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Shot noise and the transmission of dilute Laughlin quasiparticles
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We analyze theoretically a three-terminal geometry in a fractional quantum Hall system—studied in a recent
experiment—which allows a dilute beam of Laughlin quasiparticles to be prepared and subsequently scattered
by a point contact. Employing a chiral Luttinger liquid description of #he'=m integer edge states, we
compute the current and noise of the quasiparticle beam after transmission through the point contact at finite
temperature and bias voltage. A refermionization procedurm-af allows the current and noise to be
computed nonperturbatively for arbitrary transparency of the point contact. Surprisingly, we find that for weak
backscattering the zero-temperature limit is subtle and singular even at fixed finite bias voltage. In particular,
at T=0 the incident chargefm quasipatrticles are either reflected or efs&reevscatteredbackscattering a
charge-(-1+1/m)e quasihole and transmitting an electted_aughlin quasiparticles areot transmitted in
this limit. A direct signature of these Andreev processes should be accessible in a particular cross-correlation
noise measurement that we propose.
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[. INTRODUCTION et al.” have used the three-terminal device consisting of two
point contacts shown in Fig. 1. Consider first the case where

One of the most striking consequences of strong correlathe second point conta¢QPC2 is completely open, while
tion in electronic systems is charge fractionalization, wherehe first point contactQPCJ is weakly pinched off. When
the elementary charged excitations of a system have quantuvoltage is applied to lead 1 with leads 2 and 3 grounded,
numbers that differ from those of the bare electron. The fracquasiparticles backscattered from QPC1 propagate into lead
tional quantum Hall effectFQHE) is an ideal arena to study 3. This geometry is superior to the two-terminal setup for
this phenomenoh At filling factor »=1/m, the elementary measuring the quasiparticle charge because the current due to
excitation of the quantum Hall state is the chaegm  the quasiparticles is isolated in lead 3. More interestingly,
Laughlin quasiparticlé.Current experimental techniques al- this may be viewed as a method for generatirdjlate beam
low for a detailed study of the transport properties of theseof Laughlin quasiparticles propagating into lead 3. This
exotic particles. opens the door to experiments that probe the transport prop-

A powerful technique for probing elementary charge car-erties of and interactions between individual Laughlin quasi-
riers is to measure shot noise. When particles flow indeperparticles.
dently with an uncorrelated Poisson distribution, their charge Comfortiet al.” used this technique to study a dilute beam
is given by the ratio between the mean-square fluctuation abf chargee/3 quasiparticles after transmission through the
the current and the average currénh 1994 we proposed second point contact QPC2. By measuring the current and
that a quantum point contact, formed by pinching togethenoise in lead 3, they probed the average charge of the par-
the edges of a quantum Hall bar, would be an ideal geometriicles transmitted through QPC2. Surprisingly, they found
for establishing the uncorrelated flow of Laughlin that even when the transmission of QPC2 was small, of order
quasiparticleé.When the point contact is strongly pinched 0.1, the measured transmitted charg®.4% was signifi-
off the sample is effectively split into two. In that case acantly smaller than that of the electron. This led them to
weak tunneling current must be carried by electrons, anduggest that perhaps the fractionally charged quasiparticles
shot noise with charge is expected. However, in the oppo- in a dilute beam could traverse a nearly opaque barrier.
site extreme of weak pinch off, quasiparticles can backscatter This suggestion is at odds with the conventional wisdom
between the edges through the quantum Hall fluid. The ration the tunneling of quasiparticles. In the limit of strong pinch
between the noise and the backscattered current is then deff, the quantum Hall fluid is split into two pieces, which
termined by the charge of the quasiparticle. In seminal 199'8ach must have an integer number of electrons. Coupling
experiments, de-Piccioto et aknd Saminadayaet al® in-  them weakly can only give rise to tunneling of electrons.
dependently used this technique to measure the cledBgef  Any theory that is perturbative in the tunneling of electrons
the Laughlin quasipatrticle. will necessarily give noise corresponding to chaegélone-

The original experiments used a two-terminal setup intheless, it is conceivable that there could be subtle nonper-
which the current and noise transmitted through the pointurbative effects. It is well known that a weakly backscatter-
contact were measured. The backscattered current was detérg point contact(which is not two independent quantum
mined by taking the difference between the measured curretdall fluids) will cross over at low energy to a regime in
and the current at perfect transmission. Recently Comfortivhich the average current is well described in terms of the
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N—> \_ trast, here we have singular behavior in the zero-temperature
) \/‘ \./. i limit for fixed finite voltage. While we do not have an exact
V=0 v=1/m : V;=0 solution for general filling factors, our perturbative analysis
gives strong evidence that a similar singularity of the zero-
QPC1 QPC2 temperature limit occurs for=1/m.
The outline of the paper is as follows. In Sec. Il we de-
V,=V scribe the chiral Luttinger liquid model and establish the

notation that we will use in the remainder of the paper. The
FIG. 1. Schematic diagram of the three-terminal fractional quandependences of the current and noise in lead 3 on tempera-

tum Hall device with two quantum point contacts used by Comfortiyre, voltage, and barrier strength are conveniently described
et al. \oltage V is appl_led to lead 1_ with leads 2 and 3 grounded. jh terms of scaling functions introduced in Sec. II C.
When the backscattering at QPC1 is weak, a dilute beam of Laugh-  gections 111 and IV outline our calculations of the current
lin quasiparticles is directed along the top edge to QPC2. and noise. Readers who are not interested in our methodol-
ogy can skip directly to Sec. V where the principal results of

weak tunneling of electrorfs’ Could the noise in this three- those sections are summarized. In Sec. Ill we describe our
terminal setup somehow behave differently? perturbative analysis. We begin in Sec. Il A with the sim-

In this paper we calculate the current and shot noise trangdlest limit in which the backscattering from QPC2 is zero. In
mitted through the QPC2 into lead 3 for the device in Fig. 1.this case the scaling functions for the current and noise are
We employ the chiral Luttinger liquid mod@ with »~*  similar to previous results for a single junction with a modi-
=m being an odd integer. We treat the quasiparticle backfication due to the presence of the third lead. In Sec. 11l B we
scattering from QPC1 at lowest order in perturbation theorydiscuss the large barrier limit, dominated by the tunneling of
which guarantees that the quasiparticles are dilute and uncoglectrons at QPC2 and compute the explicit form of the scal-
related. For QPC2, we develop a nonperturbative theory thafg functions for current and noise as functions of voltage
describes the entire crossover between the weak and strodgd temperature. In Sec. 1llC we briefly discuss the pertur-
backscattering limits. For the special case 2 (which does ~ bation theory for small backscattering, which has an impor-
not correspond physically to a FQHE edge state present tant divergence in the limit of zero temperature. In Sec. IV
an exact solution using the technique of fermionization. Fowe describe the exact calculations of the current and noise
more general filling factorsy=1/m, we treat the QPC2 per- for v=1/2. We begin in Sec. IV A with a brief discussion of
turbatively in the limits of weak tunneling and weak back- the technique of fermionization and set up the formalism that
scattering. To facilitate comparison with experiments carriedve use to calculate the current and noise in Secs. IVB and
out at finite temperature we compute the full dependence dfV C.
the current and noise on temperature and voltage. This gives Finally, in Sec. V we synthesize the results of Secs. I
the crossover between equilibrium noise ¥6=T and shot and IV and discuss their implications for experiment. In Sec.
noise forvsT. V A we discuss the scaling behavior of the current and noise

Our nonperturbative calculation for=1/2 shows that the as a function of current and temperature and compare the
answer to the question posed above is unambiguously “No.€Xact results fow=1/2 with the perturbation theory. In Sec.
Fractional charges cannot traverse a nearly opaque barriéf.B we discuss the limit of zero temperature and interpret
But the situation is even worse—and more interesting. WePhysically the processes responsible for the singular behav-
find that at strictly zero temperature, fractional charges canior. We also propose an experimental setup to observe this
not even pass through a nearly perfectly transmitting barrie€ffect. Finally in Sec. V C we discuss our results in light of
Specifically, the zero-temperature shot noise measured i€ recent experiments of Comfoet al.
lead 3 corresponds to chargeparticles,independenof the The calculations presented in this paper were quite in-
transmission of QPC2. Thus, only electrons are transmittedolved. We have relegated many of the details to two appen-
through QPC2even when the transmission of current dixes. In Appendix A we discuss our method for evaluating
through QPC2 is nearly perfecte interpret this result to the correlation functions that arise in our perturbative expan-
mean that at zero temperature the transmitted current igions. These calculations require a generalization of the
dominated by theAndreevscattering of the incident quasi- Keldysh technique for evaluating nonequilibrium Green’s
particles: an electron is transmitted, while a hole with thefunctions. Many of our results involve complicated integrals,
remainder of the quasiparticle’s charge is reflected. which are evaluated in Appendix B.

