
PHYSICAL REVIEW B 67, 045307 ~2003!
Shot noise and the transmission of dilute Laughlin quasiparticles
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We analyze theoretically a three-terminal geometry in a fractional quantum Hall system—studied in a recent
experiment—which allows a dilute beam of Laughlin quasiparticles to be prepared and subsequently scattered
by a point contact. Employing a chiral Luttinger liquid description of then215m integer edge states, we
compute the current and noise of the quasiparticle beam after transmission through the point contact at finite
temperature and bias voltage. A refermionization procedure atm52 allows the current and noise to be
computed nonperturbatively for arbitrary transparency of the point contact. Surprisingly, we find that for weak
backscattering the zero-temperature limit is subtle and singular even at fixed finite bias voltage. In particular,
at T50 the incident charge-e/m quasiparticles are either reflected or elseAndreevscattered@backscattering a
charge-(2111/m)e quasihole and transmitting an electron#—Laughlin quasiparticles arenot transmitted in
this limit. A direct signature of these Andreev processes should be accessible in a particular cross-correlation
noise measurement that we propose.

DOI: 10.1103/PhysRevB.67.045307 PACS number~s!: 73.43.Jn, 73.50.Td, 71.10.Pm
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I. INTRODUCTION

One of the most striking consequences of strong corr
tion in electronic systems is charge fractionalization, wh
the elementary charged excitations of a system have quan
numbers that differ from those of the bare electron. The fr
tional quantum Hall effect~FQHE! is an ideal arena to stud
this phenomenon.1 At filling factor n51/m, the elementary
excitation of the quantum Hall state is the charge-e/m
Laughlin quasiparticle.2 Current experimental techniques a
low for a detailed study of the transport properties of the
exotic particles.

A powerful technique for probing elementary charge c
riers is to measure shot noise. When particles flow indep
dently with an uncorrelated Poisson distribution, their cha
is given by the ratio between the mean-square fluctuatio
the current and the average current.3 In 1994 we proposed
that a quantum point contact, formed by pinching toget
the edges of a quantum Hall bar, would be an ideal geom
for establishing the uncorrelated flow of Laughl
quasiparticles.4 When the point contact is strongly pinche
off the sample is effectively split into two. In that case
weak tunneling current must be carried by electrons,
shot noise with chargee is expected. However, in the oppo
site extreme of weak pinch off, quasiparticles can backsca
between the edges through the quantum Hall fluid. The r
between the noise and the backscattered current is then
termined by the charge of the quasiparticle. In seminal 1
experiments, de-Piccioto et al.5 and Saminadayaret al.6 in-
dependently used this technique to measure the chargee/3 of
the Laughlin quasiparticle.

The original experiments used a two-terminal setup
which the current and noise transmitted through the po
contact were measured. The backscattered current was d
mined by taking the difference between the measured cur
and the current at perfect transmission. Recently Comf
0163-1829/2003/67~4!/045307~17!/$20.00 67 0453
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et al.7 have used the three-terminal device consisting of t
point contacts shown in Fig. 1. Consider first the case wh
the second point contact~QPC2! is completely open, while
the first point contact~QPC1! is weakly pinched off. When
voltage is applied to lead 1 with leads 2 and 3 ground
quasiparticles backscattered from QPC1 propagate into
3. This geometry is superior to the two-terminal setup
measuring the quasiparticle charge because the current d
the quasiparticles is isolated in lead 3. More interesting
this may be viewed as a method for generating adilute beam
of Laughlin quasiparticles propagating into lead 3. Th
opens the door to experiments that probe the transport p
erties of and interactions between individual Laughlin qua
particles.

Comforti et al.7 used this technique to study a dilute bea
of charge-e/3 quasiparticles after transmission through t
second point contact QPC2. By measuring the current
noise in lead 3, they probed the average charge of the
ticles transmitted through QPC2. Surprisingly, they fou
that even when the transmission of QPC2 was small, of or
0.1, the measured transmitted charge;0.45e was signifi-
cantly smaller than that of the electron. This led them
suggest that perhaps the fractionally charged quasipart
in a dilute beam could traverse a nearly opaque barrier.

