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Theory of scanning tunneling spectroscopy of fullerene peapods
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A theory for the hybridization of tube and encapsulant derived electronic states is developed for fullerene
peapods: carbon nanotubes encapsulating molecular C60. The interaction between tube and encapsulant is
constrained by symmetry and it is studied using a long-wavelength theory of the tube states and a nearly free
particle theory of the ball orbitals. Calculations of the local densities of states, resolved in energy and position,
are obtained for the gapped bands of a nanotube interacting with a single encapsulated fullerene, with an
encapsulated dimer, and with a periodic fullerene peapod lattice. The calculations identify features in the bound
state and scattering spectra of the tube produced by hybridization with the encapsulant. For the peapod lattice
we identify ~a! a narrow defect induced electronic band,~b! a hybridization gap resulting from the strong
mixing of tube and ball degrees of freedom, and~c! Bragg gaps produced by electron motion in a periodic
defect potential. The theory provides a good description of the prominent features of the measured electronic
spectra of fullerene peapods obtained by low-temperature scanning tunneling microscopy.
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I. INTRODUCTION

A carbon nanotube is a sheet of graphite wrapped in
shape of a seamless cylinder.1,2 Nanotubes can be grow
with diameters as small as a nanometer, with lengths u
tens of microns, and in multiwall or single wall~SWNT!
forms. SWNT’s of pure carbon occur in either conducting
semiconducting species, where the variation in their e
tronic behavior is determined geometrically by the direct
along which the graphene sheet is wrapped to form
cylinder.2–6 There has been considerable progress in the
velopment of new nanometer scale electronic devices ba
on these structures.7

At the same time there is interest in combining carb
nanotubes with other molecular species that can modify t
electronic and~or! structural properties. In a seminal pape
Smith, Monthioux, and Luzzi showed that molecular C60
~buckyballs! could be incorporated into SWNT’s that ha
been purified in an acid solution, a process that leaves
forations in the tube sidewalls.8 Subsequent annealing o
these structures repairs the external surfaces, encapsu
buckyballs within the tube to form a hybrid all carbon sp
cies nicknamed ‘‘peapods.’’ In a recent paper we reported
first imagingand electronic spectroscopy of nanotube pe
pods using low-temperature scanning tunneling microsco9

showing that electronic states on the carbon nanotube su
are modified by their hybridization with the electronic orb
als on the encapsulated C60. In these experiments the mixin
was observed to be most effective with the lowest unoc
pied molecular orbitals of the buckyball. Electronic spectr
copy using the differential tunneling conductance clea
identifies new features in the electronic spectrum of the
bridized system that are not found in the individual su
systems. Strikingly, the differential conductance shows
suppression of the tunneling conductance in a narrow ra
of energy~a hybridization gap! in which the nanotube state
0163-1829/2002/66~23!/235423~15!/$20.00 66 2354
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and buckyball orbitals are strongly mixed.
In this paper, we present a theoretical analysis of the d

reported earlier in Hornbakeret al. Our analysis requires a
model for the electronic states on the nanotube sidewall
model for the molecular orbitals on the buckyball, and
theory for their interaction. The physics of the former tw
systems has been well developed over the last few year3–6

This paper applies a long-wavelength theory to describe
relevant tube degrees of freedom,6 and the analogous nearl
free-electron theory for the molecular orbitals of the isola
buckyball.10 Brief reviews of the salient features of these tw
models are given in Secs. II and III, respectively. Our mo
for the hybridization of the tube and ball degrees of freed
exploits the symmetries of these low-energy models for
tube and ball electronic states and is presented in Sec
The remainder of the paper is devoted for developing a s
tering formalism to describe the effect of the encapsulant
the nanotube electronic degrees of freedom. We develop
theory of the electronic spectrum of the saturated pea
lattice by first studying the scattering properties of encap
lated isolated buckyballs and buckyball dimers in Sec. V. T
electronic structure of the ordered peapod lattice is then s
ied in Sec. VI by constructing and solving a variant of t
Kronig Penney model for this structure. Section VII provid
a comparison of theory and experiment, and in Sec. VIII
discuss some remaining discrepancies between theory
experiment and directions for future work.

II. ELECTRONIC STATES OF SWNT’S

A. Long wavelength theory of the graphene sheet

The low-energy electronic structure of a single wall ca
bon nanotube can be studied using a tight binding mode
which p electrons hop between the nearest-neighbor site
a two-dimensional honeycomb lattice that is wrapped alon
©2002 The American Physical Society23-1
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KANE et al. PHYSICAL REVIEW B 66, 235423 ~2002!
specified crystallographic direction.2 The microscopic
Hamiltonian for the graphene sheet is

H5(
n

t cb
†~TW n1tWb!ca~TW n!1H.c. ~1!

whereca(b)(RW ) annihilates an electron on thea(b)th sublat-
tice at position RW , and the sum is over all the two
dimensional translation vectorsTW n and over the triad of
nearest-neighbor bond vectorstWa that connect thea and b
sublattices.

The Hamiltonian in Eq.~1! is diagonalized by the Fourie
transform

S ca,kW

cb,kW
D 5

1

AN
(
n51

N

eikW•TW nS eikW•dW aca~TW n1dW a!

eikW•dW bcb~TW n1dW b!
D , ~2!

wheredW a(b) locate thea(b) sublattice sites in the unit cell
The spectrum isE6(kW )56tug(kW )u56tu(aeikW•tWau. With one
p electron per site the negative energy states are occu
and the Fermi energy lies atE50. Sinceg is a complex
function of its two-dimensional argumentkW , it can vanish
only ondiscrete pointsin reciprocal space. These points co
respond to the corners of the two-dimensional Brillouin zo
~labeledK and K8). We adopt a ‘‘conventional’’ setting o
the graphene lattice that places these critical points along
x axis so thatK[(4p/3a)(1,0) andK8[2(4p/3a)(1,0),
wherea is the graphene lattice constant. In this conventio
setting the triad of nearest-neighbor bondstWa are (a/A3)
3@(0,1),(A3/2,21/2),(2A3/2,21/2)#.

The low-energy long-wavelength electronic properties
the nanotube are studied by expanding the Hamiltonian~1!
around the singular points at the Brillouin zone corners. N
the K point kW5KW 1qW , and for smallq the electronic wave
functionsC(rW) can be represented by introducing envelo
functionsuK(rW) andvK(rW) that produce a slow spatial modu
lation of theK point wave functions

C~rW !5@ca,K~rW ! cb,K~rW !#•S uK~rW !

vK~rW !
D

5eiKW •rW@Ua~rW ! Ub~rW !#•S uK~rW !

vK~rW !
D , ~3!

whereUa(b) are cell periodic functions localized around th
a(b) sublattices

Ua(b)~rW ![~1/AN! (
n51,N

e2 iKW •(rW2TW n2dW a(b)) f ~rW2TW n2dW a(b)!

~4!

and f (rW) is a localized basis function.
Introducing the complex notationq5qx1 iqy , t1

5( ia/A3), t25e22p i /3t15z* t1 andt35e2p i /3t15zt1, the
Hamiltonian in Eq.~1! is expanded to linear order inq yield-
ing
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HK5
A3ta

2 S 0 qx1 iqy

qx2 iqy 0 D[\vF~sW * •qW !, ~5!

wheresm are the 232 Pauli matrices, andHK852\vF(sW

•qW ). Note that these projected Hamiltonians near theK and
K8 points form an enantiomeric pair of operators that se
rately break parity, but with opposite handedness.