This unexpected result points to the subtlety of the zero-
temperature limit for fractionalized particles. When the back-
scattering at QPC2 is exactly zero, quasiparticles will obvi- Il. MODEL AND SCALING BEHAVIOR
ously be transmitted, and the noise in lead 3 should reflect
their fractional charge. Evidently the limits of taking the tem-
perature to zero and taking the backscattering at QPC2 to The device in Fig. 1 is described using the chiral Lut-
zero do not commute. This situation is unusual in nonequitinger liquid modef° This describes the low-energy excita-
librium many-body physics. Usually, one expects singulari-tions of the edge states incident from each of the three leads,
ties at low energy to be cut off by both temperature andas well as the coupling between them at QPC1 and QPC2.
voltage, with the largest energy scale dominating. By conThe Hamiltonian is given by{="H+H 5+ H3+V,+V,.

A. Model
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Here H? describes av=1/m chiral Luttinger liquid edge v,=0, though they will, of course, be independent\ofn

state that is incident from lead i that case. For small; the equilibrium noise will be much
larger than the noise due to the backscattered quasiparticles.
Mo g We therefore focus on theexcess noiseAS;(V,T)
HO= de- 9, bi(x)]2 2.1 : W
' 4n Loxbi(%)] @ =S;;(V,T)=S;(V=0,T). In our perturbative expansion &f

The coordinates; are defined so that at QPG]=0 and at for smallv4, this will be given by the second-order term in

= i (X i i . U1
QPC2x;=L. The fields4;(x;) satisfy the commutation re Our main focus in this paper will be on the current and

Iathns[¢,(x,),¢1(xj)] '(’T’”_‘) 5|Js_gn@<, X(). In the fol . excess noise transmitted through the second point contact,
lowing we shall choose units in which the edge state velocity : .

- el I15(V,T) and AS;y(V,T), though in Sec. V we shall briefly
ve=1, as well asi=e=1.

! . N discuss the noise reflected from the second cor@acV,T)
Tunneling of charge-ii Laughlin quasiparticles from d th latio® (V. T). We will of it th
edgei=1 to edgel =2 at QPC1 is described by and t e cross corre atio5(V,T). We will often omit _t e
subscripts, writingl;=1 and AS;;=AS. The transmitted
V1=vl(Oer_in/m+Ol_ueiwm)- (2.2) current and n.ois.e give informati'on about f{he transparency of
_ . QPC2 to the incident beam of dilute quasiparticles and about
The exponential factors reflect the voltage differeNcbe-  the charge of the particles that are transmitted by it. We
tween the incident edge states at the junction. The quasipagefine the effective charge
ticle backscattering operator is given by

L A(T,V)=AS(V,T)/1(V,T). (2.9
Ofv=wei'[¢1(°)_¢2(o)], (2.3 In the limit V>T, this gives the average charge of the par-
n ticles transmitted through the second junction. If electrons
where 7 is an ultraviolet cutoff. QPC2 may similarly be are transmitted, we expe@(V=T)=1; while if charge Irh
described in terms of quasiparticle backscattering, quasiparticles are transmitted, we exp&tV>T)=1/m.
Moreover, we shall see that f&f~T, Q(V,T) has a univer-
V2, =v2(05,+03,) (2.4 sal form, which can allow for detailed comparison between

experiment and theory.

with We also define théransparencyof QPC2,
. 1 N
O£U=W87|[¢2(L)7¢3(L)]. (2.5 TV, T)=1(V,Dlin(V,T), (2.9

wherel;, is the current incident on QPC2 along the top edge
In general, Egs(2.3) and(2.5) should be augmented with in Fig. 1, which is equal tod/mh)V—1,. [1;,(V,T) is a
Klein factors which ensure the correct commutation rela- property of a single junction;.] 7is small when the second
tions betweenO;, and O, . However in our analysis we junction is nearly pinched off whild=1 whenv,=0 and
will focus on the limitL —« andv;—0 (takenbeforeother  the transmission is perfect.
limits, such asT—0). In theL—oo limit the Klein factors

are unnecessary. C. Scaling behavior

A renormalization-group analysis shows that the operators
O; ,, have scaling dimension m/®° It follows thatv, and

Currents can be measured in any of the three contactg., hoth have dimension%1/m. Provided bothV and T are
The current flowing out contactis given by the operator el below the bulk FQHE gap, the current and noise are
expected to satisfy a scaling form

B. Currents and noise

1= (01— g2, (2.6
_ . 212Im-17 1-1A
evaluated at a point in contact(Here ¢, is identified with IV, T) =0T (v /T2 VIT), (2.10
¢5.) The measured current will be a function of the voltage ) _
V at lead 1 and temperature, and is given by the expectation AS(V,T)=0iT?M IS (v, /T VIT),  (2.1D)

valuel;{(V,T)=(1;). Similarly, the noise in the limit of zero

frequency i€ wherel ,(X,Y) andS,,(X,Y) areuniversalfunctions of both

arguments. Similarly, the effective charge transmitted into
1 o L lead 3 and the transparency of QPC2 should both scale
Sij(VaT):Ej d(li()1;(0)+1;(0)I5(1)). (2.7

Q(V,T)=Op(v, /T Y VIT), (2.12
For steady state conditionsandS; are independent of the
position in the contact where the current operator is evalu- TV, T)=T(vo /T Ym V/T). (2.13
ated.
In addition to the noise due to quasiparticles backscattered In the following, we calculate these scaling functions. In
at QPCLS;; will include equilibrium fluctuations in the cur- Sec. Il we consider the limitsv,/T*"Y™-0 and

rent. The equilibrium fluctuations will be present even whenv, /T~ ¥™ . where a perturbative analysis is possible. In
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Sec. IV we consider the special case=2, where an exact - 2

calculation of these scaling functions is possible. Qm(OVIT) = —_Im[y(1m+iV/izemT)], 3.3
In addition to computing the shape of the scaling func-

tions, we find an interesting subtlety in the structure of thewhere (x) is the digamma function. Obviously,

scaling functions wher3"™ 2 T<V. To highlight this 7 (0v/T)=1.

subtle zero-temperature limit, it is useful to consider a

slightly different form of the scaling functions. Specifically,

i B. Large barriers: t,—0
we define

Whenv, /T Y0 QPC2 is nearly pinched off. In this
_% 1-1/m limit we expect the noise to reflect the tunneling of electrons
AV, 1) =On(va/V VIT) 214 through QPC2. This may be described perturbatively using a
with similar definitions forl;, AS;, and 7. The limit T  dual model that describes the tunneling of electrons with
; amplitudet, between two separate quantum Hall flufds.

—0 is then described b (v, /V!™",x). Interestingly, The Hamiltonian is the same as before with), replaced by

we find that this function differs qualitatively from the form
of an(z_;le M ). This difference signifies the fact that V2t2t2(02+t+02—t), (3.4)
the limitsv,—0 andT—0 do not commute. We return to

this issue in Sec. V A, where we discuss in detail its physicaivhere the electron-tunneling operator is

meaning.

o= L meiimlﬁbz(l-)*fﬁs(l-)]_ (3.5

Ill. PERTURBATION THEORY 2 (27a)
In this section we compute the scaling functions The current in the third lead is equal to the tunneling current,

Om(vo/TE UM \/IT) andZ,,(v, /T Y™ V/T) perturbatively
in the limits of large and small,/T*~ ™. We begin with the
simplest limitv,=0, in which the transparency of QPC2 is

1. This will give us the scaling functio@,,(0,V/T). We then
consider the opposite limit, /T*~¥M>1, which describes a () =(Tc[T (7 exp HedTVL@+Vatil)y - (3.7)
large barrier and allows us to compudk,(,V/T). Finally

in Sec. I1IC we briefly discuss the effect of a small, but Here(-)o is a thermal expectation value fog=t,=0, and
finite, barrier O<v, /T~ YM<1. Vy, and Vo, are interaction picture operator€ is the

Keldysh contour, which runs from time « to « and then

back to —. T specifies time ordering on the Keldysh

contour. The timer;=t; is arbitrary, and can be chosen to lie
Whenv,/T1"¥™=0, QPC2 becomes perfectly transmit- on the forward Keldysh path.

ting. In this limit, the current and noise should reflect the We expand to obtain the contribution at ord€jt3 and

guasiparticles backscattered by QPC1. This is nearly identifind

cal to the single point contact model studied in Refs. 4 and

1=—ity(05,—03). (3.6

The expectation value of the current may be written as

A. Perfect transmission:v,=0

13, except for the fact that the current in lead 3 is only due to 1

the current backscattered at the first contact. The remainder I= E(_') jcd72d73d74

of the current exits lead 2. In Appendix A 2 we show how to

take this into account. We find that the current and noise X(T[1(T)Va( 1)V, (7)V1(74) 0. (3.9

transmitted into lead 3 are given 108.10, 2.1 with ) ) _ o
The noise, defined in Eq2.7), can similarly be expanded,

