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A theory for the hybridization of tube and encapsulant derived electronic states is developed for fullerene
peapods: carbon nanotubes encapsulating molecylar The interaction between tube and encapsulant is
constrained by symmetry and it is studied using a long-wavelength theory of the tube states and a nearly free
particle theory of the ball orbitals. Calculations of the local densities of states, resolved in energy and position,
are obtained for the gapped bands of a nanotube interacting with a single encapsulated fullerene, with an
encapsulated dimer, and with a periodic fullerene peapod lattice. The calculations identify features in the bound
state and scattering spectra of the tube produced by hybridization with the encapsulant. For the peapod lattice
we identify (@) a narrow defect induced electronic barfd) a hybridization gap resulting from the strong
mixing of tube and ball degrees of freedom, &yl Bragg gaps produced by electron motion in a periodic
defect potential. The theory provides a good description of the prominent features of the measured electronic
spectra of fullerene peapods obtained by low-temperature scanning tunneling microscopy.
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[. INTRODUCTION and buckyball orbitals are strongly mixed.
In this paper, we present a theoretical analysis of the data

A carbon nanotube is a sheet of graphite wrapped in theeported earlier in Hornbakest al. Our analysis requires a
shape of a seamless cylindér.Nanotubes can be grown model for the electronic states on the nanotube sidewalls, a
with diameters as small as a nanometer, with lengths up teodel for the molecular orbitals on the buckyball, and a
tens of microns, and in multiwall or single walBWNT) theory for their interaction. The physics of the former two
forms. SWNT’s of pure carbon occur in either conducting orsystems has been well developed over the last few years.
semiconducting species, where the variation in their elecThis paper applies a long-wavelength theory to describe the
tronic behavior is determined geometrically by the directionrelevant tube degrees of freedGrand the analogous nearly
along which the graphene sheet is wrapped to form théree-electron theory for the molecular orbitals of the isolated
cylinder?=® There has been considerable progress in the debuckyball® Brief reviews of the salient features of these two
velopment of new nanometer scale electronic devices basddodels are given in Secs. Il and IlI, respectively. Our model
on these structurés. for the hybridization of the tube and ball degrees of freedom

At the same time there is interest in combining carbonexploits the symmetries of these low-energy models for the
nanotubes with other molecular species that can modify theifube and ball electronic states and is presented in Sec. IV.
electronic andor) structural properties. In a seminal paper, The remainder of the paper is devoted for developing a scat-
Smith, Monthioux, and Luzzi showed that moleculag,C tering formalism to describe the effect of the encapsulant on
(buckyball$ could be incorporated into SWNT’s that had the nanotube electronic degrees of freedom. We develop the
been purified in an acid solution, a process that leaves petheory of the electronic spectrum of the saturated peapod
forations in the tube sidewalfs Subsequent annealing of lattice by first studying the scattering properties of encapsu-
these structures repairs the external surfaces, encapsulatit@ged isolated buckyballs and buckyball dimers in Sec. V. The
buckyballs within the tube to form a hybrid all carbon spe-€lectronic structure of the ordered peapod lattice is then stud-
cies nicknamed “peapods.” In a recent paper we reported théed in Sec. VI by constructing and solving a variant of the
first imagingand electronic spectroscopy of nanotube pea-Kronig Penney model for this structure. Section VIl provides
pods using low-temperature scanning tunneling microséopy,@ comparison of theory and experiment, and in Sec. VIl we
showing that electronic states on the carbon nanotube surfagéscuss some remaining discrepancies between theory and
are modified by their hybridization with the electronic orbit- €xperiment and directions for future work.
als on the encapsulatedC In these experiments the mixing
was observed to be most effective with the lowest unoccu-
pied molecular orbitals of the buckyball. Electronic spectros- Il. ELECTRONIC STATES OF SWNT'S
copy using the differential tunneling conductance clearly
identifies new features in the electronic spectrum of the hy-
bridized system that are not found in the individual sub- The low-energy electronic structure of a single wall car-
systems. Strikingly, the differential conductance shows &on nanotube can be studied using a tight binding model in
suppression of the tunneling conductance in a narrow rangehich 7 electrons hop between the nearest-neighbor sites of
of energy(a hybridization gapin which the nanotube states a two-dimensional honeycomb lattice that is wrapped along a

A. Long wavelength theory of the graphene sheet
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specified crystallographic directién. The microscopic J3ta 0 axt+iay L
Hamiltonian for the graphene sheet is Hy= . =fhve(c*-q), (5
2 ax—iqy 0
H:; teh(To+ 7)Ca(To) +H.C. (1) wherea, are the 2<2 Pauli matrices, an@{(y, = —fivg(o

-q). Note that these projected Hamiltonians nearKhand
wherec,,)(R) annihilates an electron on tiegb)th sublat- K’ points form an enantiomeric pair of operators that sepa-
tice at positionR, and the sum is over all the two- 'ately break parity, but with opposite handedness.
dimensional translation vectorfn and over the triad of

nearest-neighbor bond vectors that connect thex and b B. Nanotube effective Hamiltonian

sublattices. The reduced Hamiltonian&y -y are applied to the car-
The Hamiltonian in Eq(1) is diagonalized by the Fourier bon nanotube by the substitutigm— —iaV, where the gra-
transform dient operator acts on the spatial coordinates in the envelope
L functionsu and v. Thus near theK point we obtain the
(Ca,ﬁ) 1 % . (e‘k‘daca(Tnera)) . long-wavelength Hamiltonian
= — n I
Chk/ YN i-1 © el docy,(T+dy) | - R
. . u(r) uk(r)
whered,y, locate thea(b) sublattice sites in the unit cell. —'ﬁUF(Uxﬁx_(’yay)( vK(F)) = E( vK(F)) . ©®

The spectrum i€ . (K) = = t| y(k)|= £t &% "«|. With one
7 electron per site the negative energy states are occupied

and the Fermi energy lies &=0. Sincey is a complex 2. .

, i X i S ) troduces a subtle quantization condition for the transverse
function of its two-dimensional argumet{ it can vanish  crystal momenta in the envelope functians andv . Note
only ondiscrete pointsn reciprocal space. These points COr- 4; thephysicalelectron field¥ is single valued function of
respond to the corners of the two-dimensional Brillouin zong,ssjtion on the tube, and it is therefore a periodic function of

(labeledK andK"). We adopt a “conventional” setting of . . . T G 5.
the graphene lattice that places these critical points along thtge circumferential coordinatek/(r +C) =W (r), whereC is

x axis so thatk =(4/3a)(1,0) andK'=—(47/3a)(1,0), the wrapping vectolC is a translation vector of the graphene
wherea is the graphene lattice constant. In this conventionafh€et, and itis conventionally indexed by two inteddrand

setting the triad of nearest-neighbor bonﬂs are @/ \/5) N Yvhlcrl def|n(ithe combination of pr|m|t|ve'graphene trans-
X[(0,1), (Y312~ 1/12),(— V3/2,— 1/2)]. lationsa, anda, that produce a closed orbit on the surface