This suggestion is at odds with the conventional wisd
on the tunneling of quasiparticles. In the limit of strong pin
off, the quantum Hall fluid is split into two pieces, whic
each must have an integer number of electrons. Coup
them weakly can only give rise to tunneling of electron
Any theory that is perturbative in the tunneling of electro
will necessarily give noise corresponding to chargee. None-
theless, it is conceivable that there could be subtle non
turbative effects. It is well known that a weakly backscatt
ing point contact~which is not two independent quantum
Hall fluids! will cross over at low energy to a regime i
which the average current is well described in terms of
©2003 The American Physical Society07-1
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weak tunneling of electrons.8,9 Could the noise in this three
terminal setup somehow behave differently?

In this paper we calculate the current and shot noise tra
mitted through the QPC2 into lead 3 for the device in Fig.
We employ the chiral Luttinger liquid model10 with n21

5m being an odd integer. We treat the quasiparticle ba
scattering from QPC1 at lowest order in perturbation theo
which guarantees that the quasiparticles are dilute and un
related. For QPC2, we develop a nonperturbative theory
describes the entire crossover between the weak and s
backscattering limits. For the special casem52 ~which does
not correspond physically to a FQHE edge state! we present
an exact solution using the technique of fermionization. F
more general filling factors,n51/m, we treat the QPC2 per
turbatively in the limits of weak tunneling and weak bac
scattering. To facilitate comparison with experiments carr
out at finite temperature we compute the full dependenc
the current and noise on temperature and voltage. This g
the crossover between equilibrium noise forV!T and shot
noise forV@T.

Our nonperturbative calculation forn51/2 shows that the
answer to the question posed above is unambiguously ‘‘N
Fractional charges cannot traverse a nearly opaque ba
But the situation is even worse—and more interesting.
find that at strictly zero temperature, fractional charges c
not even pass through a nearly perfectly transmitting bar
Specifically, the zero-temperature shot noise measure
lead 3 corresponds to charge-e particles,independentof the
transmission of QPC2. Thus, only electrons are transmi
through QPC2 even when the transmission of curre
through QPC2 is nearly perfect. We interpret this result to
mean that at zero temperature the transmitted curren
dominated by theAndreevscattering of the incident quas
particles: an electron is transmitted, while a hole with t
remainder of the quasiparticle’s charge is reflected.

This unexpected result points to the subtlety of the ze
temperature limit for fractionalized particles. When the ba
scattering at QPC2 is exactly zero, quasiparticles will ob
ously be transmitted, and the noise in lead 3 should refl
their fractional charge. Evidently the limits of taking the tem
perature to zero and taking the backscattering at QPC
zero do not commute. This situation is unusual in noneq
librium many-body physics. Usually, one expects singula
ties at low energy to be cut off by both temperature a
voltage, with the largest energy scale dominating. By c

FIG. 1. Schematic diagram of the three-terminal fractional qu
tum Hall device with two quantum point contacts used by Comfo
et al. Voltage V is applied to lead 1 with leads 2 and 3 grounde
When the backscattering at QPC1 is weak, a dilute beam of Lau
lin quasiparticles is directed along the top edge to QPC2.
04530
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trast, here we have singular behavior in the zero-tempera
limit for fixed finite voltage. While we do not have an exa
solution for general filling factors, our perturbative analys
gives strong evidence that a similar singularity of the ze
temperature limit occurs forn51/m.

The outline of the paper is as follows. In Sec. II we d
scribe the chiral Luttinger liquid model and establish t
notation that we will use in the remainder of the paper. T
dependences of the current and noise in lead 3 on temp
ture, voltage, and barrier strength are conveniently descr
in terms of scaling functions introduced in Sec. II C.

Sections III and IV outline our calculations of the curre
and noise. Readers who are not interested in our metho
ogy can skip directly to Sec. V where the principal results
those sections are summarized. In Sec. III we describe
perturbative analysis. We begin in Sec. III A with the sim
plest limit in which the backscattering from QPC2 is zero.
this case the scaling functions for the current and noise
similar to previous results for a single junction with a mod
fication due to the presence of the third lead. In Sec. III B
discuss the large barrier limit, dominated by the tunneling
electrons at QPC2 and compute the explicit form of the sc
ing functions for current and noise as functions of volta
and temperature. In Sec. III C we briefly discuss the per
bation theory for small backscattering, which has an imp
tant divergence in the limit of zero temperature. In Sec.
we describe the exact calculations of the current and n
for n51/2. We begin in Sec. IV A with a brief discussion o
the technique of fermionization and set up the formalism t
we use to calculate the current and noise in Secs. IV B
IV C.