T oM 1 |T[Um+iVi2emT]|? . \Y L
) =— sin )
m( Tm I'(2/m) 2mT AS= —(—|)2f dtzf d7sdT,
(3.1) 2 c
and XTI (r) 1 () V(79 Viy(7)])o- (3.9
1 v T VITO Again, 7, ,=1, , can be chosen to lie on the forward Keldysh
3 (0V/T)= =T, (VIT)coth 2T I m 0 _ path. We have taken advan;age of the symme_try under inter-
m 2mT v change ofr; and 7, to combine the two terms in E@2.7).
(3.2 Evaluation of the expectation values in Ed8.8) and

. . i . (3.9 is complicated because each time integral has a corre-
For v>T th~e noise is dominated by the first term _|n Eq. sponding sum on the forward and backward Keldysh paths.
(3.2. Thus Qn(0,V/T—e)=1/m, reflecting the fractional These in turn determine the ordering of the operators. In
charge of the Laughlin quasiparticles. Fgr-T, thermal  Appendix A we describe in detail our method for handling
fluctuations alter the noise. Nonetheleg,(0,V/T) has a these sums and evaluating the expectation values. The result
universal form given by is
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I :Uitgj dtzdtsdt4eivt34/m[G;m(t12)_Gz_m(tlz)] Qm(OO’V/T):S[,m(V/T)II t,m(V/T)- (321)
From Egs.(3.18 and (3.20 it is clear that forV>T the
X[Gam(tad (Ky " =K1 )+ Goym(tag(Ky ~—K{ )] effective charge is unity, reflecting the fact that only elec-
trons can traverse a nearly opaque barrier.
(3.10
and C. Small barriers: v,—0

A The presence of small, but finite quasiparticle backscatter-
AS=v§t§J dt,dtadt,e’ViessM G (t1p) + Gon(tin) ] ing v, at QPC2 gives rise to a perturbative correction to the
current and noise. This correction is important because it
X[ Gom(taa) (KT T—K] )+ G(tsd (K ~—K; *)], contains a divergence that is cut off by the temperafytzut
not by the voltage/. This signifies a subtle nonanalytic be-
(3.1) havior as a function ob, in the limit of zero temperature.
We consider an expansion of the scaling functions for the
current and noise transmitted into lead 3 in powers of

(3.12 2
Tn(vo /T VM T =T (0 V/T)+ Ty m(VIT),

(3.22

Wheretij :ti_tj ,

Gz(t):(zsinﬂ(niit)) !

and

2
Uo
2 2/m SU m(V/T)

The current and noise are then obtained by substituting (323
Egs.(3.12 and(3.13 into Eqs.(3.10 and(3.11). The results  The first terms in the expansion were given in Sec. Il A. The

KU3U4 Sin7TT(7]+i0’3t13)sin7TT(’)7+i0'4t24) @
« - SinWT(?]+i03t23)Sin7TT(77+i0'4t14)

(.3.13) S0 /T VIT) =S (0VIT) +

can be cast in the scaling form corrections clearly diverge in the limi¢, T—0 for m>1.
This reflects the fact that, is a relevant perturbation, which
(V,T)=05t3T2m2m=3[  (VIT), (3.14  grows as the energy is lowered.

The scaling functions, ,(V/T) and'S, ,(V/T) are cal-
AS(V,T)=053T2m2m=33 (V/T). (3.15  culated in Appendixes A3 and B2. The results are quite
unusual. Usually, one expects a divergence in the perturba-
T, m(VIT) and$, ,(V/T) are evaluated in Appendix B. For tion theory to be cut off by the largest available energy in the
the current, the integrals may be evaluated analytically, givproblem, maxy,T). This would imply that for largex,

Ing S, m(X)~1/x2~2M  However that isnot the case in the
~ 1 |T'(m+1/m—1+iV/27mT)|? vV present problem. We find théj,m(x) goes to aconstantat
lem(VIT)= p T(2m+2im—2) sinh T largex. This means that the perturbation theorywinbreaks

(3.16 down for T—0 even for fixed finiteVv.
T, (VIT) has the limiting behavi ' For v/ (M Y<T<V the effective charge is given by
t.m as the limiting behavior

- 1 v}
[ m(VIT—0)xVIT, (3.17 Q= E+Cmm, (3.29
Tt’m(V/T—ﬂ)O): bm(V/T)2m*+2m=3 (3.189  wherecy, is a positive constant given explicitly in Appendix

B. Clearly the correction taQ diverges forT—0. In the
following section we will show that fom=2, Q=1 atT
'=0 for arbitrarily small but finitev,. It is quite likely that
this conclusion holds generally for all valuesraf>1.

with by,=(27m)3~2M=2" T (2m+2/m—2).

The integrals for the noise are given in Appendix B 1
where they are evaluated analytically fo=1 andm=2. A
numerical evaluation of the integrals for=3 is discussed

in Sec. V A. Here we focus on the asymptotic behavior IV. EXACT SOLUTION EOR  v=1/2

S m(VIT—=0)x(VIT)?, (3.19 For intermediate temperatures,/T*~ Y™~ 1, calculation
3 of the current and noise requires a nonperturbative technique
Sim(VIT—o0)=b(V/T)2m+2m=3 (3.20  capable of describing the crossover between the weak and

. . strong barrier limits. For generanh this is quite difficult,
th:rebm is the same as in Eq3.19. though, in principle, it should be possible to adapt the ther-
It m(V/T) andS; ,(V/T) determine the limiting forms of  modynamic Bethe ansatz used by Fendley, Ludwig, and
the scaling functions for transparency and effective chargesaleur in their calculation of the current and noise for a
Clearly, 7,,(°,V/T)=0, and single point contact>!® Here we focus on the special case
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m=2, where the technique of fermionization simplifies thealso a fermionic operator. With this substitution, the fermi-
problem considerably. This technique was pioneered bwnized Hamiltonian is quadradic in fermion operators,
Guined® in the 1980s to solve for the crossover in a model

of dissipative Josephson junctions. In 1992 we used it to _ it

solve forr) the crossol\a/er bet{Neen weak and strong barrier lim- o= f AT ot v20(%)

its for a single impurity in eg=1/2 Luttinger liquid, which
determined the universal line shape of resonaficekis
technique was later given a simpler and more elegant refor- + l/ﬁ(x)(a+ aT)]}_ (4.9

mulation by Matveev in a model of strongly coupled quan-__ . S . . . .
tum dots!’ A related technique has been applied to the two-Th'S Hamiltonian describes a scattering problem in which

channel Kondo problem by Emery and Kivels@n. fermions incident fronx<<0 scatter from an “impurity” at

We begin in Sec. IV A with a review of the technique of x=0. Due to the anomalous terms in the impurity interaction
fermionization. This will set the stage for the calculation of the fermion can either be transmitted, or Andreev scattered.

X[(a+a’)y(x)

the current in Sec. IV B and the noise in Sec. IV C. H, can be diagonalized and written in a basis of scattering
states. To this end we consider the Heisenberg equations of
o motion
A. Fermionization

In this section we review the technique of fermionization [0yp(X) = =1 axh(X) +v,8(x) (a+alh), (4.9
and set up the formalism that will be used to calculate the _ T
current and noise in the following sections. We focus for the to@a=vo[$(0)= ¢ (0)]. (4.6
moment on the second junction described by the HamiIsCattering state solutions are found by choosifigx,t)
tonian H="H 9+ H 3+ V,, with m=2. The problem is sim- = i€ CTIVILY2 for x<0 and g(x,t) = ¢y ou€ VL2

plified by transforming to new variables in which the two for x>0 with
channels propagate in the same directiokve then trans- .
form to sum and difference variables by defining i, ou™ Wl int Tkt i in - 4.7)

_ _ Substituting into Eqs(4.5 and (4.6) and eliminatinga, the
$p(X) = bo(L+X)+ pa(L=x), equations are solved when

$(X) = da(L+X) — dp3(L—X). (4.) k 2iv3

Y22t irai? “8

These new variables satisfy the commutation relations
[Pa(X), Pp(X')]=i7SapsgnX—x") for a,b=o,p. The

Hamiltonian is ther{=1,+ 1, , where Heret, andr, can be interpreted as the amplitudes for trans-

mission and Andreev scattering of the incident fermions.