B. Nanotube effective Hamiltonian

The reduced HamiltoniansHK(K8) are applied to the car
bon nanotube by the substitutionqa→2 ia¹, where the gra-
dient operator acts on the spatial coordinates in the enve
functions u and v. Thus near theK point we obtain the
long-wavelength Hamiltonian

2 i\vF~sx]x2sy]y!S uK~rW !

vK~rW !
D 5ES uK~rW !

vK~rW !
D . ~6!

Wrapping the tube along its circumferential direction i
troduces a subtle quantization condition for the transve
crystal momenta in the envelope functionsuK andvK . Note
that thephysicalelectron fieldC is single valued function of
position on the tube, and it is therefore a periodic function
the circumferential coordinate,C(rW1CW)5C(rW), whereCW is
the wrapping vector.CW is a translation vector of the graphen
sheet, and it is conventionally indexed by two integersM and
N which define the combination of primitive graphene tran
lationsaW 1 andaW 2 that produce a closed orbit on the surfa
of the nanotubeCW5MaW 11NaW 2. The Bloch phase facto
exp(iKW •rW) is not a periodic function on the circumference
the tube, since it accumulates a phase exp@2pi mod(M
2N,3)/3# on a single closed orbit. Therefore, period
boundary conditions forC generally require quantization o
the crystal momenta in the envelope functionsuK andvK to
fractional values, i.e., the fieldsuK and vK are not single
valued functions of position on the surface of the tube
instead satisfy the phase-shifted boundary conditions

S uK~rW1CW!

vK~rW1CW!
D 5~z* !mod(M2N,3)S uK~rW !

vK~rW !
D . ~7!

~The envelope wave functions near theK8 point have the
conjugate phase shiftszmod(M2N,3).! ThusuK andvK are pe-
riodic functions of the tube circumference only for the on
third of the possible wrapped lattices whereCW is a translation
vectors of theA33A3 superlattice of the graphene she
These are special unfrustrated structures for which the z
corner Bloch functions match smoothly around the tube
cumference. The other wrapped structures require a ph
shift in the envelope functions to continuously match t
physical fieldC around the circumference. It is convenie
to impose this boundary condition onuK andvK by amend-
ing Eq. ~6! to include an effective vector potential directe
around the tube circumference, and with strengtham
3-2
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THEORY OF SCANNING TUNNELING SPECTROSCOPY . . . PHYSICAL REVIEW B66, 235423 ~2002!
5(2p/C)@m2 1
3 mod(M2N,3)#, wherem is an integer index

for each of the quantized azimuthal subbands on the na
tube.

Although the projected HamiltoniansHK(K8) are isotro-
pic, the orientation of the graphene lattice in the tang
plane of the tube appear in the theory through thephasesof
their off-diagonal terms. We define the chiral angleu as an
angle between the zone boundary wave vectorKW and the
longitudinal axis of the nanotube, as shown in Fig. 1. Us
this convention, the projected Hamiltonian Eq.~5! reads

HK5
A3ta

2 S 0 ~2 i ]z1 iam!eiu

~2 i ]z2 iam!e2 iu 0 D , ~8!

where the partial derivative acts on the electron coordinaz
along the axis of the nanotube. Thus for an armchair t
where the conventionalx axis of the graphene sheet and t
nanotube axis coincide, we haveu50.

The eigenfunctions of the Hamiltonian in Eq.~8! are
Bloch states with reduced crystal momentaq with the disper-
sion relation

Em~q!5\vFAq21S 2p

C @m2 1
3 mod~M2N,3!# D 2

~9!

and with eigenvectors~suppressing the indexK)

cq~z!5eiqzS uq

vq
D 5

eiqz

A2
S e2 i (f1u)/2

ei (f1u)/2 D , ~10!

where the phase anglef5arctan(am/q) and u is the chiral
angle defined in Fig. 1. Thus the dispersion relation of
graphene sheet is ‘‘sliced’’ into hyperbolic branches, w
pairs of branches indexed by the azimuthal quantum num
m. The m50 branch is gapless for nanotubes with mod(M
2N,3)50. Closer analysis shows that when mod(M
2N,3)50 andMÞN a small residual gap arises from th
broken threefold rotational symmetry in the Hamiltonian d
to the tube curvature.6

FIG. 1. Thex axis of the graphene sheet in its convention
setting can be tipped by an angleu with respect to the axis of the
nanotube. Note that theK point is missaligned with the tube axis i
this setting, and has the projectionsK i along the tube axis andK'

along the circumferential direction.
23542
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C. Angular momenta in the azimuthal subbands

The eigenstates of the effective mass theory are inde
by their crystal momentum in the tangent plane of the tu
or, equivalently, by thez components of crystal momentum
and angular momentum. These quantum numbers play a
tral role in determining the interaction of the tube orbita
with an encapsulated species. Note however that the ang
momentum quantum number is generallynot identical to the
azimuthal subband index introduced in the preceding sect

The electron fieldC can be expanded in the Bloch bas
functionsca,K(rW) and cb,K(rW). The periodic parts of these
functions can be expressed in the Fourier seriesUa

5(n@e2 iGW n•dW aF(uKW 1GW nu)#eiGW n•rW, whereF(q) is the Fou-
rier transform of the localized orbitalf (rW) in Eq. ~4!. It is
isotropic sincef (rW) represents ap orbital with orientation
perpendicular to the tangent plane of the graphene sh
Retaining in the sum only the terms withuKW 1GW nu5uKW u ~the
‘‘lowest star’’ approximation! we find that the physical elec
tron field on the surface of the tube is

C~rW !5F~K !(
n

ei (KW 1GW n)•rW~1, e2 iGW n•tWa!•S uq

vq
D ei (qz1amRf),

~11!

whererW is a vector in the tangent plane of the tube of rad
R, z is its axial component andf is the azimuthal angula
coordinate around the tube circumference.

Equation~11! demonstrates that the total phase accum
lated by the wave function around the tube circumferen
has contributions from both the subband indexm and the
phase of the zone boundary Bloch function. The physi
angular momentam̃ are integral and are given by

m̃n5mn2 intS M2N

3 D2
1

2p
GW n•CWMN , ~12!

where ‘‘int’’ is the nearest-integer function. The offse
int@(M2N)/3# in Eq. ~20! is smallest for tube wrapping
near the armchairM5N geometry and largest for tubes ne
the zigzag@e.g., (M ,0)] structures. Note also that the sum
Eq. ~11! involves a sum over thethree membersKW 1GW n
forming a star ofK points and thus even in the lowest st
approximation, a single azimuthal subband contains an
mixture of several differentphysicalangular momenta. This
mixing results from umklapp processes on the graphene
tice in the tangent plane of the tube. In our calculations
low we focus on the element of the star with the small
values ofm̃n and denote this value simply asm̃.

These effects are illustrated in Fig. 2 where we disp
line plots of the real and imaginary parts ofC for the lowest
m50 azimuthal subbands of the (11,10) and (17,0) na
tubes. Both are oscillating functions of azimuth. Howev
the (11,0) tube is nearly in the ‘‘armchair’’ configuration
and approximately one third of the amplitude in the them

50 subband is found in them̃50 state producing a nonzer
average value for these fields. By contrast, the lowestm

l
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50 subband of the (17,0) tube has a minimumm̃56 ~i.e.,
there is nom̃50 component! and it oscillates with an aver
age value of zero.

III. FULLERENE ORBITALS

One can also develop a model for the molecular orbi
of C60 using a ‘‘nearly free-electron’’ description. In fact, th
multiplet structure of thep electron spectrum of the C60
molecule immediately identifies these states as free par
states on the surface of a sphere that are split in the icos
dral crystal field of the fullerene molecule.10 For angular
momentaL.2 the 2L11 fold degeneracy is broken by th
discrete rotational symmetry of the molecule. Neverthel
in each angular momentum channel one may construct
symmetrized combinations of the free particle states
transform as irreducible representations of the icosahe
point group. These symmetrized states turn out to provid
good description of the electronic states of the next sev
orbital multiplets. Of particular interest are the highest un
cupied orbital~HOMO! of the molecule, which is a fivefold
degeneratehu multiplet, and the two lowest unoccupied o
bitals ~LUMO’s! which are three fold degenerate multiple
of t1u and t1g symmetry.