Finally, in Sec. V we synthesize the results of Secs.
and IV and discuss their implications for experiment. In S
V A we discuss the scaling behavior of the current and no
as a function of current and temperature and compare
exact results forn51/2 with the perturbation theory. In Sec
V B we discuss the limit of zero temperature and interp
physically the processes responsible for the singular beh
ior. We also propose an experimental setup to observe
effect. Finally in Sec. V C we discuss our results in light
the recent experiments of Comfortiet al.7

The calculations presented in this paper were quite
volved. We have relegated many of the details to two app
dixes. In Appendix A we discuss our method for evaluati
the correlation functions that arise in our perturbative exp
sions. These calculations require a generalization of
Keldysh technique for evaluating nonequilibrium Green
functions. Many of our results involve complicated integra
which are evaluated in Appendix B.

II. MODEL AND SCALING BEHAVIOR

A. Model

The device in Fig. 1 is described using the chiral Lu
tinger liquid model.10 This describes the low-energy excita
tions of the edge states incident from each of the three le
as well as the coupling between them at QPC1 and QP
The Hamiltonian is given byH5H 1

01H 2
01H 3

01V11V2.

-
i
.
h-
7-2
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Here H i
0 describes an51/m chiral Luttinger liquid edge

state that is incident from lead i:

H i
05

mvF

4p E dxi@]xf i~xi !#
2. ~2.1!

The coordinatesxi are defined so that at QPC1xi50 and at
QPC2xi5L. The fieldsf i(xi) satisfy the commutation re
lations @f i(xi),f j (xj8)#5 i (p/m)d i j sgn(xi2xi8). In the fol-
lowing we shall choose units in which the edge state velo
vF51, as well as\5e51.

Tunneling of charge-1/m Laughlin quasiparticles from
edgei 51 to edgei 52 at QPC1 is described by

V15v1~O1v
1 e2 iVt/m1O1v

2 eiVt/m!. ~2.2!

The exponential factors reflect the voltage differenceV be-
tween the incident edge states at the junction. The quas
ticle backscattering operator is given by

O1v
6 5

1

~2ph!1/m e6 i [f1(0)2f2(0)], ~2.3!

where h is an ultraviolet cutoff. QPC2 may similarly b
described in terms of quasiparticle backscattering,

V2v5v2~O2v
1 1O2v

2 ! ~2.4!

with

O2v
6 5

1

~2ph!1/m e6 i [f2(L)2f3(L)] . ~2.5!

In general, Eqs.~2.3! and~2.5! should be augmented wit
Klein factors,11 which ensure the correct commutation re
tions betweenO1v

6 and O2v
6 . However in our analysis we

will focus on the limitL→` andv1→0 ~takenbeforeother
limits, such asT→0). In theL→` limit the Klein factors
are unnecessary.

B. Currents and noise

Currents can be measured in any of the three conta
The current flowing out contacti is given by the operator

Î i5~]xf i 212]xf i !/2p, ~2.6!

evaluated at a point in contacti. ~Heref0 is identified with
f3.! The measured current will be a function of the volta
V at lead 1 and temperature, and is given by the expecta
value I i(V,T)5^ Î i&. Similarly, the noise in the limit of zero
frequency is12

Si j ~V,T!5
1

2E dt^ Î i~ t ! Î j~0!1 Î j~0! Î i~ t !&. ~2.7!

For steady state conditionsI i andSi j are independent of the
position in the contact where the current operator is eva
ated.

In addition to the noise due to quasiparticles backscatte
at QPC1,Si j will include equilibrium fluctuations in the cur
rent. The equilibrium fluctuations will be present even wh
04530
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v150, though they will, of course, be independent ofV in
that case. For smallv1 the equilibrium noise will be much
larger than the noise due to the backscattered quasiparti
We therefore focus on theexcess noiseDSi j (V,T)
5Si j (V,T)2Si j (V50,T). In our perturbative expansion ofS
for small v1, this will be given by the second-order term
v1.

Our main focus in this paper will be on the current a
excess noise transmitted through the second point con
I 3(V,T) and DS33(V,T), though in Sec. V we shall briefly
discuss the noise reflected from the second contactS11(V,T)
and the cross correlationS13(V,T). We will often omit the
subscripts, writingI 35I and DS335DS. The transmitted
current and noise give information about the transparenc
QPC2 to the incident beam of dilute quasiparticles and ab
the charge of the particles that are transmitted by it.
define the effective charge

Q~T,V!5DS~V,T!/I ~V,T!. ~2.8!