1 v The incident and outgoing currents have the form,
2 ~ .
Ha:f dX[E(&X(ﬁU)Zﬁ-é\(X) \/—2 COSo,, | - Ia,in/out:f(dklzw):‘ﬂlz,in/out’ﬁk,in/out:- Thus, using Eqgs(4.3)
™ 4.2 and(4.7) the current operator may be written as
H, is similar, but lacks the second term. The “spin” sector = %J s—k[|tk|2(l//l,m¢k,in— lﬂfk,inwik,in)
H, clearly decouples from the “charge” sectdf, , and con- ™
tains all effects ofV,. The transmitted current operatbr Filt I (ot = Y cinticin) 1- 4.9
=[dydo(Xo>L) = dyp3(x3<L)]/2r may be written in the i KR Plein®=kn nein
form Equation(4.9) expresses the operator for the current trans-
mitted through the second junction in terms of an operator
T=2(0 i+ ou- 4.3 that acts only on the incident edge states. The expectation

value of the current can thus be expressed in terms of a

Here we have defined the incoming and outgoing currengingle-particle correlation function for the incident particles.
operators Tmin= Iy, (Xx<0)/2r  and io,out: Ay (X The noise will be expressed in terms of a two-particle corre-
>0)/2m. In deriving Eq.(4.3) we have used the fact that the lation function. In Secs. IV B and IV C we will calculate the
corresponding incoming and outgoing currents in the chargégorrelation functions perturbatively i, allowing for a full
sector are equal in steady stattgi,=1, oy solution of the current and noise as a functiorvgf

The key observation that makes solution of this problem The correlation functions can be evaluated by computing
by fermionization possible is the fact that the operatpr) correlations in the channels incident on the second junction,
=¢'%:/ 277 has dimension 1/2 and obeys fermionic Pretending that the second junction is not present. To this end
commutation relationgc(x),c’(x')}=8(x—x').%® Directly =~ We trar)sform back to the original bosonic variabigsy(x)
fermionizing, however, leads to a Hamiltonian with a termby writing
linear in a fermionic operator, which is difficult to analyze.
Following Matveev’ we introduce an auxiliary fermionic (a+a)y) in:Lfllzf dx0y,(x)e"™  (4.10
operatora, and definey(x)=(a+a")c(x). It is straightfor- ’
ward to show thafy(x), T (x")}=8(x—x"), so thaty(x) is  with
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OZiu(X): eTilda(L+x)—¢3(L—x)]

o (4.1

Equation(4.9 may then be rewritten as

“ 1
= Zf dxqdXo[ d1{(X;—X2) (O5,(X1) Oz (X2)

— 05, (X2) 05, (X1)} +da( X1 —X5)

X{O;U(Xl)O;U(XZ)_OEU(Xl)OEU(XZ)}]v (412

where
dy(X) = 8(x) — v2e~25M, (4.13
dy(x) = — sgr(x)vge 23X (4.14

are the Fourier transforms ¢f,|? and i|t||r|. Since @

PHYSICAL REVIEW B 67, 045307 (2003

A(Xq,Xp)= U%f dtzdt,eV'3# G (X19) — Gy (X12)]

X[G1 (taa)(Kyy —Kipz)
+G1 (ta)(Kin =K1, (4.18

where G1 (t) and K73™* are given in Sec. IlIB witht; ,
replaced byx, ».
The current is then obtained by substituting E4.18
into Eq.(4.195. The result can be put into the scaling form
L(V,T,v5) =031 ,(v, [ TY2VIT) (4.19
=021 5(v,IVYRVIT).
(4.20
The general form of ,(v,/TY2V/T) may be found in Ap-

pendix B. It a three-dimensional integral that cannot be
evaluated analytically. A numerical evaluation of the integral

+a%)2=1 the auxiliary fermions do not enter into Eq. is discussed in Sec. V. Here we focus on the limiting behav-

(4.12. The factor ofL in the denominator is present becausel®, Where an analytic solution is possibI%.z _
we have really calculated the integral of the current over [N the limit of perfect transmission,/T™“~0, we find

length, =L~ 1fdxI(x). ThelL in the denominator will be

canceled by an integral over a variable upon which the inte-

grand does not depend.

B. Current

In this section we evaluate the current (1) perturba-

tively in v, using Eg.(4.12. In this case, the anomalous

terms give no contribution. We thus write

1
= EJ dX1dX,d1(X1—X2)A(X1,X5), (4.15
with d;(x) given in Eq.(4.13 and
A(X1,%2) =(Tc[{O03,(X1) Oy, (X2) = Oy, (X2) Oz, (X1)}

(4.19

Here(-), is the thermal expectation value with=0. The
time integral is on the Keldysh contour, afi¢ specifies

X exp_ideTvl(T)]>0 .

~ 1 \
[,(0VIT)= Etanhﬁ. (4.21)
This agrees precisely with the result of Sec. Il A, E8.1).
In the large barrier limit,/T¥2—o we find

~ o V24 47%T? \Y;
[,(v,/TY2 500 VIT)= tanhﬁ. (4.22

1283
This agrees precisely with the smajl perturbation theory
for m=2 [Eq. (3.16)] given the identificatiori,= 7/(2v3).

In the limit of zero temperature, an analytic solution is
also possible. In this case it is better to use the scaling func-

tionT,, and we find
Th(v, VY2 ! 1 2K Ve 4.2
©o)=—|1—— - —
2(02 ’ ) 2 T 160421 ) ( . 3

whereK is the elliptic integral of the second kind. This func-
tion shows a crossover between the large barrier limit

time ordering on that contour. Expanding and keeping onlyl 5(v2/V**—,0)=V?/(12&3) and the small barrier limit

the term of ordew?, we then find

1
Ay X0)= 5 (—1)? [ dragri(Tel{04, 0003,

—02,(X2) 02, (X1)}V1,(73)V1,(72) 1)o-

Th(vo/VY2—000)=1/2—[4v3/(7V)]IN(4VIv3). Note the

nonanalytic behavior of the limi,— 0.

C. Noise

The noise is evaluated using Eq&.7) and (4.12. By
shifting variablesx,—x,—t the integral in Eq.(2.7) be-
comes independent of The integral ovet then cancels one

(4.17
factor of L and we find
This has a structure similar to the perturbation theory for the
current outlined in Sec. Il B. As in that section we defer to
Appendix A a discussion of our method for handling the
sums over Keldysh paths and the evaluation of the matrix
elements. The result is

1
AS= - f dx XA XgdXa[d1(X12)d1(X3a) Ar({X,})

— da(X19)da(X20) Ax({Xic}) 1, (4.24
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whered;(x) andd,(x) are given in Eqs(4.13 and (4.14  whereK is the elliptic integral of the second kind. This is

and precisely equal to the current in E@t.23.
This result is quite surprising because it implies that at
A1({x}) =([03,(X1) O3, (X2) — O, (X2) O3, (X1)] zero temperature the effective charge is
+ - _A- +
X[03, () O3, (X4) = O3, (X4) O3, (x3)]), B (0, V200) = 1. .32
(4.29
independenbf the barrier strengtlv,. Thus the shot noise
As({xi}) =(03,(X1) 03, (X3)O5,(X2) Oz, (X4) measured in the third contact indicates that electrons are
B N N N transmitted even when, /V?is small and the transmission
+02,(X4) O3, (X2) O3, (X3) O, (X1)). through the second contact is nearly perfect.
(4.26
In the second term of Eq4.24) and in Eq.(4.26) we have V. DISCUSSION

permuted the dummy variables«< x3 andx; <X, to make We now synthesize the results of the previous two sec-
X1, X3 the arguments 0D and x,, x, the arguments of tions and discuss physical meaning and their implications for
O™ . Again the integral depends on only three of the fer  experiment. We begin with a summary of our results for the
The remaining integral cancels theén the denominator. The dependence of the current and noise on temperature and volt-
expectation values are expanded to ongeand evaluated in  age. We then discuss in detail the zero-temperature limit, and
a manner similar to that in the preceding section. Details ofdentify the processes responsible for the peculiar behavior
this may be found in Appendix A 4, where the analog of Eq.that occurs there. We propose an experiment to probe the
(4.18 is derived. physics that occurs near zero temperature. Finally, we dis-
The noise is then obtained by substituting E4.38) into  cuss the implications of our results for existing experiments.
EqQ. (4.24). The result can be cast in the scaling form
AS(V,T,vZ)=vf§2(v2/T1/2,V/T) 4.2 A. Current and noise
Figure 2 shows the transparency of QPC2
—0Z8)(v,IVY2VIT). 4.29 ;Tz(vziTl’z,V/T) and the effective chargéz(vlel’z,V/T)
or v=1/2 as a function oV/T for various temperatures.
The general form oB,(v,/TY2V/T) may be found in Ap-  The lowest temperatures have the smallest transparency and
pendix B. It involves a five-dimensional integral that can notthe largest effective charge. These curves were obtained by
be evaluated analytically. A numerical evaluation of the inte-€valuating the integrals in appendixes B3 and B4 numeri-
gral is discussed in Sec. V. As in Sec. IVB we focus oncally. The thick curves in Fig.(8) are the asymptotic results
limiting behavior, where an analytic solution is possible. ~ from the perturbation theory in the limits,/T*?~0 [Eq.
In the limit of perfect transmission, /TY2-0, we find ~ (3-3] andv, /T2~ [Eq. (BE)]. In the limit of low tem-
perature(or large backscattering at QPCthe results of the
~ 1 vV exact calculation reduce to the results of the perturbation
S(0VIT)= Ztanh’-ﬁ. (4.29  theory based on the weak tunneling of electrons. Moreover,
comparing Figs. @) and 2b, it is clear that when the trans-

This agrees precisely with the result of Sec. Ill A, E8.2).  parency is small, the effective chargler V/T sufficiently

In the large barrier limiv,/T¥?—, we find large is very close to 1.
A striking feature of these curves is their behavior for