To study these orbitals we diagonalize a tight bindi
Hamiltonian that connects the nearest-neighbor sites on
surface of the C60 molecule. We then compute the overlap

FIG. 2. Wave functions for the lowest azimuthal subbands w
(m50) on an (11,10) and a (17,0) nanotube are plotted as fu
tions of the azimuthal anglef. The plots give the real~solid! and
imaginary~dashed! parts of the physical electron fieldC. For the

(17,0) tube the lowest azimuthal subband has anm̃50 component
~note that the average value ofC is nonzero!. For the zigzag (17,0)

tube the smallest angular momentum component occurs form̃56
and the average value ofC vanishes.
23542
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its eigenstatesFm(V̂n) with the free particle statesYLM pro-
jected onto the discrete C60 lattice.

CLM ;m5

(
n

YLM* ~V̂n!Fm~V̂n!

A(
n

YLM* ~V̂n!YLM~V̂n!

. ~13!

By this method one finds that the five orbitals of thehu
manifold are derived mainly from theL55 free particle
states and transform as a pseudotensor~i.e., they transform as
a tensor under spatial rotations, but are odd under sp
inversion!. The t1u form a vector representation in theL
55 manifold and thet1g states from a pseudovector~odd
under rotation, and even under inversion! representation de
rived from theL56 manifold.

The overlap matrixCLM ;m has a simple structure in
geometry where the fivefold symmetry axis of the fullere
molecule is oriented along thez direction. This quantizes the
angular momenta about the highest symmetry axis of
molecule. Interestingly, calculations using van der Waals
tentials between atomic sites show that the fullere
nanotube interaction energy is optimized in this geometr11

In Tables I–III we display the normalized overlap matr
elements obtained for this orientation. We note that orb
quantization around the fivefold-symmetry axis greatly co
strains the possible mixing among the azimuthal compone
in a given angular momentum channel. Thus, for thet1u
orbital the L55,M50 state can mix withL55,M565
states, but the mixing with all other azimuthal components
symmetry forbidden. Note also that among these three m
tiplets theM50 state is allowedonly in the t1u vector rep-
resentation. Thus only thet1u orbital admits an azimuthally
isotropic component. This is demonstrated in Fig. 3 wh
we plot the probability amplitude for the components of t
t1u and t1g orbital multiplets that are symmetric under 2p/5
rotations about the fullerene fivefold axis.

IV. COUPLING AND EFFECTIVE INTERACTION

A. Mixing Hamiltonian

In this section we develop a model to describe the mix
of the ball-derived and tube-derived electronic degrees
freedom. Consider the case of coupling to a single encap
lated buckyball located at the origin. The microscopic m
ing Hamiltonian has the formHmix5(a,n(bVa,n;bca,n

† bb

h
c-
TABLE I. Overlap matrix elementsC5M ;m for the hu orbitals of the buckyball, ordered by22<m<2
~rows! and25<M<5 ~columns!. The dots denote entries that are zero by symmetry.

M 25 24 23 22 21 0 1 2 3 4 5

m522 0.680 0.733i
m521 0.806 20.592i
m50 0.707 0 0.707
m51 20.592i 0.806
m52 0.733i 0.680
3-4



THEORY OF SCANNING TUNNELING SPECTROSCOPY . . . PHYSICAL REVIEW B66, 235423 ~2002!
TABLE II. Overlap matrix elementsC5M ;m for the t1u orbitals of the buckyball, ordered by21<m
<1 ~rows! and25<M<5 ~columns!. The dots denote entries that are zero by symmetry.

M 25 24 23 22 21 0 1 2 3 4 5

m521 0.502 0.865i
m50 0.327i 0.887 0.327i
m51 0.865i 0.502
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1Va,n;b* bb
†ca,n , whereca,n

† creates an electron on theath
sublattice in thenth cell of the tube~indexed by a two-
dimensional translation vectorTW n) andbb

† creates an electron
on thebth site of the buckyball. TheV’s are the tunneling
matrix elements which will be assumed to vary exponentia
with the distance between pairs of sites. We rewrite this
croscopic Hamiltonian in terms of the long-wavelength d
grees of freedom on the ball and tube by computing ma
elements ofHmix between the tube- and ball-derived state

^C tubeuH̃mixuFm&

5@u* ~0!, v* ~0!#3F(
n

(
b

e2 iKW •TW n2 im8fn8

3S Va,n;b

e2 iKW •dW bVb,n;b
D YLM~V̂b!GCLM ,m

5@u* ~0!, v* ~0!#S ta,LM

tb,LM
DCLM ,m . ~14!

Equation ~14! expresses the amplitude to hop from t
a(b)th sublattice in them8th subband to themth orbital on
the ball.

FIG. 3. Contour plots of wave functions from thet1u ~top! and
the t1g ~bottom! orbital multiplets. Both states are invariant und
azimuthal rotations of 2p/5. However, note that thet1u state has a
nonzero azimuthal average~i.e., it overlaps theM50 free particle
state!, while the t1g state has zero overlap with the azimutha
isotropic state.
23542
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Passing to the continuum limit, the sum in Eq.~14! can be
expressed as

E d2r 8d2V(
n8

(
L8M8

gL8M8e
2 i (KW 1GW n8)•rWn82 im8fn8

3v~ urWn2RbV̂u!YLM~V̂ !YL8M8~V̂ !, ~15!

where v(r ) gives the hopping amplitude between atom
sites as a function of their separation. This is assumed to v
exponentially with the separation of the ball coordinate a
tube coordinate,v5exp(2urWt82RbV̂u/at), where the decay
constantat'1 Å. In the lowest starapproximation we retain
only the reciprocal lattice vectors that connect elements
the first star ofK points (uKW u5uKW 1GW n8u) and the lowest
icosahedral harmonic~this is the isotropic termL850,M 8
50). ~Since the factorv varies smoothly on the scale of
lattice constant on the surfaces of the tube and buckyb
higher contributions to the sum are suppressed by a f
factor.! Thus we consider the overlap integralOm8;LM over
the surface of the tube and over the surface of the ball

Om8;LM5E d2r t8E dV e2 i (KW 1GW n8)•rW82 im8fn8

3v~ urW t82RbV̂u!YLM~V̂ ! ~16!

and the bracketed terms in Eq.~14! are therefore

S ta,LM

tb,LM
D

m8

5POm8;LMCLM ,mS 1

e2 iGW n8•dW b
D

}Om8;LMCLM ,mS 1

1D , ~17!

whereP is a constant prefactor. Note that it is always po
sible to define a basis where the relative phase of the tun
ing amplitude to theb sublattice is unity.

By expanding the argument of the exponential to qu
dratic order in the interatomic separations the overlap in
gral is well approximated by the Gaussian integral

Om8;LM5
2patd

ARbRt

e2d/ate22atd[K i
2
1(m̃82/RtRb)]

3E dh eiK iRbhe2(Rb/2at)h
2
YLM

3~p/21h,f!e2 iM fdM ,m̃8

5
2patd

ARbRt

e2d/ate22atd[K i
2
1(m̃82/RtRb)]ILM . ~18!
3-5
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TABLE III. Overlap matrix elementsC6M ;m for the t1g orbitals of the buckyball, ordered by21<m
<1 ~rows! and26<M<6 ~columns!. The dots denote entries that are zero by symmetry.