The low-energy long-wavelength electronic properties ofof the nanotubeC=Ma;+Na,. The Bloch phase factor
the nanotube are studied by expanding the Hamiltoian exp(K -r) is not a periodic function on the circumference of
around the singular points at the Brillouin zone corners. Neathe tube, since it accumulates a phase [2xpmod(M
the K point k=K +q, and for smallq the electronic wave —N,3)/3] on a single closed orbit. Therefore, periodic
functionsW(r) can be represented by introducing envelopeboundary conditions foW generally require quantization of

functionsuK(F ) andv K(F) that produce a slow spatial modu- ]E?:Cg(r){]s;ﬂ/;r:gger}tg mﬂt]r;eﬁee T&/;Iogi;unct;ngsig? Us'fntc:e
lation of theK point wave functions A K UK 9

valued functions of position on the surface of the tube but

Wrapping the tube along its circumferential direction in-

U () instead satisfy the phase-shifted boundary conditions
. N > K
W(r)=[ta(r) lﬂb,KU)]'( (F)) . .
- (UK(C+€)>=(z*ww“M—M@(uK(?). (7)
UK(I’+C) vK(I’)

UK(V)), 3

vk(r) (The envelope wave functions near tKé point have the

whereU, are cell periodic functions localized around the cOnjugate phase shifig*™"N2),) Thusuy and are pe-
a(b) sublattices riodic functions of the tube circumference only for the one-
third of the pOSjlbIe\/v_vrapped lattices whéres a translation
- KoF_F _G - = = vectors of the\3X+/3 superlattice of the graphene sheet.
Ua(b)(r)z(ll‘/ﬁ)n;,\, e TGO (1 =Ty~ daq) These are special unfrust?ated structures f%r \lxavhich the zone
(4)  corner Bloch functions match smoothly around the tube cir-
R cumference. The other wrapped structures require a phase
andf(r) is a localized basis function. shift in the envelope functions to continuously match the
Introducing the complex notationq=qy+iqy, 71 physical field¥ around the circumference. It is convenient
=(ia/\3), ,=e 2"Rr,=7* r; andr3=€?*""®7,=z7,, the  to impose this boundary condition arx andvy by amend-
Hamiltonian in Eq(1) is expanded to linear order tpyield-  ing Eq. (6) to include an effective vector potential directed
ing around the tube circumference, and with strength

=K TTU(r) uaﬂ}(
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Gq C. Angular momenta in the azimuthal subbands

The eigenstates of the effective mass theory are indexed
by their crystal momentum in the tangent plane of the tube
or, equivalently, by the components of crystal momentum
tube axis and angular momentum. These quantum numbers play a cen-
o tral role in determining the interaction of the tube orbitals
with an encapsulated species. Note however that the angular
momentum quantum number is generailyt identical to the
azimuthal subband index introduced in the preceding section.
. The electron fieldP can be expanded in the Bloch basis

functions ¢, «(r) and ¢, «(r). The periodic parts of these
AKL functions can be expressed in the Fourier serigg
I =3 e CndafF(|K+G,|)]e/®n ", whereF(q) is the Fou-
FIG. 1. Thex axis of the graphene sheet in its conventional rier transform of the localized orbitéi(r) in Eq. (4). It is

setting can be tipped by an anglewith respect to the axis of the isotropic sincef(F) represents ar orbital with orientation
nanotube. Note that th¢ point is missaligned with the tube axis in perpendicular to the tangent plane of the graphene sheet.

this setting, and has the projectioiis along the tube axis and,  Retaining in the sum only the terms witK + G| =|K| (the
along the circumferential direction. “lowest star” approximation we find that the physical elec-
tron field on the surface of the tube is

... X axis"

K

-

=(27/C)[m— 3mod(M —N,3)], wherem s an integer index

for each of the quantized azimuthal subbands on the nano- o o u

tube. ‘P(F)ZF(K)E el (K+Gn)-r(q, eiGn-ra)_( q>ei(qz+amR¢),
Although the projected Hamiltoniari ., are isotro- n v

pic, the orientation of the graphene lattice in the tangent 1D

plane of the tube appear in the theory throughphasesof -, ) .
their off-diagonal terms. We define the chiral anglas an wherer is a vector in the tangent plane of the tube of radius

angle between the zone boundary wave vettoand the R zis its axial component ancb s the azimuthal angular
coordinate around the tube circumference.

Io_ngitudinal f"‘XiS of the ’?a”Ot“be' as sh_own in Fig. 1. Using Equation(11) demonstrates that the total phase accumu-

this convention, the projected Hamiltonian Eg) reads lated by the wave function around the tube circumference
J3ta 0 (—id,+ia,)e’ has contributions from both the subband.indexand the.

= , (8 phase of the zone boundary Bloch function. The physical

K . . —i

2 \(~id,~iage™ 0 angular momentan are integral and are given by
where the partial derivative acts on the electron coordinate
along the axis of the nanotube. Thus for an armchair tube ~ . [M—=N
where the conventiona axis of the graphene sheet and the my=m,— '“t< 3

nanotube axis coincide, we have=0.

The eigenfunctions of the Hamiltonian in E(B) are  where “int” is the nearest-integer function. The offset
Bloch states with reduced crystal momeqtaith the disper-  intf (M —N)/3] in Eq. (20) is smallest for tube wrappings
sion relation near the armchaiv =N geometry and largest for tubes near
> > the zigzade.g., (M,0)] structures. Note also that the sum in
—Tr[m—%modM—N,:S)]) (9 Eq. (11) involves a sum over théhree membersK+G,,
¢ forming a star ofK points and thus even in the lowest star

1. .
-5GnCun, (12

Em(q)=ﬁvp\/q2+

and with eigenvectorésuppressing the indei) approximation, a single azimuthal subband contains an ad-
mixture of several differenphysicalangular momenta. This

u eldz [ @=i(¢+0)2 mixing results from umklapp processes on the graphene lat-

z//q(z)zeiqz< q) = T( ol (6502 ) (10)  tice in the tangent plane of the tube. In our _calculations be-

Uq 2 low we focus on the element of the star with the smallest

where the phase anglé=arctang,,/q) and ¢ is the chiral ~ values ofm, and denote this value simply as _
angle defined in Fig. 1. Thus the dispersion relation of the These effects are illustrated in Fig. 2 where we display
graphene sheet is “sliced” into hyperbolic branches, withline plots of the real and imaginary parts‘ffor the lowest
pairs of branches indexed by the azimuthal quantum numbéP=0 azimuthal subbands of the (11,10) and (17,0) nano-
m. Them=0 branch is gapless for nanotubes with rmdd( tubes. Both are oscillating functions of azimuth. However,
—N,3)=0. Closer analysis shows that when mbid( the (11,0) tube is nearly in the “armchair” configuration,
—N,3)=0 andM#N a small residual gap arises from the and approximately one third of the amplitude in the the
broken threefold rotational symmetry in the Hamiltonian due=0 subband is found in thea=0 state producing a nonzero
to the tube curvaturg. average value for these fields. By contrast, the lowast
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its eigenstate@m(fln) with the free particle stateg, , pro-
jected onto the discretegglattice.