. 2+ 47272 vV large V/T. For each of the curves in Fig(& the transpar-
52(02/T1/2—>°°,V/T)=T&/1tanf?ﬁ- (430  ency increases with increasing/T and eventually ap-
2 proaches 1. This is because the transmission through QPC2
This agrees precisely with the smajl perturbation theory becomes perfect fovsv3. By contrast, the curves for the
for m=2 [Eq. (B4)], again with the identificationt, effective charge in Fig. () saturate at a constant value for
=1-r/(2u§). This confirms that the small, perturbation V/T—. Thus, even though the transmission through QPC2
theory is indeed correct and that in the large barrier limit of7(v,/TY2)=1 is perfect, the charg@,(v,/T"?») of
low temperature and voltage only electrons can be transmithe transmitted particles st equal to the charge 1/2 of the
ted through the second junction. quasiparticles incident on QPC2, but rather varies between
In the limit of zero temperature the five-dimensional inte-1/2 and 1 as the temperature is lowered. In striking contrast,
gral can still not be fully evaluated. However, as explained inat zero temperature, Eqé§4.23 and (4.31) show that the
Appendix B we have establishetimericallythat the noise gffective charge of the transmitted particlés(vzlvl’z,oo)
is equal to =1, independent of the voltag¥. The scaling functions
Q,(v,/TH2VIT) and Q4(v,/VY2VIT) thus show qualita-
)} (4.32) tively different behavior. This is quite unusual, since usually
the dependence of scaling functions on voltage and tempera-

2

~ 1 2
’ 1/2 — 1= R
Sy (v /VH5,2) 2[1 TrK( 1603
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0
0 5 10 15 20

(a) (b)

FIG. 2. (a) Transparency of QPCZ~Z'2(v2/T1’2,V/T) as a function ofV/T for different temperature§[/v§:0.2,0.5,1,2,5,10,20. The
lowest temperatures have the lowest transpardbp¥ffective charge transmitted through QP@2,(v,/TY2V/T) as a function oi//T for
the same set of temperatures agan The lowest temperatures have the largest effective charge. The thick lines are the asymptotic limits
Q(0V/T) and Q(«,VIT) discussed in the text.

ture are qualitatively similar. The origin of this behavior can  The smallv, perturbation theory also gives a diverging
be traced to the singular behavior of liffit-0 with fixedV:  correction to the transparency at zero temperaflig.
(3.22]. This divergence was absent fer=1/2. One may

Q(v,=0,T—0V)=1/2, therefore worry that the transparency also goes to zefo at
=0 for fixed V. However, this is contradicted by the smigll
Qv,—0,T=0V)=1. (5.1) perturbation theory, Eq93.14 and (3.18, which gives a
The limits of T—0 andv,—0 do not commute. finite transparencyztaVi¥2at T=0. It is most likely that

In Sec. VB we will offer a physical interpretation of this the divergence for smail, signifies that transparency is not
peculiar behavior. However, before doing so it is importantanalytic atv,=0. Such a nonanalyticity also occurs for
to ask whether it is an artifact of the chiral edge theory for=2, where Eq(4.23 gives T,~1—(v5/V)In V/v5.
v=1/2, or whether it also occurs more generally. In Fig. 3 The above arguments give strong evidence that the singu-

we show perturbative calculations &%(0V/T) [Eq.(3.3]  lar beh?vior altr/3:0 t(;‘attg"e rljave ﬁ-Stafﬁ:-iShid fﬂtF 1/2 l?llso
~ occurs forv= and other Laughlin filling fractions. None-
and Qs(,V/T) [Eqs. (3.21), (3.16, and (B4)]. It seems theless, it would be desirable to obtain a full solution for

quite plausible that for intermediate temperatures_ 1/m. Using the thermodynamic Bethe ansatz, Fendley,

e 213 i
Qa(vo/T7%VIT) should interpolate smoothly between the | qyig, and Saled?**have calculated the current and noise

two limits as in Fig. 2b). This does not exclude the possi- o 5 single point contact, accounting for the full crossover
b|||t)3//,2 however, that the curves cross over to 1/3 ¥#T  honyveen the weak backscattering and strong backscattering
>v31T. This is ruled out, however, by the perturbation |inits. |t should be possible to generalize their formalism to
theory inv,. Equation(3.24 shows that forv3?<T<V,  the present three-terminal geometry.

Q—1/3xv3/ T Thus, Q4(v,/T?22)>1/3 for finite v,

and it presumably then crosses over to 1 dfgp T, B. Physical picture for the T—0 limit

Q

In this section we attempt to make sense out of the pecu-
liar behavior we have established at zero temperature. We
wish to understand how electrons can be transmitted through
QPC2 into lead 3 even when the transparency of QPC2 is
nearly perfect. We assume here that this effect occurs for
=1/m.

At zero temperature quasiparticles backscattered by QPC1

VIT come in wave packets of chargém and duration~1/V at a
. . . rate ~v2V@M 1 Fory, <V~ (M the quasiparticle wave
0 s 10 15 20 packets are independent and can be considered one at a time.
The interaction of a quasiparticle with QPC2 presents a scat-

FIG. 3. Scaling funftions for the effective charge transmittedtering problem. When a quasiparticle scatters from QPC2 it
into lead 3 forv=1/3, Q3(v,/T?3V/T). The bottom curve is in s natural to ask what comes out. Unlike the noninteracting
the weak backscattering or high-temperature lirgl§(0,V/T), electron version of this problem, the number of quasiparti-
whereas the top curve is in the low-temperature li@i{c,V/T). cles is not necessarily conserved in this scattering process.
Notice that in this limit of an opaque barries {=~T%3) only elec- However, the total charge is conserved. We consider three
trons are transmitted through QPC2 whém T. processeg.l) The quasiparticle is transmitted with probabil-
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ity T into lead 3.(2) The quasiparticle is reflected with prob-
ability R into lead 1.(3) The quasiparticle isAndreev re-
flectedwith probability A. In this process an electron with
chargee is transmitted into lead 3 while a hole with charge
(—1+1/m)e is reflected into lead 1. It is straightforward to
show that if these are the only allowed procesfes, T
+R+A=1), the transparency is given by

T7=T+mA. (5.2
Moreover, the effective charge will be o] - m - ™
2 ~
o= T+m°A (5.3 FIG. 4. Scaling function®,(v, /T~ Y™ V/T) for the effective
mT+m2A° ' charge transmitted into lead 3 through QPC2 in the large barrier

limit v,/T*"Y" . The three curves correspond to filling
Forv,<T* "M we clearly havR=A=0 andT=1. On  —1/n=1.1/2,1/3 as labeled.

the other hand, at zero temperature our noise calculation

shows thatT=0, since only electrons were found t0 be nonequilibrium current, present in the zero-temperature limit
transmitted into lead 3. The transmitted current is thus appaignere equilibrium current fluctuations vanish. While un-
ently dominated by Andreev processes. This is no surprise igoyptedly challenging, it would be fascinating to detect this

o i 1-1/m :
the large barrier limiv,>V™""", whereT is small, so that  gffect and the presence of Andreev processes more generally.
A is small and R~1. In the small barrier limitv,

<VI~VYm however, we hav&~1. This then implies that

A=1/m and R=1—1/m. Thus, quite remarkably, the inci- C. Relation to existing experiments

dent quasiparticle is either reflected or Andreev reflected \ye close by commenting briefly on the implications of
with probabilities that have saturated at values that conspirgyy results for the experiments of Comfoetial” It is clear

to give perfecttransmission of theurrent Moreover, in this  that our results give no support to the notion of fractional
limit the time-averaged current backscattered off QR@&-  charges traversing a nearly opaque barrier. So the interpreta-

ishes although it will be noisy as we now detail. tion of the data remains a puzzle. However, it is worthwhile
A key feature of the Andreev processes is that the transy point out some possible sources of discrepancy.
mitted and reflected currents acerrelated These correla- The exact scaling functions fan=2 that we have com-

tions give an unambiguous signature in the noise. We therg;yted are, strictly speaking, only applicable for a point con-
fore propose that the noise be measuretiathleads 1 and  t5ct that backscatters high energyut still below the bulk
3. It may be deswa_LbIe to a_dd an additional lead betweerp:QHE gap incident particles only weakly. A point contact
leads 1 and 3, wh|ch_can. isolate the current rgflected ahat is strongly pinched off will not generally follow the
QPC2. In any case, this will not affect the following zero- ynjversal crossover between weak and strong backscattering
temperature predictions. As above, the noise measured @Empodied in the scaling functions. Nevertheless, since our
lead 3 should reflect the charg®f the Andreev transmitted yesyits show an absence of any subtle nonperturbative effects
electrons, in the limit of weak tunneling through the point contact, it is
ASs=| (5.4) d_ifficult to imagine that this could modify our basic con<_:|u-
e ' sion that only electrons can traverse an opaque barrier. It
The noise measured in lead 1, however, will be a combinaseems plausible that the experimentally observed charge of
tion of the charge-t reflected quasiparticles and the 0.45 is a finite-temperature crossover effect, which might
charge-(1m) —1 Andreev reflected holes. In terms of the well revert to a charge oé as the temperature is lowered

measured currents, it will be given by further. But it remains difficult reconciling a transmitted
charge well below the electron charge for a point contact
ASy;=(Um)Al+(1-1/m)l 3. (5.9  with such a small measured transparency of only 0.1.