M 26 25 24 23 22 21 0 1 2 3 4 5 6

m521 0.379i 0.788 0.485i
m50 0.707 0 0.707
m51 0.485i 0.788 0.379i
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Thus we find that the overlap integral requires a Fou
transform of the polar factor ofYLM weighted by a Gaussia
peaked at the equator of the ball. The momentumK i is the
projection of theK point wave vector along the tube axi
this depends on the chiral angle of the tube~see the diagram
in Fig. 1! and has its maximum value 4p/3a'1.70 Å21 ~for
an armchair wrapping! and a minimum value 2p/A3a
'1.47 Å21 ~for a zigzag wrapping!. Because of the Gauss
ian factor the integrand is heavily weighted in the regi
uhu<Aa/Rb'0.53. This allows us to obtain a useful a
proximation to the integral~accurate to'20%) by replacing
the momentum by its typical valueK i.1.59 Å21. We also
observe that the overlap integral contains in its exponen
prefactor aform factorexp@22atd(Ki

21m̃82/RtRb)#; since this
is determined mainly by the magnitude of the wave vecto
the K point, it is nearly independent of the tube wrappi
vector.

The tunneling amplitudest are obtained by contracting th
overlap matrix elementsI with the amplitudesCLM ,m for the
mth buckyball orbital, using Eq.~17!. The overlap matrix
element with the tube orbital selects a single value of
azimuthal quantum numberM, and we therefore tabulate th
M-resolved tunneling amplitudes for each component of
hu , t1u , and t1g multiplets in Tables IV–VI. A single azi-
muthal subband defines a value for the allowedz component
of angular momentumm̃85M for which the allowed cou-
plings with the ball orbitals~indexed bym) are tabulated in
each column of Tables IV–VI. By inspecting these tables
identify the following trends.

~a! The coupling strengths are largest for the smallest v
ues ofuM u.

~b! Only the t1u orbital couples to an azimuthally isotro
pic M50 state. This was noticed as a special feature of
orbital in Sec. III. Interestingly we see that the coupling
theL55,M50 orbital involves the first spatial derivative o
the wave function]C/]z at the impurity site, i.e., the cou
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pling involves the odd component of the Bloch factoreiKW •rW.
The largest couplings are obtained in for those tubes
which them̃850 mode couples to them50 t1u orbitals.

~c! The matrices are ‘‘sparse’’ and therefore a given a
muthal subband will have only a few allowed couplings
the buckyball orbitals.

B. Effective tube Hamiltonian

By combining the results of Secs. II B, III, and IV w
arrive at a Hamiltonian describing the motion of electrons
the tube, on the ball and their coupling

H5E dz
A3t

2
c†~z!

3S 0 ~2 i ]1 iam!eiu

~2 i ]2 iam!e2 iu 0 Dc~z!

1(
m

Fm
† EmFm1c†~0!S ta,m

tb,m
DFm

1Fm
† ~ ta,m* , tb,m* !c~0!. ~19!

Here the buckyball is centered at the origin,c(z)
5@u(z),v(z)# is a two component spinor for the effectiv
mass fields near theK point and Fm annihilates themth
buckyball orbital with energyEm . ~Note that a closely re-
lated expression describes the coupling to the effective m
fields near theK8 point.! To simplify our notation in this
section, we suppress the orbital indexm and treat the case o
single bound orbital on the ball with energyEo .

By integrating out the buckyball degree of freedom in th
Hamiltonian we obtain an energy dependent matrix s
energy acting on the spinor fieldc
TABLE IV. Tunneling amplitudesta(b);5Mum for the hu orbitals of the buckyball, ordered by22<m
<2 ~rows! and 25<M<5 ~columns!. Using Eq.~31! the tunneling amplitudesta and tb are obtained by
scaling these numbers with a constant prefactorP. The dots denote entries that are zero by symmetry.

M 25 24 23 22 21 0 1 2 3 4 5

m522 20.140i 20.151i
m521 0.155 20.094
m50 0.054 0 0.054
m51 20.094 20.155
m52 0.151i 20.140i
3-6
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TABLE V. Tunneling amplitudesta(b);5Mum for the t1u orbitals of the buckyball, ordered by21<m
<1 ~rows! and 25<M<5 ~columns!. Using Eq.~31! the tunneling amplitudesta and tb are obtained by
scaling these numbers with a constant prefactorP. The dots denote entries that are zero by symmetry.

M 25 24 23 22 21 0 1 2 3 4 5

m521 0.096 0.138
m50 20.025i 0.167 i 0.025i
m51 0.138 20.096
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Ŝ~z,E!5c†~z!S ta* ta ta* tb

tb* ta tb* tb
Dc~z!

ad~z!

E2Eo
~20!

and Eq.~35! is replaced by an effective Hamiltonian on th
surface of the tube

H5E dz

a

A3t

2
c†~z!

3F S 0 a~2 i ]1 iam!eiu

a~2 i ]2 iam!e2 iu 0 D
1Ŝ~z,E!Gc~z!. ~21!

The self-energyS describes processes in which an ele
tron hops on and off the buckyball at the originz50, pro-
ducing a localized potential as seen from the surface of
tube. The matrix self-energy has the structure of aprojection
operatorwhere the spinor state (ta* , tb* ) is scattered by the
defect, while the orthogonal state (tb ,2ta) is perfectly trans-
mitted. For the coupling Hamiltonian derived in the prece
ing sectionta5tb and only the sublattice symmetric spin
(1,1) is scattered. This leads to a nontrivialk dependence in
the scattering problem that we solve in Sec. V.

The effective potential is energy dependent: attractive
tube states with energies below the on ball resonancE
,Eo and repulsive for states with energiesE.Eo . When
tube states ‘‘match’’ the on ball self-energyEo ~to a precision
given by strength of the tunneling amplitudet) the tube
modes can resonate with the encapsulant orbitals and
strongly mixed. Our model ignores any direct hopping m
tion between neighboring buckyballs that are encapsula
within the nanotube. This is motivated by the experimen
data that indicate the effects of hybridizing the buckyb
orbitals with the nanotube modes are significantly stron
than the direct coupling between neighboring balls in a p
pod lattice.
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V. SCATTERING FROM BUCKYBALLS
AND BUCKYBALL DIMERS

In this section we formulate and solve the scattering pr
lem for electrons on a nanotube scattering from encapsul
buckyballs in isolation or as isolated dimers. The clos
related problem of propagation on a tube with an orde
encapsulated lattice is solved in Sec. VI. We find that mos
the important spectral features found for the ordered lat
problem are found at the level of scattering from isolat
dimers though not from isolatedmonomers. This indicates
that the relevant physics for the encapsulated lattice is r
tively short ranged in this system. Nonetheless the effect
multiple scattering between neighboring buckyballs must
included to obtain a reasonable description of electronic p
nomena in the densely packed phase.

A. Nanotube Green’s functions

The equation of motion for the one-electron Green’s fun
tion G(z,z8;E) is

~E2H!•G~z,z8;E!5ad~z2z8!, ~22!

wherea is the graphene lattice constant. In this expressioG
is a 232 matrix operator that we will calculate explicitly in
the site representation. In this representation the nanot
Hamiltonian is expressedH52 i\vFsx(]/]z)1dsy so that
the Green’s function with outgoing boundary conditions
the left and right of the source atz8 is

G~z,z8!52
iaeiq(z2z8)

2\vFcosf S 1 sgn~z2z8!e2 if

sgn~z2z8!eif 1 D .

~23!