> Y Q)@ n(Q))

Wy, W Cim:m= . (13
RN R R R VE Ytuovacy
NZANZAVIANIAV/AV/, ”

R v 2n By this method one finds that the five orbitals of thg
manifold are derived mainly from th&=5 free particle

FIG. 2. Wave functions for the lowest azimuthal subbands with .
(m=0) on an (11,10) and a (17,0) nanotube are plotted as funcStates and transform as a pseudotefiser, they transform as

tions of the azimuthal angle. The plots give the reasolid) and & tens_or under spatial rotations, but are 00"?' un_der spatial
imaginary (dashedl parts of the physical electron fieNt. For the  inversion. The t;, form a vector representation in tHe
(17,0) tube the lowest azimuthal subband hasren0 component =5 mamfolld and the,, states from a pseudovec.t(lndd
(note that the average value ¥fis nonzera. For the zigzag (17,0) under rotation, and even under inversisapresentation de-

tube the smallest angular momentum component occursnfef rived from theL =6 mameId' . .
and the average value §f vanishes The overlap matrixC,y., has a simple structure in a

geometry where the fivefold symmetry axis of the fullerene
- ) molecule is oriented along thedirection. This quantizes the
=0 subband of the (17,0) tube has a minimam6 (i.e.,  angular momenta about the highest symmetry axis of the
there is nom=0 componentand it oscillates with an aver- molecule. Interestingly, calculations using van der Waals po-
age value of zero. tentials between atomic sites show that the fullerene-
nanotube interaction energy is optimized in this geometry.
In Tables I-IIl we display the normalized overlap matrix
lll. FULLERENE ORBITALS elements obtained for this orientation. We note that orbital

One can also develop a model for the molecular orbital§luantization around the fivefold-symmetry axis greatly con-
of Cg Using a “nearly free-electron” description. In fact, the _strams' the possible mixing among the azimuthal components
multiplet structure of ther electron spectrum of the g N @ given angular momentum channel. Thus, for the
molecule immediately identifies these states as free particle'bital the L=5M=0 state can mix with.=5M==*5
states on the surface of a sphere that are split in the icosah@l@tes, but the mixing with all other azimuthal components is
dral crystal field of the fullerene molecul®.For angular ~Symmetry forbidden. Note also that among these three mul-
momental>2 the A+ 1 fold degeneracy is broken by the ftiPlets theM =0 state is allowednly in thet,, vector rep-
discrete rotational symmetry of the molecule. Nevertheles§ésentation. Thus only thig,, orbital admits an azimuthally
in each angular momentum channel one may construct th§0tropic component. This is demonstrated in Fig. 3 where
symmetrized combinations of the free particle states thafve plot the probability amplitude for the components of the
transform as irreducible representations of the icosahedratu @ndt;q orbital multiplets that are symmetric undesr2s
point group. These symmetrized states turn out to provide Eotations about the fullerene fivefold axis.
good description of the electronic states of the next several
orbital multiplets. Of particular interest are the highest unoc- IV. COUPLING AND EFFECTIVE INTERACTION
cupied orbita(HOMO) of the molecule, which is a fivefold
degeneratd, multiplet, and the two lowest unoccupied or-
bitals (LUMQ's) which are three fold degenerate multiplets  In this section we develop a model to describe the mixing
of ty, andt;q symmetry. of the ball-derived and tube-derived electronic degrees of

To study these orbitals we diagonalize a tight bindingfreedom. Consider the case of coupling to a single encapsu-
Hamiltonian that connects the nearest-neighbor sites on tHated buckyball located at the origin. The microscopic mix-
surface of the gy molecule. We then compute the overlap of ing Hamiltonian has the forrT‘Hmix=Ea,niﬁva,n;ﬁc;nbﬁ

A. Mixing Hamiltonian

TABLE I. Overlap matrix element€sy., for the h,, orbitals of the buckyball, ordered by 2<m=2
(rows) and —5=<M =5 (columns. The dots denote entries that are zero by symmetry.

M -5 —4 -3 -2 -1 0 1 2 3 4 5
m=—2 0.680 0.73B

m=-1 0.806 —0.592

m=0 0.707 0 0.707
m=1 —0.592 0.806

m=2 0.733 0.680
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TABLE II. Overlap matrix elementCs)y., for the ty,, orbitals of the buckyball, ordered by 1<m
<1 (rows) and —5<M=5 (columng. The dots denote entries that are zero by symmetry.

-5 -4 -3 -2 -1 0 1 2 3 4 5

M
m=-1 0.86b
m=0 0.327 0.327
m=1

+V§,n;ﬁb;§ca'n, Wherecln creates an electron on theth

sublattice in thenth cell of the tube(indexed by a two-

dimensional translation vectdr,) andbg creates an electron
on the Bth site of the buckyball. Thé&’s are the tunneling ey
matrix elements which will be assumed to vary exponentially noLM

with the distance between pairs of sites. We rewrite this mi- Xv(|Fh=RQDYL ()Y (D), (15)
croscopic Hamiltonian in terms of the long-wavelength de-

grees of freedom on the ball and tube by computing matriX/Nere v(r) gives the hopping amplitude between atomic
elements ofH... between the tube- and ball-derived states S't€S @S @ function of their separation. This is assumed to vary
mix exponentially with the separation of the ball coordinate and

tube coordinate =exp(—|r; —R,)|/a), where the decay

Passing to the continuum limit, the sum in E#4) can be
expressed as

dzrldzﬂz E '}’L/M/efi(lz+é“')'r‘r’fim,"/’r’1

<q,tubej 7‘~:{mix| P m>

=[u*(0), v*(0)]X

( Va,n;ﬁ

eiiK.deb,n;B

n

Yim(Qp)

CLM,m

DS e IK-Tp—im’ ¢y
B

constant,~1 A. In thelowest starapproximation we retain
only the reciprocal lattice vectors that connect elements in
the first star ofK points (K|=|K+G,/|) and the lowest
icosahedral harmoni¢this is the isotropic terniL’=0M’
=0). (Since the factoo varies smoothly on the scale of a
lattice constant on the surfaces of the tube and buckyball,
higher contributions to the sum are suppressed by a form

factor) Thus we consider the overlap integi@}, ..y over
Lam the surface of the tube and over the surface of the ball
=[u*(0), v*(on(t )CLM,m. (14

Equation (14) expresses the amplitude to hop from the

a(b)th sublattice in them’th subband to thenth orbital on Xv(|r{ —RpQ Y m(Q) (16)
the ball. and the bracketed terms in Ed.4) are therefore
taLm 1
g 1
OCOm';Ll\/ICLM,m( 1)’ 17

whereP is a constant prefactor. Note that it is always pos-
sible to define a basis where the relative phase of the tunnel-
ing amplitude to théo sublattice is unity.

By expanding the argument of the exponential to qua-
dratic order in the interatomic separations the overlap inte-

0 gral is well approximated by the Gaussian integral
Ot L= 2mad o dlag—2a,d[KP+ (M 2IRRy)]
' VRpR
n 0 bis 2w b
o

FIG. 3. Contour plots of wave functions from thg, (top) and
the t;4 (bottom) orbital multiplets. Both states are invariant under
azimuthal rotations of 2/5. However, note that thi,, state has a
nonzero azimuthal averagee., it overlaps thevl =0 free particle
statg, while thet,y state has zero overlap with the azimuthally
isotropic state.
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TABLE lIl. Overlap matrix element<gy., for the t;4 orbitals of the buckyball, ordered by 1<m
<1 (rows) and —6<M=<6 (columng. The dots denote entries that are zero by symmetry.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

M
m=—-1 0.379 0.788 0.485

m=0 0.707 0 0.707

m=1 0.485 0.788 0.379

Thus we find that the overlap integral requires a Fouriefjing involves the odd component of the Bloch factf T
transform of the polar factor of  y weighted by a Gaussian The largest couplings are obtained in for those tubes in
peaked at the equator of the ball. The momentjris the which them’ =0 mode couples to the=0 t,, orbitals.
projection of theK point wave vector along the tube axis; (c) The matrices are “sparse” and therefﬁ,re a given azi-

this depends on the chiral angle of the tubee the diagram ;14| sypband will have only a few allowed couplings to
in Fig. 1) and has its maximum valuem3a~1.70 A * (for the buckyball orbitals.

an armchair wrappingand a minimum value 2/3a
~1.47 A* (for a zigzag wrapping Because of the Gauss-
ian factor the integrand is heavily weighted in the region B. Effective tube Hamiltonian

|7|<a/Ry=~0.53. This allows us to obtain a useful ap- By combining the results of Secs. IIB, IIl, and IV we

proximation to the integralaccurate to~20%) by replacing  arrive at a Hamiltonian describing the motion of electrons on

observe that the overlap integral contains in its exponential

prefactor aform factorexp[—2atd(Kﬁ+Fn’2/RtRb)]; since this

is determined mainly by the magnitude of the wave vector at H= f dz@ v'(2)
the K point, it is nearly independent of the tube wrapping 2

vector. 0 o] o
The tunneling amplitudetsare obtained by contracting the ( _ (—io+iam)e ) W(2)
overlap matrix elements with the amplitude<, y, , for the (—ig—iay)e '’ 0

mth buckyball orbital, using Eq(17). The overlap matrix ‘
element with the tube orbital selects a single value of the t + am

+ +
azimuthal quantum numbei, and we therefore tabulate the % PrEn®mty (0)(t )q)m
M-resolved tunneling amplitudes for each component of the o .
hy, ti, andtyy multiplets in Tables IV-VI. A single azi- TOp(tgm: thm ¥(0). (19
muthal subband defines a value for the allowzemponent
of angular momentunm’ =M for which the allowed cou- Here the buckyball is centered at the origini(z)
plings with the ball orbitalgindexed bym) are tabulated in =[u(z),v(2)] is a two component spinor for the effective
each column of Tables IV-VI. By inspecting these tables wemass fields near th& point and ®,, annihilates themth

b,m

identify the following trends. buckyball orbital with energye,,. (Note that a closely re-
(a) The coupling strengths are largest for the smallest vallated expression describes the coupling to the effective mass
ues of|M]|. fields near theK’ point) To simplify our notation in this

(b) Only thet,, orbital couples to an azimuthally isotro- section, we suppress the orbital indexand treat the case of
pic M =0 state. This was noticed as a special feature of thisingle bound orbital on the ball with ener@y, .
orbital in Sec. Ill. Interestingly we see that the coupling to By integrating out the buckyball degree of freedom in this
theL=5,M =0 orbital involves the first spatial derivative of Hamiltonian we obtain an energy dependent matrix self-
the wave functiorvW/dz at the impurity site, i.e., the cou- energy acting on the spinor field

TABLE V. Tunneling amplitudesta(b);5M|m for the h, orbitals of the buckyball, ordered by 2<m
<2 (rows) and —5<M <=5 (columng. Using Eq.(31) the tunneling amplitudes, andt, are obtained by
scaling these numbers with a constant prefagtoilhe dots denote entries that are zero by symmetry.

M -5 —4 -3 -2 -1 0 1 2 3 4 5
m=-—2 —0.140 —0.151

m=-1 0.155 —0.094

m=0 0.054 0 0.054
m=1 —0.094 —0.155

m=2 0.151 —0.140

235423-6



THEORY OF SCANNING TUNNELING SPECTROSCOPY ... PHYSICAL REVIEW@S, 235423 (2002

TABLE V. Tunneling amplitudesta(b);s,vdm for the ty, orbitals of the buckyball, ordered by 1<m
<1 (rows) and —5<M <=5 (columng. Using Eq.(31) the tunneling amplitudes, andt, are obtained by
scaling these numbers with a constant prefagtoilhe dots denote entries that are zero by symmetry.

M -5 -4 -3 -2 -1 0 1 2 3 4 5
m=-1 0.096 0.138
m=0 —0.025 0.167 i 0.025
m=1 0.138 —0.096
tht, tity, asé(z) V. SCATTERING FROM BUCKYBALLS
S z,E)=y'(z z 20 AND BUCKYBALL DIMERS

In this section we formulate and solve the scattering prob-
and Eq.(35) is replaced by an effective Hamiltonian on the |em for electrons on a nanotube scattering from encapsulated
surface of the tube buckyballs in isolation or as isolated dimers. The closely
related problem of propagation on a tube with an ordered

H= f d—zﬁz/ﬁ(z) encapsulated lattice is solved in Sec. VI. We find that most of
a 2 the important spectral features found for the ordered lattice
o ig problem are found at the level of scattering from isolated

y 0 ' a(—ig+iay)e ) dimersthough not from isolatednonomers This indicates
a(—ig—iaye '’ 0 that the relevant physics for the encapsulated lattice is rela-
tively short ranged in this system. Nonetheless the effects of
2 multiple scattering between neighboring buckyballs must be
+E(Z'E)} ¥(2). @D included to obtain a reasonable description of electronic phe-

nomena in the densely packed phase.
The self-energy?, describes processes in which an elec-
tron hops on and off the buckyball at the origis-0, pro- A. Nanotube Green'’s functions
ducing a localized potential as seen from the surface of the
tube. The matrix self-energy has the structure pf@ection
operatorwhere the spinor state}, t}) is scattered by the
defect, while the orthogonal statg, (—t,) is perfectly trans- (E-H)-G(z,2":E)=ad(z—2'), (22)
mitted. For the coupling Hamiltonian derived in the preced-
ing sectiont,=t, and only the sublattice symmetric spinor wherea is the graphene lattice constant. In this expression
(1,1) is scattered. This leads to a nontrivkalependence in is a 2X2 matrix operator that we will calculate explicitly in
the scattering problem that we solve in Sec. V. the site representation. In this representation the nanotube
The effective potential is energy dependent: attractive foHamiltonian is expresse{ = —ifvgo,(d/dz) + S0 so that
tube states with energies below the on ball resondace the Green’s function with outgoing boundary conditions to
<E, and repulsive for states with energies>E,. When the left and right of the source at is
tube states “match” the on ball self-enery (to a precision

The equation of motion for the one-electron Green'’s func-
tion G(z,z";E) is

given by strength of the tunneling amplitud® the tube , iaedz=7) 1 sgniz—z')e ¢
modes can resonate with the encapsulant orbitals and atdz.z')=- 2hivecose | sgnz—z')e'¢ 1
strongly mixed. Our model ignores any direct hopping mo- (23)

tion between neighboring buckyballs that are encapsulated
within the nanotube. This is motivated by the experimental
data that indicate the effects of hybridizing the buckyball
orbitals with the nanotube modes are significantly stronger Here we use the Green’s functions derived in the preced-
than the direct coupling between neighboring balls in a peaing section to study the electronic spectrum for a nanotube
pod lattice. containing a single encapsulated buckyball. Parsing the

B. Scattering from an isolated encapsulant

TABLE VI. Tunneling amplitudest,,).em|m for the ty4 orbitals of the buckyball, ordered by 1<m
<1 (rows) and —5<M <5 (columnsg. Using Eq.(31) the tunneling amplitudes, andt, are obtained by
scaling these numbers with a constant prefagtoil he dots denote entries that are zero by symmetry.

M -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
m=-1 -0.033 0.126 0.079

m=0 0.127 0 0.127

m=1 0.079 —0.126 —0.033
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n(z,E)=—(1/7)Imtr G(z,z,E) and it is plotted in the gray-
scale of the density plot of Fig. 4. The attached line plots
give the data on two linescans as a function of energy for
fixed position(on top of the defect sijeand as a function of
position for fixed energynear the unperturbed energy of the
buckyball orbital.

The figure illustrates two important effects. For energies
E<E, the effective potential on the nanotube is attractive,
and this produces a bound state on the wall of the nanotube.
This state isnot simply the bound orbital on the buckyball,
but rather it arises from strong mixing of the nanotube states
with the active orbital on the buckyballNote that the data
in Fig. 4 are projections of the Green'’s function onto the tube
degrees of freedomFor energie€> E,, the effective poten-
tial on the nanotube is repulsive. We observe that in the
position line scan, the electronic density of states exhibits a
minimumat the defect site. Nevertheless this repulsive po-
3 5 2 tential backscatters the propagating modes of the tube and
E(eV) the interference between the forward and reflected wave pro-

duces the standing wave pattern shown in the density plot
FIG. 4. Density plot of the local density of statez,E) onthe  anqd in the lineplot to the right. This backscattering mixes

surface of the nanotube encapsulating a single buckyball. The "”epropagating states at momenta)(E) and the wavelength of
plots give the charge density(z) and the density of stata® E) these oscillations is energy dependent with
along single cuts across the density plot as shown. In this calcula-

tion gapped nanotube bands with a gap paramétet.1 eV are =2m/2|q(E)].
mixed with a buckyball orbital with energ,=1.3 eV with hy-
bridization strengthi=0.9 eV.
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C. Scattering from a bucky dimer

Hamiltonian into an unperturbed piece and a defect potential, The solution to the scattering problem for a bucky dimer
H=H,+3, we compute the Green’s function in the pres- is similar to the treatment given in the preceding section,

e e oy S e 30 o, s olcion P S v
G 1=G,'-3(E), whereG, " is the bare Green’s function gp

R ) o must be included in the calculation. Interestingly, we find
and(E) =al'(E) 6(z) with I'(E) containing the energy de- that essentially all the features of spectrum of the bucky lat-

pendent matrix terms in Eq20). G(z,z") is a 2<2 matrix  tice are found at the level of the scattering theory for the
function of the continuous spatial variablesindz’; inner  single bucky dimer.

products are carried out by integrations oveand by sum- In our model we treat two identical scattering sites at

mation over the sublattice indices. The self-consistent solupositions+d/2; g . denotes the various componentsdaf

tion to the Dyson equation yields that connect these two sites, i.g., - = Go(d/2,—d/2). Then
the unperturbed Green’s function can be written in a block

G 7590(0,0 7090(0,2) (24 matrix form
\G(z0T Go(2,2)+Go(2.0)VTeGo(02)
whereTy=[Z,— Go(0,0)V] . The diagonal elements of the g-- g-+ Go(—di22")
Green’s function have a simple interpretation in terms of Go= 9. g Go(d22") |. (25

closed Feynman paths that propagate from some pogition
the impurity sitez=0 where they interact with the defect
potential and then return to their original positionzat

To illustrate the effects of scattering from a single encap-rhus the inverse of th& matrix can be reconstructed
sulant, in Fig. 4 we collect our results for the local density of
states, resolved in energy and position, along the length of a
nanotube that surrounds an encapsulant centered at the ori-

Go(z,—dI2) Gy(z,d/2) Go(z,2")

) . ; ; ; . I,—9-_V -g-.V 0

gin. In this calculation we consider coupling of a single

nanotube orbital with energl,=1.3 eV to azimuthal sub- T 1= —g+-V I,-9++V O (26)
bands with gap parametef=1.1 eV and hybridization ~Go(z,—dI2)V —Go(z,dI2)V T

strengtht =0.9 eV. (These choices turn out to provide a rea-

sonable description of the experimental data for the dense

peapod lattice, as detailed belpvhe local density of states and the Green’s function in the presence of the pair of scat-
is obtained from a trace of the Green’s function terers is

235423-8
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T..9- - +7.,94+- T -9-++T .9,

G=|7+-9-++7: 19+~ T, 9 ++7 104+ , (27)
gS(ZIZ,)
|
where buckyball induces a bound state in the nanotube spectrum.
These are mixed to produce a “bonding” and “antibonding”
Gi(2,2)=Go+Go(z,—dI2)T_ _Go(—dI2,2) combination. The position line scans pass through the ener-
gies of these two bound states, and show a zero in the density
+G0(z,—dI2)T_ . Go(d/22) of the antibonding states at the midpoint of the dimer. Note
that in this calculation there iso direct mixing between the
+ —
G0(2,012)7.. - Go( — dI22) buckyball orbitals; rather the splitting is completely due to
+Go(2,d12) T, , Go(d/2,2) indirect mixing by coupling to the tube degrees of freedom.

At energies just above the g&p> 6 the hybridization of
_ / the tube and ball degrees of freedom produces a deep mimi-
go+s,s’2:: Go(2,5d2)Tss Go(s'dI22). (28 Wi e local density of states seen on the tube. At
higher-energfe~1.6 eV we see an enhancement of electron
Each term in the Born series for the external Green'sdensity at the midpoint of the dimer. This arises from a
function G, describes the amplitude for a closed Feynmanl:abry-Perot type resonance. Here incident electronic waves
path for an electron starting at positiarto propagate into are multiple reflected from each defect site, and at this en-
the defect region where it is repeatedly scattered within ang@'9y the wavelength of the Bloch states is “matched” to the
between the two impurity sites and finally propagates out ofnterdefect spacing. Thus, we find that below the orbital en-
the scattering region back to its original position. ergy E, the electronic density on the tube is enhanced on the
In Fig. 5 we collect our results for the hybridization of the defect sites, whereas abof#g the electronic density is en-
nanotube electrons with an isolated encapsulated dimer withanced between the defect sites.
a separationl=10 A between the buckyballs. From the den-
sity plot and the position line scans it is clear that each VI. KRONIG PENNEY MODEL

In this section we apply the model developed in Sec. V to
an ordered array of encapsulated fullerenes, a “fullerene pea-
pod.” The discrete translational symmetry of this structure
leads to the formation of electronic bands in which the nano-
tube and buckyball degrees of freedom are hybridized. The
Hamiltonian for an ordered array of encapsulated peapods is

100

50

-

H=—itveoyd,+ doy+al (E) D, 8(z—na,), (29
n

where thes's are Pauli matrices aral, is the interball spac-
ing. Since the scattering potential in E@9) is periodic,
nz) ' with superlattice periody, its eigenfunctionscan be chosen
to satisfy Bloch boundary conditiong(z)=e*?U,(z),
where the functiorlJ,(z) is a spinor field that is periodic,
obeying the boundary conditiod,(z+ay)=U,(2). In the
domain 0<z<a,, the electron states at enerByaresuper-
positions of the free particle stateg)(z)=Ay ., (2)
+By_(2) andU, is therefore explicitly

e i g )(ei(q—k)z 0 )(A)

50

100

0.0 0.5 1.0 1.5 2.0

FIG. 5. Density plot of the local density of statef&,E) on the
surface of the nanotube encapsulating an isolated buckyball dimer.

_ : ; ‘ el(a-kz 0
The separation between buckyballs in the diier10 A. The line- = (

, (30

Uk(z):( Qb2 _a-ion 0 e-i@+iz]| g
A

plots give the charge density(z) and the density of stata® E) B

along single cuts across the density plot as shown. In this calcula-

tion gapped nanotube bands with a gap paramétet.1 eV are  Where fiveq=VE?— 6% and ¢ = arctand/\EZ— &°. [Recall

mixed with buckyball orbitals with enerdg,= 1.3 eV with hybrid-  that for nonzero chiral angle), the phase angleé— ¢+ 6,

ization strengtht=0.9 eV. using Eq.(8).]