. 7 . ..
HereAl, is the current flowing into lead 1 due to the reflec- Comiorti et al.” extracted the effective charge by fitting

tions from QPC2, that isAl;=1,+Ve¥(mh). If an addi- the measured(V,T) andAS(V,T) to an “independent par-

tional lead, say lead 4, is present between leads 1 and 3, théiﬁle_mOde"" which is essgntially thg nPninteractinQNelel(;tron
for AS,, one would have simphAl, replaced byl, in Eq.  Vversion (m=1) of the scaling functions,(V/T) andSy,.™
(5.5. The cross correlations are determined solely by thdn Fig. 4 we compare the scaling functions for the effective
Andreev processes, charge in the large barrier limi@(«,T/V) for m=1, 2,

and 3. HereQ,(=,x)=cothx/2—2/x, O,(%,x)=tanhx/4,

and Qz(,x) is computed numerically as in Fig. 3. The
In the limit of weak pinch off for QPC2, we haukl ;=0 at  curves clearly differ quantitatively. The results of this paper
zero temperature. Nevertheless, the current flowing into leathus suggest an alternative method for analyzing the data:
1 is noisy, withAS;;=—AS;3=(1—1/m)AS;;. Thus, in  For a fixed temperature, we plot the measured values of
this way one can prepare a noisy but zero time-averaged S(V,T)/I(V,T) as a function ol//T and compare with the
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scaling functionsQ(0,V/T) and O(e,V/T) in Fig. 3. For

242 3t a—iV(s3tz+S4ts)/m
data taken at voltaged/=10T, conclusions about the I 4vlt2{gk2,sk} 51020304J dte s R
asymptotic charge fov>T should not depend on the fitting < . . .
method. But for smaller voltages there may well be a differ- X{(Tc[O(01t1) O (02t5) O3 (073t3) O (0ats) 1o
ence. (A1)
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APPENDIX A: EXPECTATION VALUES AND KELDYSH Clearly we must haves, +s,=s;+5,=0 in each of the
SUMS sums on{s,}. By appropriately relabeling the integration

_ _ _ variables, we may specify;= —S,= —S3=5,= +.
In this appendix we demonstrate our technique for evalu-

ating the expectation values and sums over Keldysh paths.In =~ 1 , , 3 Vias/
Sec. 1 of this appendix we do in detail the calculation for the I= EUltZ{%} (02— 01) 0304 | dtHI({oy, t)e s
smallt, limit. This will establish our method, which can then (A3)

be applied to the other calculations. In Sec. 2 we discuss the

limit of small v,. Finally in Sec. 3 we briefly discuss the 9.2 3 Vi /m
calculations for the exact current and noise i« 2. AS= EUltzgk} ffs%f At ({oy,tif) e ™, (Ad)
1. Smallt, perturbation theory where

In this section we provide some details of the calculation H({o t)) =(Tc[ O (a1t1) O ots)
which lead from Eqgs(3.8)—(3.11). Our starting point is the {otd) =(Tel Oalo1ty) Oal o2t
expansion of the current and noise to ordéi%. It is useful XOIU(cr3t3)OfU(a4t4)])0. (A5)
to introduce an index-= = which specifies the forward and ] ) )
backward paths of the Keldysh contour. Theficdr II({o.t}) is computed by first computing the

.3 ofdt. For the variablet; (andt, for the nois¢ we imaginary-time-ordered correlation function.

introduce a dummy sum over; (and o). In addition, we -~ + - - +
write the two terms in the tunneling Hamiltoni&8.4) and I({7id) =(T[O02(72) O2t(72) O1,(73) O1,(74) o-

the current operatof3.6) as a sum oves= *. The current (AG)
and noise can then be written as The expectation value factorizes into three terms,
|
T, eil#1(0,73) — $1(0,74)] T/ eild3(L, 7))~ 3L, )] T, @il #2(L,71) = da(L,72) — ¢2(0,73) + ¢2(0,74)]
1y = T4 Do(TA Do(TA Do a7
k (2777])2m+ 2Im

whereT . signifies time ordering in imaginary time. Using Hamiltonighl), it is straightforward to show that

(T/2)?m+2/m sinwT[ p+ o3 T13—iL) SN T 9+ 024 724—iL)]
{7 = g (A8)

7]+ (lele)sirIZ/m’ﬂT( 7]+ 0'347'34) Sin ’7TT[ 77+ 0'23( To3— i L)]S|n 7TT[ 77+ 0'14( T14— i L)] )

Here o =sgn(r; — 7;) reflects ordering of the operators in Keldysh pathso;, o; as well as on the sign of the time

the imaginary-time-ordered product. differences;; = sgn(t;—t;). Explicitly it may be written
The real-time correlation functions are determined by tak-
ing 7;j—it;; . The operator ordering is now determined by aij=%[(crj—cri)+sij(cri+crj)]. (A9)
the time ordering on the Keldysh contour. Thag=*1
depending on whether the tintgo; comes later or earlier In the limit of largeL the only times to contribute will be

thant;o; on the Keldysh contouro;; now depends on the those witht, ,~t5,+L. Therefore, from Eq.(A10) o3
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=0,=03 and o=0,=0, The real-time correlation 2. Current and noise forv,=0

function may then be expressed in the form Here we briefly outline the calculation of the current and
noise when the second junction transmits perfectly. Similar
{0y, i) =Gy t2(t15) Gy 24(tan) KT (A10)  results have been obtained earlier for the single junétfoh.
We include the calculation here because the result is slightly

with different and because we use a somewhat different method,
which will be useful when generalizing to finite,.
GE(t)= T “ (A11) We express the curreht1 5 in terms of incident currents
“« 2sinTT(np=xit) and the current backscattered at the first junction
and T=1on—Tgin+ 11, (AL7)
K 7374 wherel , 3i,= dy ¢, o 27 are the currents carried by the chiral
@ edge states incident from leads 2 and 3. The current back-

sinwT[ p+ios(tig—L)IsinaT[ p+io,(tyy—L)]\ @ scattered at the first junction is
S|n7TT[7]+|O'3(t23_L)]S|n7TT[77+|O'4(t14_L)] ’

Tp1=—i(v,/m)(OF e VVm—0p V™). (A18)
(A12) :
The backscattered current is related to the voltage drop

G, (t) may be interpreted as a two-point Green’s functionacross the junction, as discussed in Ref. 4. For the current the
more commonly referred to a&='~(t). For instance, first two terms in Eq(A18) cancel, and we have=(ly,).
Gom(t) =(05,(t)05(0))o and G, (t) =(04(0)05,(t) )o. This may be evaluated using the procedure in Sec. 1 of this

Substituting Eqs(A10)—(A12) into Eq.(A3) the sums on appendix to be
{0} may be evaluated giving 5
|= %f dteV'M G3(t) = Ggm(t)] (A19)
I=vit3 f d®te’V's¢/ ™[ G (t1) — Gom(t12) [ Gom(taa {Ky

with G,,,(t) given in Eq.(A11). Evaluation of the integral
+3(K T +Ky )+ 5534(K] T =Ky )} Gop(tan) gives the result quoted in E¢3.1).
The excess noise contains two contributions,

X{KL T+ 3(Ky T +Ky )= 385Ky T =Ky )} (A1)

. . o L AS=AS,1p1+ 2ASp1 2in- (A20)
This equation may be simplified by considering the depen-
dence of the integrand on the “average time differengg” The fluctuation in the backscattered currediSy,p,
=(t;+t,—t3—14)/2. ty enters only in the formL—L—t,  =(1/2)fdt(l,(t)1,1(0)) is related to the voltage fluctua-
and may be interpreted as the time it takes quasiparticles tilons across the junction. It has the fofoheck sign
propagate between the two junctions. It can be shown by

contour integration that v} : _
ASupi=rog | At€VTGL, (0 Gan(®]. (A2D)

f dtg(K™ " =K~ 7)=0. (A14)  Using the fact thaG~(t+i/T)=G"(t) it is straightforward
to establish thatsS,,= (I/m)cothV/2mT. Physically, the
This allows us to rewrite EqA13) in a simpler form, two terms in Eqgs.(A19) and (A21) describe the rates for

forward and backward tunneling of quasiparticles across the

- N - ) voltage difference/ which are related by a facta/™.
=07t dadtadtye G (119~ Cantd [Gim(1a)  The second termASys s (U2t Tay() OV
. o _ B il gives the cross correlation between the backscattered current
X(Ky " =Ky )+ Gop(taa) (K =Ky )] (A15) and thermal fluctuations in the current incident from lead 2.