In the limit V@T, this gives the average charge of the p
ticles transmitted through the second junction. If electro
are transmitted, we expectQ(V@T)51; while if charge 1/m
quasiparticles are transmitted, we expectQ(V@T)51/m.
Moreover, we shall see that forV;T, Q(V,T) has a univer-
sal form, which can allow for detailed comparison betwe
experiment and theory.

We also define thetransparencyof QPC2,

T~V,T!5I ~V,T!/I in~V,T!, ~2.9!

whereI in is the current incident on QPC2 along the top ed
in Fig. 1, which is equal to (e2/mh)V2I 2. @ I in(V,T) is a
property of a single junctionv1.# T is small when the second
junction is nearly pinched off whileT51 whenv250 and
the transmission is perfect.

C. Scaling behavior

A renormalization-group analysis shows that the opera
O1,2v

6 have scaling dimension 1/m.8,9 It follows that v1 and
v2 both have dimension 121/m. Provided bothV andT are
well below the bulk FQHE gap, the current and noise a
expected to satisfy a scaling form

I ~V,T!5v1
2T2/m21 Ĩ m~v2 /T121/m,V/T!, ~2.10!

DS~V,T!5v1
2T2/m21S̃m~v2 /T121/m,V/T!, ~2.11!

whereĨ m(X,Y) andS̃m(X,Y) areuniversalfunctions of both
arguments. Similarly, the effective charge transmitted i
lead 3 and the transparency of QPC2 should both scale

Q~V,T!5Q̃m~v2 /T121/m,V/T!, ~2.12!

T~V,T!5T̃m~v2 /T121/m,V/T!. ~2.13!

In the following, we calculate these scaling functions.
Sec. III we consider the limitsv2 /T121/m→0 and
v2 /T121/m→` where a perturbative analysis is possible.
7-3
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Sec. IV we consider the special casem52, where an exac
calculation of these scaling functions is possible.

In addition to computing the shape of the scaling fun
tions, we find an interesting subtlety in the structure of
scaling functions whenv2

m/(m21) ,T!V. To highlight this
subtle zero-temperature limit, it is useful to consider
slightly different form of the scaling functions. Specificall
we define

Q~V,T!5Q̃m8 ~v2 /V121/m,V/T! ~2.14!

with similar definitions for I i , DSi j , and T. The limit T

→0 is then described byQ̃m8 (v2 /V121/m,`). Interestingly,
we find that this function differs qualitatively from the form
of Qm(v2 /T121/m,`). This difference signifies the fact tha
the limits v2→0 andT→0 do not commute. We return t
this issue in Sec. V A, where we discuss in detail its phys
meaning.

III. PERTURBATION THEORY

In this section we compute the scaling functio
Q̃m(v2 /T121/m,V/T) andT̃m(v2 /T121/m,V/T) perturbatively
in the limits of large and smallv2 /T121/m. We begin with the
simplest limitv250, in which the transparency of QPC2
1. This will give us the scaling functionQ̃m(0,V/T). We then
consider the opposite limitv2 /T121/m@1, which describes a
large barrier and allows us to computeQ̃m(`,V/T). Finally
in Sec. III C we briefly discuss the effect of a small, b
finite, barrier 0,v2 /T121/m!1.

A. Perfect transmission:v2Ä0

Whenv2 /T121/m50, QPC2 becomes perfectly transm
ting. In this limit, the current and noise should reflect t
quasiparticles backscattered by QPC1. This is nearly ide
cal to the single point contact model studied in Refs. 4 a
13, except for the fact that the current in lead 3 is only due
the current backscattered at the first contact. The remai
of the current exits lead 2. In Appendix A 2 we show how
take this into account. We find that the current and no
transmitted into lead 3 are given by~2.10, 2.11! with

Ĩ m~0,V/T!5
1

pm

uG@1/m1 iV/2pmT#u2

G~2/m!
sinh

V

2mT
~3.1!

and

S̃m~0,V/T!5
1

m
Ĩ m~V/T!coth

V

2mT
22T

] Ĩ m~V/T,0!

]V
.

~3.2!

For V@T the noise is dominated by the first term in E
~3.2!. Thus Q̃m(0,V/T→`)51/m, reflecting the fractional
charge of the Laughlin quasiparticles. ForV;T, thermal
fluctuations alter the noise. Nonetheless,Q̃m(0,V/T) has a
universal form given by
04530
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Q̃m~0,V/T!5
2

pm
Im@c~1/m1 iV/2pmT!#, ~3.3!

where c(x) is the digamma function. Obviously
T̃m(0,V/T)51.