0 e i(atkz
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The Bloch wave vectdk and the expansion coefficiers E(eV)
and B are obtained by integrating around the singular
S-function scattering potential at=0 yielding the matching
condition

) B al'(E) _
(—Ihvpcrx[wk(0+)—¢k(0 +— ((07)+ (0 ))

=0. (31)

This is cast in the form of a conventional eigenvalue problem
by the rearrangment

e ' L. alr(e)| !
Uu. 0 eiqz U . |ﬁUFO'X+T

) al'(E) A

X IﬁUFO'X—T U B
-n/ay, 0 T/ap

e—ikZ 0 A q

= —ikz| U (32
0 € B FIG. 6. Scheme for hybridizing the localized mode of a bucky-
or, introducing a more compact notation ball with the gapped propagating bands of a nanotube. The unmixed

bands are given by the dashed curves and the mixed bands are the
A ) A solid curves. In this calculation gapped nanotube bands with a gap
UPU ™t S(E) -U( B) = e'oku< B) . (33)  paramete=1.1 eV are mixed with buckyball orbitals with energy
E,=1.3 eV with hybridization strength=0.9 eV.
Equation(33) has a simple interpretation. The vector

A the the operatioy— —q. This asymmetry does not violate
@ =U( (34) Kramers theorem since the time reversed partner to the state
B B with crystal momentung near theK point is a state with

expresses the eigenvectors of this problem rotated from th%rystal momentur-q near thek® point. The source of the

running wave representation into the sublattice representa:-rsérrnm%tgkc% nthbeebL;rSl?Se(r;to?: :ya:i?]tattlﬂgetrrfm;gitg)é;ﬁ:z d
tion.Z/ﬂ?qU‘1 is the free particle propagator in this basis, and gy propagating

S(E) is the phase-shift accrued by scattering through an imfJlt energyE. This gives a self-energy proportional to

purity site. Equatior(33) tells us to choose and 8 to find

the linear combination of free running waves of the unper- _ (1 1) 1+cog¢p+6) isin(¢p+0)

—isin(¢+6) 1—codep+6))’
(39

turbed problem that satisfy Bloch boundary conditions in the Tyt 11
presence of scattering from the impurity lattice.

The hybridizated electronic spectrum for the fullerene
peapod is plotted in Fig. 6. The dashed curves give the un-
mixed spectra for the gapped bands of the nanotube and tivehere ¢ =arctan@JE?— %) and ¢ is the chiral angle. For
localized orbitals on the buckyballs. Note that in this ap-example, in the ungapped bands of an armchair #ibe)
proximation the buckyball band is perfectly dispersionlessand #=0; thus a hybridization gap opemsly in the g>0
i.e., there is no direct hopping between the fullerene sitesbranch, and there is no backscatterifidear theK’ point the
Introducing the mixing formally turning on the self-energy situation is reversed, and the hybridization is allowed only in
in Eqg. (29)] produces and avoided crossing between theséhe q<<0 branch) Physically this occurs because the propa-
branches. This leads to the hybridized bands given by thgating modes of the armchair tube are pure “bonding” and
solid curve. Thelowest band is derived from the bound state$antibonding” combinations of theA and B sublattice basis
produced by the attractive defect potential. It is separated bfunctions. The antibonding combination is annihilated by the
an energy gaga hybridization gap from the spectrum of self-energy operator and so the defect site is “invisible” for
strongly dispersive states. Finally, since the defect potentighis combination. For a general chiral angle, or for the
is periodic with superlattice perioal,, Bragg gapsare gen- gapped electronic bands of a metallic tube, the states at wave
erated at the zone centeg€0) and zone boundaries € vectors =q are complex; so that they are neither pure
+alay). “bonding” nor “antibonding” in character. Nonetheless, in

It is interesting that the mixing between the localized ballgeneral the left moving and right moving modes admix with
orbital and the dispersive tube band is not symmetric undethe impurity state with different strengths.
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Once the eigenvector amplitudes and 8 are obtained
from Eq. (34), we invert Eq.(30) to find an expression for
the charge density

30

20

1 ie 29%sin( ¢+ )
—ie?9%sin( ¢+ 6) 1

(5] @

The tunneling density of states is obtained from the trace of
the imaginary part of the single-particle Green'’s function:

p(2)=(a* B*)-(

2(A)

10

a . @)
g/.u}(ziz VE)_EJ dkm (37)

n(E)

and is calculated by linearizing the denominator around its
zero crossinggE/ ok| e[ k—k(E)]+ie. Thus the tunneling
density of statesi(E) is expressed as

0.0 0.5 1.0 1.5 20
E(eV)
pi(2)
n(z.E)= ; r7E/(9k| ) (38) FIG. 7. Density plot of the local density of stateg,E) on the

k(E) surface of the nanotube encapsulating a lattice of buckyballs. The

Since the scattering problem is not symmetric under the inseparation between buckybalts=10 A. The lineplots give the
versionk— —k the sum in Eq(38) cannot be factored into charge-density(z) and the density of stateg E) along single cuts
an energy dependent term multiplied by a spatially varyingcross the density plot as shown. In this calculation gapped nano-
term (as it would for a symmetric bandstructiire tube ba_nds wi_th a gap parametes 1.l_eV are_rr_nixe_d with bucky-

The effect of the periodic structure of the peapod latticel@ll orbitals with energyE,=1.3 eV with hybridization strength
on the electronic spectrum is apparent in the density plots of 09 eV.
the local density state shown in Fig. 7. The impurity states
induced by the encapsulants generate an impbatyd here
extending from~0.8 eV—1.0 eV. The charge density on the SPatially resolved spectroscopic maps made by recording the
surface of the tube for this band is peaked at the defect site8ifferential conductanced(/dV) of the STM junction as a
This is seen in the linescans on the right which exhibit arfunction of the bias voltage while moving the tip across the
“upward” cusp in the local density of states at the defecttop of the peapod.
sites. Note also that the top of the impurity band is “anti- ~ Figure 8, previously reported in Ref. 9, shows one such
bonding” in character, with nodegi.e., not simply local Spectrosocopic map for an ordered peapod. For this sample
minima) at the midpoints between neighboring encapsulantsthe occupied electronic states imaged at negative bias appear
This impurity band is separated from the spectrum of scatl© be similar to those expected for an unfilled semiconduct-
tering states by a hybridization gap. At energies above th#1d SWNT. The onset of conduction at negative bias for this
hybridization gap, the character of the charge density is rePeapod occurs near0.5 eV which we interpret as tunneling
versed. Here the the local maxima are found in the bondnto the secondoccupied azimuthal subband of a semicon-
centers between the neighboring encapsulant sites. This ficting SWNT cage with a raditR~7 A. The low tunnel-
the periodic analog of the Fabry-Perot enhancement of th#lg currents at low voltages in this measurement reduce the
charge density in the midbond observed for the isolate@ontribution from first azimuthal subband with an expected
dimer. onset near—0.25 eV. There is a faint position dependent

modulation in the spectroscopic map that can be attributed to
VIl. COMPARISON WITH EXPERIMENT small variations in the tip sample separation due to the feed-
back conditions used in this measurement.