. This cross correlation can be shown to have the form
The sum ovewr for the noise is almost the same, except for

the first term in Eq(A3). This gives (1 py)
ASbl,Zin:T&—Vz- (A22)
_ 242 iVtga/m + -
AS_Ult2f dtpditzdt,e™ 4™ Gony(tr2) + Gon(ti2)] In equilibrium,V—0; this is simply a statement of the fluc-
N L B s tuation dissipation theorem. However, as shown in Ref. 4, it
X[Gom(taa)(Ky " =Ky ) +Gon(tsd)(Ky =Ky )] s also valid forv>0.
(A16) Combining Eqs(A21) and(A22) we get the result quoted
in Eq. (3.2. Note that the other terms present$ndo not
Finally, in Egs.(3.10 and(3.11) we have shifted; ,—t;,  contribute to the excess noise. In particular the current inci-
—L to eliminate the variablé. dent from lead 3 will have no correlation witly .
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3. Smallv, perturbation theory

Whenv, is finite we write the current as

PHYSICAL REVIEW B 67, 045307 (2003

1
A(Xq,Xp) = EUE{E (0= 01)0304

Tk

1=l lgintp1— b2, (A23) Xf dtadt,eVis M ({0t X))

where the current backscattered at the second junction is (A31)

Tpo=—i(v,/m)(05,—0,,). (A24)

The average current at ordeE is then given byl =1,. with
This may be computed along the lines of the preceding sec-
tion. The structure is almost identical {815), except that
the dimensions of the operators are changed. We find

2.2 XO]TU(0.3t3)O]J_rv(O-4t4)]>O'

vV .
:nzj d3tel(V12t34—V32t12)/m[G2’/m(t12)—Gz_/m(tlg)]

H({O'k itk 1Xk}) = <TC[O;1)( O']_O,X]_)O;U( 0-201)(2)
(A32)

b2=
B o B B The correlation function has the same structure as(&§)
X[G;/m(t34)(K1/$ —Kim )+ Gzlm(t34)(Kl+/m - Kirlr;)]

(A25)

M({oy b, xid) = GTH(X12) G (ta) KT

A%y

For use in the following section we have included voltages
V\ in all three contacts, anW,,=V,—V,. The current is
evaluated withv,=V;=0 andV,;=V.

1/2

-From Eq.(AEB),- the nonzero contributions to the excess:,[12 replaced by, ,. Summing on the Keldysh indices, we
noise at order; will be given by find '

AS=ASy;1—2ASy1 p2— 2482 2int 24 Sp3 3in
(A26)

As in the preceding section, the cross correlations with the A(Xl,Xz)ZUif dtzdt,e’V'3/™(G; (x10) — Gy (X12)
incident currents have the form

with G*(x) andK {3’ given in Egs.(A12) and (A13) with

X[G (X3a)(Kys —Kypo)

P ) -
+G1 (ta) (Kiy =K1,

ASyokin= T&_\/k (A27) (A34)

for k=1,2. In addition we find ] ] ] ]
The first term in the integrand can be interpreted as the

2,2 zeroth-order expectation value,

U105 . —
ASuzpa=r | VNG (1) + Gi(t)]

X[ Gom(tza) (Kym = Kim) A%(X1,%X2) =(03,(X1) 05, (X2) — O3, (X1) O3, (X2) )0

+ Gom(tad) (Kim = Kim)]. (A28) =G (X129 =Gy (X12). (A35)
The cross correlation is given by
0202 5. Noise form=2
AShop1= r;zzf dBte’Vis/M G (1) — Go(tin)] Calculation of the expectation valuds A{x,}) in Egs.

(4.25 and(4.26) of Sec. IV B can be done in the same man-
ner as in the preceding section. Again, the expectation value
can be factored into a zeroth-order expectation value times
an integral. We find

X[Gom(tsdKim — Gom(tsdKim 1. (A29)

4. Current for m=2

In this section we provide details of the calculation relat-

ing Eq.(4.17) to (4.18 in the evaluation of )
9 Eq.(4.17 to (4.18 Al,z({xk})=viA(1),z({Xk})f dtsdtee’'39 G (tge) (K™ F

A(Xy ,%2) =(O3,(X1) O3, (X2) = O3, (X1) O3,(X2))- (A36)

(A30) —K™)+G (tsg) (KT ™=K )],

The procedure is quite similar to that of Sec. 1 of Appendix
A. We begin by rewriting Eq(4.17) as whereG=*(t) is the same as in E§A12) and
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K 7506 — Sin7TT(77+i0'5215)Sin7TT(7]+i0'5235)Sin7TT(7]+iUeZZG)SinWT(77+i0'6246) 12 A37
A\ sinaT(n+ioszes)sinaT(n+iosze)sSinaT(p+iocezig)sinTT(p+iocezze)| (A37)
|
where we use the notatiany =x;—t;. The zeroth-order ex- _ 28-2m=2/mginky X/2m)
pectation values can be evaluated using Wick’s theorem forS; m(X)= 2
the fermionic operator®;, ,
Jw dudy sinXv/mar
AN =[G (X12) = G (X12) I[G " (X30) — G (Xaa)] ) L0 CosR™ Tu cosP™ Ly sinf(u—v)
+4G " (x14)G " (X29) (A38) (B4)
This is evaluated numerically in Sec. V.
0 — ot - Tt +
Ay(1x}) =G (X19) G (X29) = G (X12) G (X30) In special cases the above results simplify. For 1 we
+Gi(X14)G+(X23)_Gi(xlz)Gi(X34) find |t‘1(X)=X/27T and S[’]_(X)=(X COthX/2—2)/27T ThUS,
(A39) D,(X,%0) =coth X/2) — 2/X. (B5)
APPENDIX B: EVALUATION OF INTEGRALS These results are the same as those one gets for noninteract-

ing electrons? For m=2 we find T,,(X)=(1/3272)

X (X2+47?)tanh/4) and S »(X)=(1/3272)(X?+42)
In this section we simplify integral$3.10 and (3.11). X tantf(X/4). Thus,

One of the integrals can be easily done because

1. Smallt, perturbation theory

0,(X,)=tank( X/4). (B6)
K T—K] =(K; =K H*
- \sin(q-rTit34)sin(7-rTit12) 2. Smallv, perturbation theory
=—(2M)(1a) sin7T(n—ityy)] In this section we evaluate the integrals for the correction

B1 to the current and noise at ordeJ. Since the purpose of this
BD calculation is to establish the divergence of the perturbation
This allows us to write the currentl£C_) and noise theory forT—0 with fixed V, we will focus on the limitv

(S=C,) as >T. .
We begin with Eq(A26) for the current. Fo/T—~ and

- _ m>1 the integral ovets, is dominated by the region with
C.= _UltzJ' dtodtze’'s M Gy 1 (t2) = Gopys(t2)] ta4<tz;,ts,, WhereK737#is independent of,. The integral
N - - N overt; can then be evaluatgavith t,=0), giving

X[Gom-1(t3)Gq (t23) + Gopm—1(t3) Gy (t23)]. (B2)
, o (VI(2mm))Zm-1

Definingu= 7 Tt,*i /2 for the terms involvings,,,_(t,) IbzzvleWf dt;dto[ Gom(t12) = Gom(t12)]

andv = 7Tty+i#7/2 for the terms involvings,,,_ ,(t3), the
terms in the integral can be combined and written in the X(Kym —Kgm) (B7)

: _2:212m+ 2im- 33 : _
scaling formC.. (V,T) =v3tsT C(VIT) with Using the fact thatG,;,(t;,) =e™ S22 ™(T/2sin 7Tty ) 2™

92-2m-2mg hOx/2m) and K‘lT/?r,T‘]M:ei(ﬂ'/2m)(<73*04)(510*320) (for t3=t,=0) we then
sin m

Com(X)= ; obtain
T
- iXo/m lpo=ampfoVv2m-172m=2 (B8)
x ffdedv cost™ tu cosHm 1y with
1 1 1 T(1/m)? (2 mim) (59
+ an= SIN(27/m).
X(sir[n+i(u—v)]+sir{n—i(u—v)] ' ™ (2mm)?™ T'(2/m)?