B. Large barriers: t2\0

Whenv2 /T121/m→`, QPC2 is nearly pinched off. In this
limit we expect the noise to reflect the tunneling of electro
through QPC2. This may be described perturbatively usin
dual model that describes the tunneling of electrons w
amplitude t2 between two separate quantum Hall fluids.8,9

The Hamiltonian is the same as before withV2v replaced by

V2t5t2~O2t
11O2t

2!, ~3.4!

where the electron-tunneling operator is

O2t
65

1

~2pa!m e6 im[f2(L)2f3(L)] . ~3.5!

The current in the third lead is equal to the tunneling curre

Î 52 i t 2~O2t
12O2t

2!. ~3.6!

The expectation value of the current may be written a

^ Î ~ t1!&5^TC@ Î ~t1!exp2 i *Cdt@V1v~t!1V2t~t!##&0 . ~3.7!

Here^•&0 is a thermal expectation value forv15t250, and
V1v and V2t are interaction picture operators.C is the
Keldysh contour, which runs from time2` to ` and then
back to 2`.14 TC specifies time ordering on the Keldys
contour. The timet15t1 is arbitrary, and can be chosen to l
on the forward Keldysh path.

We expand to obtain the contribution at orderv1
2t2

2 and
find

I 5
1

2
~2 i !3E

C
dt2dt3dt4

3^TC@ Î ~t1!V2t~t2!V1v~t3!V1v~t4!#&0 . ~3.8!

The noise, defined in Eq.~2.7!, can similarly be expanded,

DS5
1

2
~2 i !2E dt2E

C
dt3dt4

3^TC@ Î ~t1! Î ~t2!V1v~t3!V1v~t4!#&0 . ~3.9!

Again, t1,25t1,2 can be chosen to lie on the forward Keldys
path. We have taken advantage of the symmetry under in
change oft1 andt2 to combine the two terms in Eq.~2.7!.

Evaluation of the expectation values in Eqs.~3.8! and
~3.9! is complicated because each time integral has a co
sponding sum on the forward and backward Keldysh pa
These in turn determine the ordering of the operators.
Appendix A we describe in detail our method for handlin
these sums and evaluating the expectation values. The r
is
7-4
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I 5v1
2t2

2E dt2dt3dt4eiVt34 /m@G2m
1 ~ t12!2G2m

2 ~ t12!#

3@G2/m
1 ~ t34!~K1

212K1
22!1G2/m

2 ~ t34!~K1
122K1

11!#

~3.10!

and

DS5v1
2t2

2E dt2dt3dt4eiVt34 /m@G2m
1 ~ t12!1G2m

2 ~ t12!#

3@G2/m
1 ~ t34!~K1

212K1
22!1G2/m

2 ~ t34!~K1
122K1

11!#,

~3.11!

wheret i j 5t i2t j ,

Ga
6~ t !5S T

2 sinpT~h6 i t ! D
a

, ~3.12!

and

Ka
s3s45S sinpT~h1 is3t13!sinpT~h1 is4t24!

sinpT~h1 is3t23!sinpT~h1 is4t14!
D a

.

~3.13!

The current and noise are then obtained by substitu
Eqs.~3.12! and~3.13! into Eqs.~3.10! and~3.11!. The results
can be cast in the scaling form

I ~V,T!5v1
2t2

2T2m12/m23 Ĩ t,m~V/T!, ~3.14!

DS~V,T!5v1
2t2

2T2m12/m23S̃t,m~V/T!. ~3.15!

Ĩ t,m(V/T) and S̃t,m(V/T) are evaluated in Appendix B. Fo
the current, the integrals may be evaluated analytically, g
ing

Ĩ t,m~V/T!5
1

p

uG~m11/m211 iV/2pmT!u2

G~2m12/m22!
sinh

V

2mT
.

~3.16!

Ĩ t,m(V/T) has the limiting behavior

Ĩ t,m~V/T→0!}V/T, ~3.17!

Ĩ t,m~V/T→`!5bm~V/T!2m12/m23 ~3.18!

with bm5(2pm)322/m22m/G(2m12/m22).
The integrals for the noise are given in Appendix B

where they are evaluated analytically form51 andm52. A
numerical evaluation of the integrals form53 is discussed
in Sec. V A. Here we focus on the asymptotic behavior

S̃t,m~V/T→0!}~V/T!2, ~3.19!