B. Scattering from an isolated encapsulant

Here we use the Green’s functions derived in the prec
ing section to study the electronic spectrum for a nanot
containing a single encapsulated buckyball. Parsing
TABLE VI. Tunneling amplitudesta(b);6Mum for the t1g orbitals of the buckyball, ordered by21<m
<1 ~rows! and 25<M<5 ~columns!. Using Eq.~31! the tunneling amplitudesta and tb are obtained by
scaling these numbers with a constant prefactorP. The dots denote entries that are zero by symmetry.

M 26 25 24 23 22 21 0 1 2 3 4 5 6

m521 20.033i 0.126i 0.079i
m50 0.127i 0 0.127i
m51 0.079i 20.126i 20.033i
3-7
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Hamiltonian into an unperturbed piece and a defect poten
H5H01Ŝ, we compute the Green’s function in the pre
ence of the point scatterer by solving the Dyson equa
G 215G 0

212Ŝ(E), whereG 0
21 is the bare Green’s function

andŜ(E)5aG(E)d(z) with G(E) containing the energy de
pendent matrix terms in Eq.~20!. G(z,z8) is a 232 matrix
function of the continuous spatial variablesz and z8; inner
products are carried out by integrations overz and by sum-
mation over the sublattice indices. The self-consistent s
tion to the Dyson equation yields

G5S T0G0~0,0! T0G0~0,z!

G0~z,0!T0 G0~z,z!1G0~z,0!VT0G0~0,z!
D , ~24!

whereT05@I22G0(0,0)V#21. The diagonal elements of th
Green’s function have a simple interpretation in terms
closed Feynman paths that propagate from some positionz to
the impurity sitez50 where they interact with the defec
potential and then return to their original position atz.

To illustrate the effects of scattering from a single enc
sulant, in Fig. 4 we collect our results for the local density
states, resolved in energy and position, along the length
nanotube that surrounds an encapsulant centered at the
gin. In this calculation we consider coupling of a sing
nanotube orbital with energyEo51.3 eV to azimuthal sub-
bands with gap parameterd51.1 eV and hybridization
strengtht50.9 eV. ~These choices turn out to provide a re
sonable description of the experimental data for the de
peapod lattice, as detailed below.! The local density of state
is obtained from a trace of the Green’s functio

FIG. 4. Density plot of the local density of statesn(z,E) on the
surface of the nanotube encapsulating a single buckyball. The
plots give the charge densityn(z) and the density of statesn(E)
along single cuts across the density plot as shown. In this calc
tion gapped nanotube bands with a gap parameterd51.1 eV are
mixed with a buckyball orbital with energyEo51.3 eV with hy-
bridization strengtht50.9 eV.
23542
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n(z,E)52(1/p)Im tr G(z,z,E) and it is plotted in the gray-
scale of the density plot of Fig. 4. The attached line pl
give the data on two linescans as a function of energy
fixed position~on top of the defect site! and as a function of
position for fixed energy~near the unperturbed energy of th
buckyball orbital!.

The figure illustrates two important effects. For energ
E,Eo the effective potential on the nanotube is attractiv
and this produces a bound state on the wall of the nanot
This state isnot simply the bound orbital on the buckybal
but rather it arises from strong mixing of the nanotube sta
with the active orbital on the buckyball.~Note that the data
in Fig. 4 are projections of the Green’s function onto the tu
degrees of freedom.! For energiesE.Eo the effective poten-
tial on the nanotube is repulsive. We observe that in
position line scan, the electronic density of states exhibit
minimumat the defect site. Nevertheless this repulsive p
tential backscatters the propagating modes of the tube
the interference between the forward and reflected wave
duces the standing wave pattern shown in the density
and in the lineplot to the right. This backscattering mix
propagating states at momenta6q(E) and the wavelength o
these oscillations is energy dependent withl
52p/2uq(E)u.

C. Scattering from a bucky dimer

The solution to the scattering problem for a bucky dim
is similar to the treatment given in the preceding secti
with the important complication that phase coherence
tween the scattering processes at the two defect sites
must be included in the calculation. Interestingly, we fi
that essentially all the features of spectrum of the bucky
tice are found at the level of the scattering theory for t
single bucky dimer.

In our model we treat two identical scattering sites
positions6d/2; gs,s8 denotes the various components ofG0
that connect these two sites, i.e.,g125G0(d/2,2d/2). Then
the unperturbed Green’s function can be written in a blo
matrix form

G05S g22 g21 G0~2d/2,z8!

g12 g11 G0~d/2,z8!

G0~z,2d/2! G0~z,d/2! G0~z,z8!
D . ~25!

Thus the inverse of theT matrix can be reconstructed

T 215S I22g22V 2g21V 0

2g12V I22g11V 0

2G0~z,2d/2!V 2G0~z,d/2!V I
D ~26!

and the Green’s function in the presence of the pair of s
terers is

e-

a-
3-8
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G5S T12g211T11g12 T12g211T11g11

Gs~z,z8!
D , ~27!
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where

Gs~z,z!5G01G0~z,2d/2!T22G0~2d/2,z!

1G0~z,2d/2!T21G0~d/2,z!

1G0~z,d/2!T12G0~2d/2,z!

1G0~z,d/2!T11G0~d/2,z!

5G01 (
s,s856

G0~z,sd/2!Tss8G0~s8d/2,z!. ~28!

Each term in the Born series for the external Gree
function Gs describes the amplitude for a closed Feynm
path for an electron starting at positionz to propagate into
the defect region where it is repeatedly scattered within
between the two impurity sites and finally propagates ou
the scattering region back to its original position.

In Fig. 5 we collect our results for the hybridization of th
nanotube electrons with an isolated encapsulated dimer
a separationd510 Å between the buckyballs. From the de
sity plot and the position line scans it is clear that ea

FIG. 5. Density plot of the local density of statesn(z,E) on the
surface of the nanotube encapsulating an isolated buckyball di
The separation between buckyballs in the dimerd510 Å. The line-
plots give the charge densityn(z) and the density of statesn(E)
along single cuts across the density plot as shown. In this calc
tion gapped nanotube bands with a gap parameterd51.1 eV are
mixed with buckyball orbitals with energyEo51.3 eV with hybrid-
ization strengtht50.9 eV.
23542
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buckyball induces a bound state in the nanotube spectr
These are mixed to produce a ‘‘bonding’’ and ‘‘antibonding
combination. The position line scans pass through the e
gies of these two bound states, and show a zero in the de
of the antibonding states at the midpoint of the dimer. N
that in this calculation there isno direct mixing between the
buckyball orbitals; rather the splitting is completely due
indirect mixing by coupling to the tube degrees of freedo

At energies just above the gapE.d the hybridization of
the tube and ball degrees of freedom produces a deep m
mum in the local density of states seen on the tube.
higher-energyE'1.6 eV we see an enhancement of electr
density at the midpoint of the dimer. This arises from
Fabry-Perot type resonance. Here incident electronic wa
are multiple reflected from each defect site, and at this
ergy the wavelength of the Bloch states is ‘‘matched’’ to t
interdefect spacing. Thus, we find that below the orbital
ergyEo the electronic density on the tube is enhanced on
defect sites, whereas aboveEo the electronic density is en
hanced between the defect sites.