(B3) Note thata,=0. Thev% correction to the current vanishes
_ for V>T for m=2.
The integrals forl, ,(V/T) can be evaluated because the A similar calculation for the noise gives
factor in parentheses is & function. The result is given in

Eg. (3.16. The integral forS, ,(V/T) has the form AS=bypfuv2m-iTam-2, (B10)
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b, has contributions from the four terms in E@23), by, v? . -
=bp2p2m— 20p1p2m* 2bp2,2inm— 2Pp2 3inm- The first two I= ZJ dx;dx%od1(X12)[Gq (X12) =Gy (X12)]
terms can be evaluated by applying the analysis in(B@)

to Egs. (A28) and (A29). We find bpypom=bpipom Mo I
=a,,/m, with a,, given above. The third and fourth terms Xf dtadtye™ 34 Gy (taa) (Kyp =Ky )
are evaluated by differentiating with respect\g and V3.
The dominant contribution fov>T is due to the term where +G7 (ta) (K =K1 (B14)
the differentiation pulls down a factor @f,,/m. Following
the above analysis, we then find Using the fact thatG; (tz;—inT)=G (t3) and similar
] identities forK, we found it convenient to rewrite the integral
b — 4 F(l/m)z S|n3(77/m) overt3’4 as
™ m(27m)?™ T'(2/m)? cog 7/m)
\% :
2 a iVigg2r =+ 4+ -
v ?dx’(l/m)—l) _ Hm’ (B11) tanhﬁf dtadt,e™ 34 Gy (t30)(Kyy —Kypp)
A~ +— e+t
wherey’ (x) is the derivative of the digamma function. The Gy (tag)(Kyp =Ky ). (B19)

coefficients can be evaluated far=2,3 to bea,=0, b,
=14{(3)/73=0.5428.a;=0.4786,b;=0.8414. The effec-
tive charge then has the expansion

The integration is then simplified usin@; (ts) + Gy (ts)
=7Td(t3,). The term involvingd(ts,) does not contribute
becauseK ,, —K, —KJ, +K;j, =0 for t3=t,. Then the

B 1 vg integral overts 4 is then

Qm(UZ/Tl—llm,V/T—mo):E‘chm (B12) y
with 2 tanty | dtdtie VG (1)~ Gy (ta)Tpudts 1)

B16
_ 2 sif(mm) P@m?(2 (B16)
Cn= 7 Cogaim) T(2im) | 72% (MM -=1]. with
(B13)
-+ +— —-— ++

Thenc,=0, c,=28/(3)/73=1.0855, anct;=1.5279. p1ts,ta) = 3(Kyz +Kip —Kyp —Kgz).  (B17)

This integral can be further simplified by symmetrizing the
integrand with respect to permutationstgfandt, and per-

In this section we evaluate the integrals for the exact calmutations ofx; andx,, and then restricting the integration
culation of the current fom=2 described in Sec. IVB. region to bex;>x, andt;>t, We then set,=0 to cancel
Combining(4.15 and(4.18 we find the L. Using a trigonometric identity it can be shown that

3. Exact current m=2

sinh7Ttssinh7r T Xy

p1t3,0) = p2i(t3,0 = —= _ . . (B18)
\/S|nh7-rT(x1—t3)smh7-rT(t3—xz)smhrrT(xl)sthrT(—xz)
whenx,<0<t;<x; and 0 otherwise. We then find
2
V (= 0 x 8(Xq0) —v2e~ 2212 coq Vi,/2)
|=2u§T2tanh—f dxlf dxzf "ty — [ 12,) 2 ], o . (B19)
4T Jo —eo 0 VSinh@T(x; —t3)sinh 7 T(t3— X,)sinha Tx;sinh 7w T(—X5)

The two terms in parentheses in H819) can be interpreted as the incident and backscattered currents for the second
junction, 1=1,,—1,,. The é-function term can be evaluated using a concrete regularization ofsthenction, &(x;,)
=lim, _Zexp(~2Z|x,3). This gives

vi \%
| in:7 tanhﬁ, (BZO)

in agreement with the current calculated fgr=0 in Sec. Ill form=2.
For the second term we define new variables #T(x;—t3), yo=— 7TX,, u=wTt;. The backscattered current can then
be written in the form
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20303 oc e~ 20U y1HY o TTeog VU2 T)
lpo=——5— 7 tanh—f dudy,dy,

(B21)

Vsinhy,sinh(u+y,)sinhy,sinh(u+y,)
Combining Eqs(B20) and (B21) the final result can be cast in the scaling forW,T) =v 21 (v, /T2 V/T) with

% e (u+2y)v2/7-rT

\/smhysmr(er u

1
To(vo I TY2VIT)= = tanh—( 3TJ ducos

) (B22)

The integrals can be evaluated in the limit of large and zvi vV
small v,, with results quoted in Sec. llIB. In the limit of AS= —3tanh—f d?ydu® ({y,},u)
. . . . . w 4T R
zero temperature, the integrals simplify. Rescaling the inte-
gration variables by 3/ 7T we may write the current in the Vu DY HOM(Y1,Y3,.UM(Y2,Y4,U)
form (4.20 with [

MaT  sinhusinhysinhmy,,

1 4 v (B27)
~ o u
(v IV 0)=-| 1— — du COS— where the integration regioR is y;>y,>y;>y, and u
2 ™ 205 v2 >0. In addition
—(u+2y) 2
J' d y(y+u (823) D({yk}) 512534+ (523e—2y14U2/7TT 5 £ 2y34U2/7TT

4
. : . . v
The integral ovey in the square brackets is a Bessel function _ 534e—2ylzu§/ﬂ) + 2_2|_2 e—2(y12+y34)v§/7rT’
aa

Ko(u). The remaining integral ovar then gives

(B28)
1/2 1 2 ?
Th(vz V)= 5 5| 1=—K{ ~ A (B24) M (YL Y1) = sinhy;sinh(y; —u) + sinhy;sinh(y; — u)
7 {[sinhy;sinhy;sinh(y; — u)sinh(y; — u)[
whereK is the elliptic integral of the second kind. (B29
and
4. Exact noisem=2
. ) 1 for y;>u>y,>y;>0>y,
Combining Eqgs(4.24 and(A37) and using the transfor- 1 g VSV US> 0>
mations(B9)—(B12), the noise may be written as O({yd,u)= or y1=Y¥2=ys=U Ya
: —1 for y;>u>0>y,>y3>y,
2 0 otherwise.
AS= Ztanh— f d*xdtsdtsF ({X})[ G (tse) (B30)
o Vigg? B25 We have evaluated these integrals numerically to obtain the
~ G (tse) Ip({xid ts o) : (B25) scaling functionS(v, /T2 V/T). The results were discussed
in Sec. V.
where ap({xy}ts,te) = (K5 + Kz Ky, —Kjj3)/4 with In the limit of zero temperature it is possible to obtain an
K given in Eq.(A38) and analytic solution. Due to the complexity of the integral, and
to explain a subtlety in dealing with thé functions, we
Fx ) = dr (Xea) A (Xan) AO(Ix divide the result into three contributions by writig=1;,
(D) = d1(x12) i (X3 As({Xid) — 1y, Wherel, is the current incident on the second junction
— da(X13) (X2 AQ({Xid}). (B26)  andl, is the current backscattered by the second junction.

The noise is then a sum of three terms,

A? ({x}) is given in Eqs(A39) and (A40), andd; xx) are _Ac :
in Egs.(4.13 and(4.14. It is again useful to symmetrize the AS=ASinin= 285002 A S22 (B31)
integrand with respect to permutations xf,X,,X3,X, and  These three terms arise from the three termB {fix,}).
permutations oft; andtg. tg is then set to zero, and we The term with twoé functions gives the noise incident on
definey,= 7w Tx,, u= 7 Ttg. After some lengthy algebra one the second junction. It can be evaluated using the regulariza-
finds tion 6= 8(y;;) =lim,,__Z exp(=2Zly;|). We find
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v% however, the cross correlation is simply related to the back-
ASm,m:Ztanr? ﬁ) (B32) scattered current computed in Sec. 3 of this appendix.
in agreement with the result far,=0 discussed in Sec. 1 _ 2
[lIA. Thus at zero temperaturASm,in(T=0)=vf/4. AS),in(T=0)= EIbZ:ﬂK(W>' (B33
2

The terms with a singled function describe the cross
correlations betweeh,, andl;,. Again using the regularized ] ) )
& function, two of the integrals in EqB23) can be evaluated ~ The final term in Eq.(B24) describes the backscattered
analytically. At finite temperature the remaining three inte-Noise. At zero temperature we may WritdSy;p,
grals must be evaluated numerically. At zero temperatures viSy,p,,(v2/VY?) with

~ 2 [ u e 202"Vl (ys—u) +ya(y,— W) I[Ya(Ya— U)+Ya(y,—U)]
! - 4. -
Shzp2(X) stRd ydu@({yk},u)sm<2x2) UYi13yoa |y1(y1—u)yz(yz—u)y3(y3—u)y4(y4—u)|1/2 - (B39

While we have been unable to evaluate this integral analytically, we computed it numerically and fou?ﬁ,’g&LQ@X)=1/4
independent oK. We checked this result analytically in the limits of large and si{allVe thus conclude that the noise, when
written in the scaling form, is

~ 1
S'(v2 V2 0)= 5

w

2 [=V2
1——K<m) . (B35)

This is exactly the same as the transmitted cur(B2d); so the shot noise is due to electrons, even in the weak backscattering
limit.

The limiting behavior ofS(v,/TY2V/T) for v,=0 is given by Eq(B28), in agreement with the results of Sec. lll A. For
largev, we may writeD ({y,}) = (7°T?/4v3) &' (y12) 8’ (Yaa), Whered'(y)=lim, _2Z2sgnfy)exp(~2Zy). This leads to in-

tegrals identical to those given in Sec. Il B.
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