S̃t,m~V/T→`!5bm~V/T!2m12/m23, ~3.20!

wherebm is the same as in Eq.~3.18!.
Ĩ t,m(V/T) andS̃t,m(V/T) determine the limiting forms of

the scaling functions for transparency and effective cha
Clearly, T̃m(`,V/T)50, and
04530
g
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,

e.

Q̃m~`,V/T!5S̃t,m~V/T!/ Ĩ t,m~V/T!. ~3.21!

From Eqs.~3.18! and ~3.20! it is clear that forV@T the
effective charge is unity, reflecting the fact that only ele
trons can traverse a nearly opaque barrier.

C. Small barriers: v2\0

The presence of small, but finite quasiparticle backscat
ing v2 at QPC2 gives rise to a perturbative correction to
current and noise. This correction is important becaus
contains a divergence that is cut off by the temperatureT, but
not by the voltageV. This signifies a subtle nonanalytic be
havior as a function ofv2 in the limit of zero temperature.

We consider an expansion of the scaling functions for
current and noise transmitted into lead 3 in powers ofv2:

Ĩ m~v2 /T121/m,V/T!5 Ĩ m~0,V/T!1
v2

2

T222/m
Ĩ v,m~V/T!,

~3.22!

S̃m~v2 /T121/m,V/T!5S̃m~0,V/T!1
v2

2

T222/m
S̃v,m~V/T!.

~3.23!

The first terms in the expansion were given in Sec. III A. T
corrections clearly diverge in the limitV,T→0 for m.1.
This reflects the fact thatv2 is a relevant perturbation, which
grows as the energy is lowered.

The scaling functionsĨ v,m(V/T) and S̃v,m(V/T) are cal-
culated in Appendixes A 3 and B 2. The results are qu
unusual. Usually, one expects a divergence in the pertu
tion theory to be cut off by the largest available energy in
problem, max(V,T). This would imply that for largex,
S̃v,m(x);1/x222/m. However that isnot the case in the
present problem. We find thatS̃v,m(x) goes to aconstantat
largex. This means that the perturbation theory inv2 breaks
down for T→0 even for fixed finiteV.

For v2
m/(m21)!T!V the effective charge is given by

Q5
1

m
1cm

v2
2

T222/m
, ~3.24!

wherecm is a positive constant given explicitly in Appendi
B. Clearly the correction toQ diverges forT→0. In the
following section we will show that form52, Q51 at T
50 for arbitrarily small but finitev2. It is quite likely that
this conclusion holds generally for all values ofm.1.

IV. EXACT SOLUTION FOR nÄ1Õ2

For intermediate temperatures,v2 /T121/m;1, calculation
of the current and noise requires a nonperturbative techn
capable of describing the crossover between the weak
strong barrier limits. For generalm this is quite difficult,
though, in principle, it should be possible to adapt the th
modynamic Bethe ansatz used by Fendley, Ludwig, a
Saleur in their calculation of the current and noise for
single point contact.13,15 Here we focus on the special cas
7-5
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m52, where the technique of fermionization simplifies t
problem considerably. This technique was pioneered
Guinea16 in the 1980s to solve for the crossover in a mod
of dissipative Josephson junctions. In 1992 we used i
solve for the crossover between weak and strong barrier
its for a single impurity in ag51/2 Luttinger liquid, which
determined the universal line shape of resonances.9 This
technique was later given a simpler and more elegant re
mulation by Matveev in a model of strongly coupled qua
tum dots.17 A related technique has been applied to the tw
channel Kondo problem by Emery and Kivelson.18

We begin in Sec. IV A with a review of the technique
fermionization. This will set the stage for the calculation
the current in Sec. IV B and the noise in Sec. IV C.

A. Fermionization

In this section we review the technique of fermionizati
and set up the formalism that will be used to calculate
current and noise in the following sections. We focus for
moment on the second junction described by the Ham
tonianH5H 2

01H 3
01V2, with m52. The problem is sim-

plified by transforming to new variables in which the tw
channels propagate in the same direction.15 We then trans-
form to sum and difference variables by defining

fr~x!5f2~L1x!1f3~L2x!,

fs~x!5f2~L1x!2f3~L2x!. ~4.1!

These new variables satisfy the commutation relati
@fa(x),fb(x8)#5 ipdabsgn(x2x8) for a,b5s,r. The
Hamiltonian is thenH5Hr1Hs , where

Hs5E dxH 1

4p
~]xfs!21d~x!

v2

A2ph
2 cosfsJ .

~4.2!

Hr is similar, but lacks the second term. The ‘‘spin’’ sect
Hs clearly decouples from the ