
E dxE

2`

`

dtQ~ t !eivt

3^@J'~x, j ,t !,J'~0,0,0!#& ~D2!

being the retarded current-current correlator, and the sec
term represents the diamagnetic contribution. The step fu
tion Q(t) may be written as@11sign(t)#/2, where sign(t) is
11 for positivet, and21 for negativet. In the spin-gapped
case, the contribution to the paramagnetic part comes f
superconducting pair hopping. The paramagnetic and
magnetic terms can be combined to give

s'~v!5
i

v
F E dxE dteivt@11sign~ t !#@P.~x,t !

2P,~x,t !#2~v50!G , ~D3!

where

P.52 i(
j

^J~x, j ,t !J~0,0,0!&,

P,52 i(
j

^J~0,0,0!J~x, j ,t !&. ~D4!

SinceP.2P, is odd int, the real part of the conductivity is
given by

s'8 ~v!5
i

v
F E dxE dteivt@P.~x,t !2P,~x,t !#G .

~D5!

Note that the dc transverse conductivity is purely real, a
can be obtained froms'8 (v) by taking the limitv→0. P.

is related by analytic continuation to the Matsubara c
relatorPM(x,t) in the upper-half-plane of complext space,
andP, is related toPM(x,t) in the lower-half-plane. Thus
we could view the integral in Eq.~D5! as an integral over the
Keldyish contour shown in Fig. 8~a!. This contour can be
distorted to the contour shown in Fig. 8~b!. Note thatP.(t
1 ib/2)5P,(t2 ib/2), whereb51/kBT. Thus, we obtain

s'8 ~v!5
1

vE dxE
2`

`

dtFeivtsinhS vb

2 DP.S x,t1
ib

2 D G .
~D6!
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The next step is to calculate the Matsubara correla
PM(x,t). To begin with, we only consider nearest-neighb
hoppings between wires. To lowest order inJ andT:

PM~x,t!5(
j

^J'~x, j ,t!J'~0,0,0!&, ~D7!

where

J~x, j ,t!5aJ1$sin@u j~x,t!2u j 21~x,t!#

1sin@u j 11~x,t!2u j~x,t!#%. ~D8!

Here a is the distance between adjacent wires, and the
pectation value is taken with respect to the sliding fixe
point Lagrangian. The correlator can be written as

PM~x,t!5J 2a2^ei $[u1(x,t)2u1(0,0)]1[u0(x,t)2u0(0,0)]%&

5J 2a2exp@2 f ~x,t!#, ~D9!

where

f ~x,t!5^@u1~x,t!2u1~0,0!#22@u1~x,t!2u1~0,0!#

3@u0~x,t!2u0~0,0!#&

5
1

b (
v

E dq' dqx$^u~qx ,q' ,v!u* ~qx ,q' ,v!&

3@12cos~qxx1vt!#3~12cosq'!%. ~D10!

Let us first consider a simpler case, where the velocityvs
has no dependence withq' . Then

FIG. 8. ~a! The Keldyish contour in complext-plane, with real
time along theX axis. In~b! we depict how the contour is deforme
in order to evaluate the integral.
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PM~x,t!

5a2J 1
2 ~pTax /v !2h

$sinh@pT~x/v1 i t!#sinh@pT~x/v2 i t!#%h ,

~D11!

whereh5dSC,1, andax is the spatial cutoff alongx. Thus we
may write

s'8 5ay
2J 1

2 sinh~vb/2!

v
~pTax /v !2h~pT!22vE dx̃ d t̃

3
ei t̃ (v/pT)

@cosh~ x̃1 t̃ !cosh~ x̃2 t̃ !#h
, ~D12!

where x̃5pxT/v and t̃ 5ptT ~Fig. 8!. By introducing new
variablesx̃1 t̃ and x̃2 t̃ , we carry out the above integral
giving

s'8 5J 1
2ay

2~vax!
2h

sinh~v/2T!

8v/T
pv~pT!2h23

3
G2~h/21 iv/4pT!G2~h/22 iv/4pT!

G2~h!
,

~D13!

where h5DSC,1. The v→0 limit of the above expression
yields
r-

an
,

ev

ev

ys
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s'8 ~v50!;T(2DSC,123). ~D14!

When the velocityv is a function ofq' , the integral can
no longer be solved exactly. However, the leadingT depen-
dence of the conductivity remains unchanged. To check t
we follow the previous set of steps and arrive at the expr
sion

s'8 5ay
2J 1

2 sinh~v/2T!

v
~pTax!

2h~pT!22

3E dx̃ d t̃Fei t̃ (v/pT)

3)
q'

1

@v~q'!cosh~ x̃/v1 t̃ !cosh~ x̃/v2 t̃ !#Dq'
G ,

~D15!

wherex̃5pxT, t̃ 5ptT, and(q'
Dq'

5h5DSC,1. The result
can be expressed in the scaling form

s'8 ~v,T!5ThF~v/T!. ~D16!

In the limit v→0, the integral is finite andT independent,
implying F(0) is finite. Thus s'(v50);Th, where h
5DSC,1 for nearest-neighbor hopping. In exactly the sam
manner, we can calculate the contribution tos'8 from next-
nearest neighbor pair hopping. It has the same scaling f
as before withDSC,1 replaced byDSC,2.
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