The theory of the electronic structure of peapods devel- In contrast to the occupied electronic states which are
oped in this paper can be compared to STM measurementearly identical to those of an unfilled tube, the unoccupied
on isolated peapodsin these experiments it was found that states, imaged at positive bias, show dramatically different
peapods could be distinguished from unfilled SWNT's by aelectronic features. After the initial onset of the second
periodic modulation in the STM topographs that are superSWNT azimuthal subband, the differential conductance
imposed on the atomic lattice of the SWNT cage. For arshows a strong double peaked modulation with the same
ordered peapod these modulations exhibited an average peeriodicity as the encapsulatedgnolecules €10 A) in
riod of 10 A, in good agreement with TEM observations ofthe range 1.0-1.25 eV. At higher energies we observe a
the G, spacing in densely packed peap8ddore detailed broad suppression of the differential conductance followed
information about the density of states was obtained fromby a second strong onset of conductance near 2.0 eV. A
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Tas - Sample Bias (V)
S
’§ b FIG. 9. Comparison of a section of the experimental data from
= Fig. 8 with the calculated local density of states reproduced from
32 i ‘ Fig. 7. In the theory a single molecular orbital on thg, @ith an
] energyE,=1.3 eV hybridizes with a single azimuthal subband of
@ ' - the SWNT with a band_—gapﬁz 1.1 eV and with a hybridizat_ion
16 F strengtht=0.9 eV. The lines and arrows denote the trajectories for
B the five linescans of the theoretical data shown in Fig 7.
: - ’
found in the impurity band. This is striking evidence for the
i‘lA 1

SE oo os 1|0 e formation of the standing wave patterns expected just above
’ ' Sample Bias (V) ' and below an electronic band-gap produced by a periodic
one-dimensional potential.
FIG. 8. Spectroscopic map of a fullerene peapod giving a den-
sity plot of the spatially resolved differential tunneling conductance
measured as a function of sample hilasrizontal axi$ and position

(vertical axis. The hybridization model developed in Secs. V and VI
provides a good description of many aspects of the experi-
striking feature of these data is that the modulations of thenental data. However, there are aspects of the data that are
differential conductance in the low-energy bandnot completely explained by this model, and some predic-
(1.0-1.25 eV) isout of phasewith modulated features ob- tions of theory that have not yet been observed in experi-
served for energies 1.5 eV. ment. In this section we comment briefly on these remaining
Closer examination of the experimental data shows tha@liscrepancies.
the spectral features in the unoccupied density of states The thresholds for various features in the differential tun-
slowly shift in energy along the length of the peapod, so thaneling conductance identifies the host nanotubeseasicon-
their positions varies by nearly 200 meV. We believe thatductorsin which the hybridization is occuring in thiird
these spatial variations in the conductance of a SWNT ar@zimuthal subband. The gap paramet@dor the azimuthal
unrelated to the encapsulated molecules, and are more likeubbands of a nanotube of radiRsare 6,,=(fvg/R) ey,
associated with extrinsic effects such as torsion or &fditf ~ wheree,,= + 1/3,+ 2/3,+ 4/3, etc. for semiconducting tubes.
or possibly simply the trapping of extrinsic charge at defectFor nanotubes with radius-7 A the first three subbands
centers in the sample or the substrate. Note that the perioditave gap parametefs,,| =0.26,0.52, and 1.03 eV, and the
encapsulant derived features shift “rigidly” with the band second threshhold at0.5 eV is clearly resolved in the mea-
onsets in this spectrograph. sured conductance. Aggmolecule nests nicely within such a
The observation of energy dependent periodic variationganotube leaving a typical graphene van der Waals gap be-
in the STM spectra demonstrates that the fullerene peapasiveen the ball and the wall. Thus, the fundamental premise
has an electronic structure that is quite different from that oof the model is that a single azimuthal subband of the nano-
the unfilled SWNT, as found in the theoretical results pre-tube hybridizes with a single molecular orbital of the encap-
sented in Secs. V and VI. A closer comparision of the experisulated fullerene.
mental data with the theoretical results for a peapod lattice is To date the effects of the encapsulant have been observed
presented in the density plots of Fig. 9. in the conductance spectra only foositivesample bias, i.e.,
The agreement between theory and experiment allows u®r tunneling electrons from the tip into the peapod, and only
to make assignments of the prominent features in the experinto peapods with a semiconducting SWNT cage. It is natural
mental spectra. The most dramatic feature in the experimere try to interpret these trends in terms of a “selection rule”
tal spectrograph is the doublet features at 1.0 and 1.25 e\that constrains the hybridization of the tube- and ball-derived
which we identify with the extrema of the encapsulant de-electronic states.
rived impurity band found in the calculations. The region of In Table IX we collect some relevant structral and elec-
suppressed differential conductance uptt.4 eV indicates tronic parameters of candidate encapsulating tubes. Here we
the formation of a hybridization gap that separates the impuhave compiled data for all tubes that can encapsulate a
rity band from the next band of propagating states on thduckyball with an interwall spacinpetween the ball and the
SWNT cage. Finally, above the hybridization gap the densitywall) 3.0 A<d<3.6 A. The table gives the value of the in-
modulations are observed to be out of phase with thoseerwall spacing, the reduced gap parameters and then-

n
=}

VIll. DISCUSSION
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E(ev) E(eV) the z component of the angular momentum matches that of
" one of thet,, orbitals. These candidate tubes are indexed

. 2
i (12,8, (13,6, (14,8, (15,4, and (17,. Of this group the

N

tu

/.

/ )/

AN

/ prime candidates for those that have been measured experi-
/ mentally are the tubes with strong coupling to thg mani-
/ fold, namely, thg12,8 and (13,6 wrappings. For th€12,8
oA s tube the third “con(iuction band” of the tub@ear theK
03 02 01 o1 02 03 03 02 01 01 02 03 point) hybridizes them=0 orbital of thet,, multiplet while
/7 for the (13,6 tube it hybridizes then=— 1 orbital of thet,
\ T multiplet.
= The band diagrams in Fig. 10 suggest two plausible sce-
narios for theabsencef encapsulant induced structure in the
valence states. On the left hand side the HOMO and LUMO
2 are positioned symmetrically about the band center as one
FIG. 10. Hybridization scheme for three lowest dispersing sub-Might expect by naively equating the chemical potentials of
band pairs of a semiconducting tube coupled with the three dispeithe tube and buckyball lattices. Then, if the hybridzation pro-
sionless frontier orbitals of agglattice. The symmetries of theeE  ceeds through then=0 mode, as required for thel2,9
molecular orbitals are in(.jicate.d. The level separations of the mo'tube, the coupling is allowethnd strong for the t;, orbital
ecule are taken from a tight binding model ferelectrons on the . . . . ~
buckyball, with a nearest-neighbor hopping amplittige?.5 eV. In and forblddgn for the h, manifold (|.e._, there is nom=0
the left panel the HOMO and LUMO are positioned symmetrically compqnent ',n thEp_SQUdOt(?nsor fpmanifold. A Sec,ond sce-
around the gap center. Better agreement with experiment is obtaindf10 1S outlined in the rlght-han_d pan_el_. In this case the
if the molecular spectrum is shifted by 0.35 eV, an effect that Molecular spectra have been shifted rigidly $y0.35 eV.
could be attributed to orthogonalization to the basis states on thklere thety, orbital overlaps the third azimuthal subband, a
encapsulating carbon nanotube. situation that we found provides a good description of the
experimental data, and the, orbital overlaps the second
ponent of the angular momentum for each azimuthal Sub@zmuthal subband in the valence Pand. For (&6 tube
band. Ten of the fifteen tubes in this table arethe angular momenta of the bands are —1 (third conduc-
semiconductors. tion band and m=—3 second valence band. Inspecting
The third gapped azimuthal subband of the semiconductfables VI and VIl we find that the hybridization is again
ing tubes have reduced gap parameterss £4/3 in this  symmetry allowed for thé,, orbital and forbidded for th,
table. For five of the ten semiconducting tubes in this tableorbital. It is also interesting that th&3,6 structure has one

TABLE VII. Structural and electronic parameters for fifteen nanotubes that can encapsgjatattC
interwall spacings 3.00 Ad<3.6 A. The tubes are labeled by their wrapping indickf ) and only one
member of an enantiomeric pair is tabulafed., only (12,8 and not(8,12)]. The data give the tube radius
(R) the gap between the fullerene and tube wdl,(the reduced gap parametegs,) for the three lowest
subbands, and the component of the angular momenta in these subbams The the electronic gap
=%ve|€eq//R. The entries in the last three columns are negated for the enantiomeric partner.

(M.N) R(A) d(A) e_1(M_y) €o(Mo) €;(my)
(10,10 6.78 3.26 -1(-1) 0(0) 1(1)
(11,9 6.79 3.27 —4/3(-2) —1/3(-1) 2/30)
(12,7 6.52 3.00 —4/3(-3) —1/3(-2) 2/3(-1)
(12,9 6.83 3.31 —2/3(-2) 1/3(-1) 4/30)
(13,6 6.59 3.07 —2/3(-3) 1/3(-2) 4/3(—1)
(13,7 6.88 3.36 —1(-3) 0(-2) 1(-1)
(14,9 6.69 3.16 —1(—4) 0(—3) 1(-2)
(14,6 6.96 3.44 —4/3(—4) —1/3(-3) 2/3(-2)
(15,3 6.54 3.02 —1(-5) 0(—4) 1(-3)
(15,4 6.79 3.27 —4/3(-5) —1/3(—4) 2/3(—3)
(16,2 6.69 3.17 —4/3(—6) —1/3(-5) 2/3(—4)
(16,3 6.93 3.41 —2/3(-5) 1/2(- 4) 413(-3)
(17,0 6.66 3.14 —4/3(-7) —1/3(—6) 2/3(-5)
17,1 6.86 3.34 —2/3(—6) —1/3(-5) 4/3(—4)
17,2 7.08 3.56 —1(—6) 0(-5) 1(—4)
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of the smallest gap spacings between the ball and the tube ¢ EeV) E(eV)

any of the structures tabulated. Thus any symmetry allowec 3 &

coupling should be particularly strong for this nanotube. \—/ \——/

Note also, that by inspecting the data of Table VII we predictt V_/

that certain tubege.g., a(12,7 wrapping do have symmetry ¢ \/

allowed couplings to buckyball orbitals in thg, multiplet. ty \ !

None of these have yet been measured experimentally. ]
Large modulations of the charge density, as are seen in th

experiments, suggest that encapsulant orbitals are hybridize

with tube states near the subband extrema. The reason fchy

this is contained in Eq(35) giving the forward and back- \

scattering amplitudes between the propagating tube states / _\

+q as a function of the mixing anglé and the tube’s chiral

angle . For the ungapped band of an armchair tube 0 /—-\

and =0 so that backscattering is symmetry forbidden, and

in this case there is no modulation of the charge density seen FIG. 11. Hybridization scheme for three lowest dispersing sub-

on the tube wall in response to the defect potential. For othepand pairs of a conducting tube coupled with the three dispersion-

tube geometries the largest chiral angle entering the theory lgss frontier orbitals of a & lattice. The symmetries of theqg

quite small @= /6, for a zigzag tube so that whenever molecular orbitals are inQicate_d. '_I'he level separations of the mol-

5<E defect induced modulations of the charge density aré&cule are taken from a tight binding model ferelectrons on the

very small, though not completely absent. For example th@uckyball, with a nearest-neighbor hopping amplittee2.5 eV. In
chiral angles for thé12,8 and(13,6 tubes are 6.6° and 12° the left panel the HOMO and LUMO are positioned symmetrically

and the charge-density modulationsp/p~10"2 and 4 around the band center. Better agreement with the theoretical cal-

_ 5 . culations of reference 20 is obtained if the molecular spectrum is
x 1077, respectively Whe'E.>.5.' Thus we e_xpec_t that the shifted by —0.95 eV, an effect that could be attributed to charge
encapsulant can produce significant fluctuations in the char

: . . . . YFanster from the tube onto the ball. The theory of reference 20 also
density of the tube only in the special situation where the

- suggests a crystal field splitting of tiig, manifold that is not in-
resonant molecular levels are well matched in energy to the, 4ed in this figure.
subband threshholds. It is interesting that this fact altee
side from any of the symmetry selection ryldavors the
hybridization scheme shown in the right panel of Fig. 10. hybridization amplitudes and orientation of the encapsulant.
We speculate that this is the reason for the absence of The data reported in Ref. 9 and in this paper are the first
encapsulant-derived structure in peapods containing metallidirect measurements of the electronic spectra produced by
nanotubes. Two schematic dispersion relations for this situascattering from an encapsulated species. More data of the
tion are shown in Fig. 11. In the left-hand panel the bucky-type presented in Figs. 8 and 9 from measurements on many
ball molecular orbitals are positioned symmetrically aroundsamples will be needed to verify the predicted sensitivity to
the band center. Here density fluctuations due to hybridizathe geometric structure, and to examine how these results
tion of the impurity with the ungapped bands should be recan be generalized to a larger family of encapsulated stuc-
duced by the suppression of backscattering as noted aboveires. It is also useful to obtain additional measurements of
However, the situation found in the theoretical calculationsthe electronic spectra for isolated encapsulated buckyballs
of Okadaet al™® is better described with the diagram on the and buckyball clusters. There are three additional lines of
right. Here thety, orbital has shifted to near the Fermi en- investigation that seem particularly promising for exploring
ergy, a situation that could be due to a small but nonzerahe interaction of propagating modes on the tube walls with
charge transfer onto the buckyball. In this situation the nextarious encapsulated species.
unoccupied orbital overlaps only the ungapped bands of the (1) Measurements of the differential conductance for iso-
conducting tube, and thke, orbital is resonant with states lated encapsulated buckyballs and buckyball dimers can be
deep in the valence band where it would be difficult to detecused to verify the predicted scattering spectra presented in
by ordinary scanning tunneling spectroscopy. Figs. 4 and 5. A direct measurement of the energy depen-
The pseudoselection rules derived in this paper apply onlgence of the modulation wavelength in the charge-density
to the case where the high symmetry axis of the buckybalprovides a real space image of the coherent backscattering of
aligns with the axis of the nanotube. This configuration areBloch waves from a localized encapsulated impurity. The
favored energetically within a van der Waals model for theobservation of a resonant peak on the tube midway between
ball-tube interaction. However, other orientations are vergthe encapsulated scatterers in an isolated dimer would pro-
likely accessible above a crossover temperature in theide a striking confirmation of the Fabry-Perot resonance
200°-300° K range. Here the encapsulated buckyballgredicted in these calculations.
would be expected to resonate with the propagating modes of (2) A fullerene peapod can be electrostatically gated to
any encapsulating tube. Thus a qualitative temperature deshift the Fermi energy into the energy region near the hybrid-
pendent change in the conductance spectra for tubes that amation gap. Scattering effects are strongest in this region of
“silent” in their orientationally ordered low-temperature the spectrum so that conductance measurements at low bias
states would be an important indicator of the interplay of thein this gated geometry can be used to measure the interaction

o/
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