VI. KRONIG PENNEY MODEL

In this section we apply the model developed in Sec. V
an ordered array of encapsulated fullerenes, a ‘‘fullerene p
pod.’’ The discrete translational symmetry of this structu
leads to the formation of electronic bands in which the na
tube and buckyball degrees of freedom are hybridized. T
Hamiltonian for an ordered array of encapsulated peapod

H52 i\vFsx]z1dsy1aG~E!(
n

d~z2nab!, ~29!

where thes ’s are Pauli matrices andab is the interball spac-
ing. Since the scattering potential in Eq.~29! is periodic,
with superlattice periodab its eigenfunctionscan be chose
to satisfy Bloch boundary conditionsck(z)5eikzUk(z),
where the functionUk(z) is a spinor field that is periodic
obeying the boundary conditionUk(z1ab)5Uk(z). In the
domain 0,z,ab , the electron states at energyE aresuper-
positions of the free particle statesck(z)5Ac1(z)
1Bc2(z) andUk is therefore explicitly

Uk~z!5S e2 if/2 eif/2

eif/2 2e2 if/2D S ei (q2k)z 0

0 e2 i (q1k)zD S A

BD
5U•S ei (q2k)z 0

0 e2 i (q1k)zD S A

BD , ~30!

where \vFq5AE22d2 and f5arctand/AE22d2. @Recall
that for nonzero chiral angle,u, the phase anglef→f1u,
using Eq.~8!.#

er.

a-
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The Bloch wave vectork and the expansion coefficientsA
and B are obtained by integrating around the singu
d-function scattering potential atz50 yielding the matching
condition

S 2 i\vFsx@ck~01!2ck~02!#1
aG~E!

2
(ck~01!1ck~02! D

50. ~31!

This is cast in the form of a conventional eigenvalue probl
by the rearrangment

U•S e2 iqz 0

0 eiqzDU 21
•S i\vFsx1

aG~E!

2 D 21

3S i\vFsx2
aG~E!

2 D •US A

BD
5S e2 ikz 0

0 e2 ikzD •US A

BD ~32!

or, introducing a more compact notation

UPqU 21
•S~E!•US A

BD 5e2 iukUS A

BD . ~33!

Equation~33! has a simple interpretation. The vector

S a

b D 5US A

BD ~34!

expresses the eigenvectors of this problem rotated from
running wave representation into the sublattice represe
tion. UPqU 21 is the free particle propagator in this basis, a
S(E) is the phase-shift accrued by scattering through an
purity site. Equation~33! tells us to choosea andb to find
the linear combination of free running waves of the unp
turbed problem that satisfy Bloch boundary conditions in
presence of scattering from the impurity lattice.

The hybridizated electronic spectrum for the fullere
peapod is plotted in Fig. 6. The dashed curves give the
mixed spectra for the gapped bands of the nanotube and
localized orbitals on the buckyballs. Note that in this a
proximation the buckyball band is perfectly dispersionle
i.e., there is no direct hopping between the fullerene si
Introducing the mixing@formally turning on the self-energy
in Eq. ~29!# produces and avoided crossing between th
branches. This leads to the hybridized bands given by
solid curve. Thelowest band is derived from the bound sta
produced by the attractive defect potential. It is separated
an energy gap~a hybridization gap! from the spectrum of
strongly dispersive states. Finally, since the defect poten
is periodic with superlattice periodab , Bragg gapsare gen-
erated at the zone center (q50) and zone boundaries (q5
6p/ab).

It is interesting that the mixing between the localized b
orbital and the dispersive tube band is not symmetric un
23542
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the the operationq→2q. This asymmetry does not violat
Kramers theorem since the time reversed partner to the s
with crystal momentumq near theK point is a state with
crystal momentum2q near theK8 point. The source of the
asymmetry can be understood by rotating the matrix s
energy back to the basis of propagating tube modes obta
at energyE. This gives a self-energy proportional to

G̃}U †
•S 1 1

1 1D •U5S 11cos~f1u! i sin~f1u!

2 i sin~f1u! 12cos~f1u!
D ,

~35!

wheref5arctan(d/AE22d2) andu is the chiral angle. For
example, in the ungapped bands of an armchair tubef50
and u50; thus a hybridization gap opensonly in the q.0
branch, and there is no backscattering.~Near theK8 point the
situation is reversed, and the hybridization is allowed only
the q,0 branch.! Physically this occurs because the prop
gating modes of the armchair tube are pure ‘‘bonding’’ a
‘‘antibonding’’ combinations of theA andB sublattice basis
functions. The antibonding combination is annihilated by t
self-energy operator and so the defect site is ‘‘invisible’’ f
this combination. For a general chiral angle, or for t
gapped electronic bands of a metallic tube, the states at w
vectors 6q are complex; so that they are neither pu
‘‘bonding’’ nor ‘‘antibonding’’ in character. Nonetheless, i
general the left moving and right moving modes admix w
the impurity state with different strengths.

FIG. 6. Scheme for hybridizing the localized mode of a buck
ball with the gapped propagating bands of a nanotube. The unm
bands are given by the dashed curves and the mixed bands ar
solid curves. In this calculation gapped nanotube bands with a
parameterd51.1 eV are mixed with buckyball orbitals with energ
Eo51.3 eV with hybridization strengtht50.9 eV.
3-10
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Once the eigenvector amplitudesa and b are obtained
from Eq. ~34!, we invert Eq.~30! to find an expression fo
the charge density

rk~z!5~a* b* !•S 1 ie22iqzsin~f1u!

2 ie2iqzsin~f1u! 1 D
•S a

b D . ~36!

The tunneling density of states is obtained from the trace
the imaginary part of the single-particle Green’s function

Gmn~z,z8;E!5
a

2pE dk
cm* ~z!cn~z8!

E2E~k!1 i e
~37!

and is calculated by linearizing the denominator around
zero crossings]E/]kuk(E)@k2k(E)#1 i e. Thus the tunneling
density of statesn(E) is expressed as

n~z,E!5(
k

rk~z!

u]E/]ku
k(E)

. ~38!

Since the scattering problem is not symmetric under the
versionk→2k the sum in Eq.~38! cannot be factored into
an energy dependent term multiplied by a spatially vary
term ~as it would for a symmetric bandstructure!.

The effect of the periodic structure of the peapod latt
on the electronic spectrum is apparent in the density plot
the local density state shown in Fig. 7. The impurity sta
induced by the encapsulants generate an impurityband, here
extending from'0.8 eV–1.0 eV. The charge density on th
surface of the tube for this band is peaked at the defect s
This is seen in the linescans on the right which exhibit
‘‘upward’’ cusp in the local density of states at the defe
sites. Note also that the top of the impurity band is ‘‘an
bonding’’ in character, with nodes~i.e., not simply local
minima! at the midpoints between neighboring encapsula
This impurity band is separated from the spectrum of sc
tering states by a hybridization gap. At energies above
hybridization gap, the character of the charge density is
versed. Here the the local maxima are found in the bo
centers between the neighboring encapsulant sites. Th
the periodic analog of the Fabry-Perot enhancement of
charge density in the midbond observed for the isola
dimer.

VII. COMPARISON WITH EXPERIMENT

The theory of the electronic structure of peapods dev
oped in this paper can be compared to STM measurem
on isolated peapods.9 In these experiments it was found th
peapods could be distinguished from unfilled SWNT’s by
periodic modulation in the STM topographs that are sup
imposed on the atomic lattice of the SWNT cage. For
ordered peapod these modulations exhibited an average
riod of 10 Å, in good agreement with TEM observations
the C60 spacing in densely packed peapods.8 More detailed
information about the density of states was obtained fr
23542
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spatially resolved spectroscopic maps made by recording
differential conductance (dI/dV) of the STM junction as a
function of the bias voltageV while moving the tip across the
top of the peapod.

Figure 8, previously reported in Ref. 9, shows one su
spectrosocopic map for an ordered peapod. For this sam
the occupied electronic states imaged at negative bias ap
to be similar to those expected for an unfilled semicondu
ing SWNT. The onset of conduction at negative bias for t
peapod occurs near20.5 eV which we interpret as tunnelin
into the secondoccupied azimuthal subband of a semico
ducting SWNT cage with a radiusR'7 Å. The low tunnel-
ing currents at low voltages in this measurement reduce
contribution from first azimuthal subband with an expect
onset near20.25 eV. There is a faint position depende
modulation in the spectroscopic map that can be attribute
small variations in the tip sample separation due to the fe
back conditions used in this measurement.9

In contrast to the occupied electronic states which
nearly identical to those of an unfilled tube, the unoccup
states, imaged at positive bias, show dramatically differ
electronic features. After the initial onset of the seco
SWNT azimuthal subband, the differential conductan
shows a strong double peaked modulation with the sa
periodicity as the encapsulated C60 molecules ('10 Å) in
the range 1.0–1.25 eV. At higher energies we observ
broad suppression of the differential conductance follow
by a second strong onset of conductance near 2.0 eV

FIG. 7. Density plot of the local density of statesn(z,E) on the
surface of the nanotube encapsulating a lattice of buckyballs.
separation between buckyballsd510 Å. The lineplots give the
charge-densityn(z) and the density of statesn(E) along single cuts
across the density plot as shown. In this calculation gapped n
tube bands with a gap parameterd51.1 eV are mixed with bucky-
ball orbitals with energyEo51.3 eV with hybridization strengtht
50.9 eV.
3-11
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striking feature of these data is that the modulations of
differential conductance in the low-energy ba
(1.0–1.25 eV) isout of phasewith modulated features ob
served for energies.1.5 eV.

Closer examination of the experimental data shows
the spectral features in the unoccupied density of st
slowly shift in energy along the length of the peapod, so t
their positions varies by nearly 200 meV. We believe th
these spatial variations in the conductance of a SWNT
unrelated to the encapsulated molecules, and are more l
associated with extrinsic effects such as torsion or strain6,13,14

or possibly simply the trapping of extrinsic charge at def
centers in the sample or the substrate. Note that the peri
encapsulant derived features shift ‘‘rigidly’’ with the ban
onsets in this spectrograph.

The observation of energy dependent periodic variati
in the STM spectra demonstrates that the fullerene pea
has an electronic structure that is quite different from tha
the unfilled SWNT, as found in the theoretical results p
sented in Secs. V and VI. A closer comparision of the exp
mental data with the theoretical results for a peapod lattic
presented in the density plots of Fig. 9.

The agreement between theory and experiment allow
to make assignments of the prominent features in the exp
mental spectra. The most dramatic feature in the experim
tal spectrograph is the doublet features at 1.0 and 1.25
which we identify with the extrema of the encapsulant d
rived impurity band found in the calculations. The region
suppressed differential conductance up to'1.4 eV indicates
the formation of a hybridization gap that separates the im
rity band from the next band of propagating states on
SWNT cage. Finally, above the hybridization gap the den
modulations are observed to be out of phase with th

FIG. 8. Spectroscopic map of a fullerene peapod giving a d
sity plot of the spatially resolved differential tunneling conductan
measured as a function of sample bias~horizontal axis! and position
~vertical axis!.
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found in the impurity band. This is striking evidence for th
formation of the standing wave patterns expected just ab
and below an electronic band-gap produced by a perio
one-dimensional potential.

VIII. DISCUSSION

The hybridization model developed in Secs. V and
provides a good description of many aspects of the exp
mental data. However, there are aspects of the data tha
not completely explained by this model, and some pred
tions of theory that have not yet been observed in exp
ment. In this section we comment briefly on these remain
discrepancies.

The thresholds for various features in the differential tu
neling conductance identifies the host nanotubes assemicon-
ductors in which the hybridization is occuring in thethird
azimuthal subband. The gap parametersdm for the azimuthal
subbands of a nanotube of radiusR are dm5(\vF /R)em ,
whereem561/3,72/3,64/3, etc. for semiconducting tubes
For nanotubes with radius'7 Å the first three subband
have gap parametersudmu50.26,0.52, and 1.03 eV, and th
second threshhold at'0.5 eV is clearly resolved in the mea
sured conductance. A C60 molecule nests nicely within such
nanotube leaving a typical graphene van der Waals gap
tween the ball and the wall. Thus, the fundamental prem
of the model is that a single azimuthal subband of the na
tube hybridizes with a single molecular orbital of the enca
sulated fullerene.

To date the effects of the encapsulant have been obse
in the conductance spectra only forpositivesample bias, i.e.,
for tunneling electrons from the tip into the peapod, and o
into peapods with a semiconducting SWNT cage. It is natu
to try to interpret these trends in terms of a ‘‘selection rul
that constrains the hybridization of the tube- and ball-deriv
electronic states.

In Table IX we collect some relevant structral and ele
tronic parameters of candidate encapsulating tubes. Here
have compiled data for all tubes that can encapsulat
buckyball with an interwall spacing~between the ball and the
wall! 3.0 Å,d,3.6 Å. The table gives the value of the in
terwall spacing, the reduced gap parameters and thez com-

-
e

FIG. 9. Comparison of a section of the experimental data fr
Fig. 8 with the calculated local density of states reproduced fr
Fig. 7. In the theory a single molecular orbital on the C60 with an
energyEo51.3 eV hybridizes with a single azimuthal subband
the SWNT with a band-gapd51.1 eV and with a hybridization
strengtht50.9 eV. The lines and arrows denote the trajectories
the five linescans of the theoretical data shown in Fig 7.
3-12
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ponent of the angular momentum for each azimuthal s
band. Ten of the fifteen tubes in this table a
semiconductors.

The third gapped azimuthal subband of the semicond
ing tubes have reduced gap parametersem564/3 in this
table. For five of the ten semiconducting tubes in this ta

FIG. 10. Hybridization scheme for three lowest dispersing s
band pairs of a semiconducting tube coupled with the three dis
sionless frontier orbitals of a C60 lattice. The symmetries of the C60

molecular orbitals are indicated. The level separations of the m
ecule are taken from a tight binding model forp electrons on the
buckyball, with a nearest-neighbor hopping amplitudet52.5 eV. In
the left panel the HOMO and LUMO are positioned symmetrica
around the gap center. Better agreement with experiment is obta
if the molecular spectrum is shifted by10.35 eV, an effect that
could be attributed to orthogonalization to the basis states on
encapsulating carbon nanotube.
23542
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the z component of the angular momentum matches tha
one of thet1u orbitals. These candidate tubes are index
~12,8!, ~13,6!, ~14,6!, ~15,4!, and ~17,1!. Of this group the
prime candidates for those that have been measured ex
mentally are the tubes with strong coupling to thet1u mani-
fold, namely, the~12,8! and~13,6! wrappings. For the~12,8!
tube the third ‘‘conduction band’’ of the tube~near theK

point! hybridizes them̃50 orbital of thet1u multiplet while

for the ~13,6! tube it hybridizes them̃521 orbital of thet1u

multiplet.
The band diagrams in Fig. 10 suggest two plausible s

narios for theabsenceof encapsulant induced structure in th
valence states. On the left hand side the HOMO and LUM
are positioned symmetrically about the band center as
might expect by naively equating the chemical potentials
the tube and buckyball lattices. Then, if the hybridzation p

ceeds through them̃50 mode, as required for the~12,8!
tube, the coupling is allowed~and strong! for the t1u orbital
and forbidden for the hu manifold ~i.e., there is nom̃50
component in thepseudotensor hu manifold. A second sce-
nario is outlined in the right-hand panel. In this case t
molecular spectra have been shifted rigidly by10.35 eV.
Here thet1u orbital overlaps the third azimuthal subband,
situation that we found provides a good description of
experimental data, and thehu orbital overlaps the secon
azimuthal subband in the valence band. For the~13,6! tube
the angular momenta of the bands arem̃521 ~third conduc-
tion band! and m̃523 second valence band. Inspectin
Tables VI and VII we find that the hybridization is aga
symmetry allowed for thet1u orbital and forbidded for thehu
orbital. It is also interesting that the~13,6! structure has one
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l-
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TABLE VII. Structural and electronic parameters for fifteen nanotubes that can encapsulate C60 with
interwall spacings 3.00 Å,d,3.6 Å. The tubes are labeled by their wrapping indices (M ,N) and only one
member of an enantiomeric pair is tabulated@i.e., only ~12,8! and not~8,12!#. The data give the tube radiu
~R! the gap between the fullerene and tube wall (d), the reduced gap parameters (em) for the three lowest

subbands, and thez component of the angular momenta in these subbands (m̃). The the electronic gapd
5\vFuemu/R. The entries in the last three columns are negated for the enantiomeric partner.

(M ,N) R(Å) d(Å) e21(m̃21) e0(m̃0) e1(m̃1)

~10,10! 6.78 3.26 21(21) 0 ~0! 1~1!

~11,9! 6.79 3.27 24/3(22) 21/3(21) 2/3~0!

~12,7! 6.52 3.00 24/3(23) 21/3(22) 2/3(21)
~12,8! 6.83 3.31 22/3(22) 1/3(21) 4/3~0!

~13,6! 6.59 3.07 22/3(23) 1/3(22) 4/3(21)
~13,7! 6.88 3.36 21(23) 0(22) 1(21)
~14,5! 6.69 3.16 21(24) 0(23) 1(22)
~14,6! 6.96 3.44 24/3(24) 21/3(23) 2/3(22)
~15,3! 6.54 3.02 21(25) 0(24) 1(23)
~15,4! 6.79 3.27 24/3(25) 21/3(24) 2/3(23)
~16,2! 6.69 3.17 24/3(26) 21/3(25) 2/3(24)
~16,3! 6.93 3.41 22/3(25) 1/2(24) 4/3(23)
~17,0! 6.66 3.14 24/3(27) 21/3(26) 2/3(25)
~17,1! 6.86 3.34 22/3(26) 21/3(25) 4/3(24)
~17,2! 7.08 3.56 21(26) 0(25) 1(24)
3-13
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of the smallest gap spacings between the ball and the tub
any of the structures tabulated. Thus any symmetry allow
coupling should be particularly strong for this nanotub
Note also, that by inspecting the data of Table VII we pred
that certain tubes~e.g., a~12,7! wrapping! do have symmetry
allowed couplings to buckyball orbitals in thehu multiplet.
None of these have yet been measured experimentally.

Large modulations of the charge density, as are seen in
experiments, suggest that encapsulant orbitals are hybrid
with tube states near the subband extrema. The reaso
this is contained in Eq.~35! giving the forward and back
scattering amplitudes between the propagating tube stat
6q as a function of the mixing anglef and the tube’s chira
angleu. For the ungapped band of an armchair tubef50
andu50 so that backscattering is symmetry forbidden, a
in this case there is no modulation of the charge density s
on the tube wall in response to the defect potential. For o
tube geometries the largest chiral angle entering the theo
quite small (u5p/6, for a zigzag tube!, so that whenever
d!E defect induced modulations of the charge density
very small, though not completely absent. For example
chiral angles for the~12,8! and~13,6! tubes are 6.6° and 12
and the charge-density modulationsDr/r;1022 and 4
31022, respectively whenE@d. Thus we expect that the
encapsulant can produce significant fluctuations in the ch
density of the tube only in the special situation where
resonant molecular levels are well matched in energy to
subband threshholds. It is interesting that this fact alone~be-
side from any of the symmetry selection rules! favors the
hybridization scheme shown in the right panel of Fig. 10

We speculate that this is the reason for the absenc
encapsulant-derived structure in peapods containing met
nanotubes. Two schematic dispersion relations for this si
tion are shown in Fig. 11. In the left-hand panel the buc
ball molecular orbitals are positioned symmetrically arou
the band center. Here density fluctuations due to hybrid
tion of the impurity with the ungapped bands should be
duced by the suppression of backscattering as noted ab
However, the situation found in the theoretical calculatio
of Okadaet al.15 is better described with the diagram on t
right. Here thet1u orbital has shifted to near the Fermi e
ergy, a situation that could be due to a small but nonz
charge transfer onto the buckyball. In this situation the n
unoccupied orbital overlaps only the ungapped bands of
conducting tube, and thehu orbital is resonant with state
deep in the valence band where it would be difficult to det
by ordinary scanning tunneling spectroscopy.

The pseudoselection rules derived in this paper apply o
to the case where the high symmetry axis of the bucky
aligns with the axis of the nanotube. This configuration
favored energetically within a van der Waals model for t
ball-tube interaction. However, other orientations are v
likely accessible above a crossover temperature in
200° –300° K range. Here the encapsulated buckyb
would be expected to resonate with the propagating mode
any encapsulating tube. Thus a qualitative temperature
pendent change in the conductance spectra for tubes tha
‘‘silent’’ in their orientationally ordered low-temperatur
states would be an important indicator of the interplay of
23542
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hybridization amplitudes and orientation of the encapsula
The data reported in Ref. 9 and in this paper are the fi

direct measurements of the electronic spectra produced
scattering from an encapsulated species. More data of
type presented in Figs. 8 and 9 from measurements on m
samples will be needed to verify the predicted sensitivity
the geometric structure, and to examine how these res
can be generalized to a larger family of encapsulated s
tures. It is also useful to obtain additional measurements
the electronic spectra for isolated encapsulated buckyb
and buckyball clusters. There are three additional lines
investigation that seem particularly promising for explori
the interaction of propagating modes on the tube walls w
various encapsulated species.

~1! Measurements of the differential conductance for is
lated encapsulated buckyballs and buckyball dimers can
used to verify the predicted scattering spectra presente
Figs. 4 and 5. A direct measurement of the energy dep
dence of the modulation wavelength in the charge-den
provides a real space image of the coherent backscatterin
Bloch waves from a localized encapsulated impurity. T
observation of a resonant peak on the tube midway betw
the encapsulated scatterers in an isolated dimer would
vide a striking confirmation of the Fabry-Perot resonan
predicted in these calculations.

~2! A fullerene peapod can be electrostatically gated
shift the Fermi energy into the energy region near the hyb
ization gap. Scattering effects are strongest in this region
the spectrum so that conductance measurements at low
in this gated geometry can be used to measure the intera

FIG. 11. Hybridization scheme for three lowest dispersing s
band pairs of a conducting tube coupled with the three dispers
less frontier orbitals of a C60 lattice. The symmetries of the C60

molecular orbitals are indicated. The level separations of the m
ecule are taken from a tight binding model forp electrons on the
buckyball, with a nearest-neighbor hopping amplitudet52.5 eV. In
the left panel the HOMO and LUMO are positioned symmetrica
around the band center. Better agreement with the theoretical
culations of reference 20 is obtained if the molecular spectrum
shifted by20.95 eV, an effect that could be attributed to char
transfer from the tube onto the ball. The theory of reference 20 a
suggests a crystal field splitting of thet1u manifold that is not in-
cluded in this figure.
3-14
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THEORY OF SCANNING TUNNELING SPECTROSCOPY . . . PHYSICAL REVIEW B66, 235423 ~2002!
of the propagating cage modes with the encapsulant. In p
ciple such a measurement can be used to quantify the en
dependence of the transmission coefficient along a sin
fullerene peapod.

~3! For an undoped peapod, optical excitation of free c
riers into states near the hybridization gap can provide
portant information about the dynamics for hot electrons
states that are strongly hybridized with the encapsulant
general, studying transients produced by pulsed laser ex
tion and even attempting coherent optical control of el
tronic excitations in highly ordered nanoscale systems s
as these can provide a unique and largely unexplored w
dow on the carrier dynamics.
,
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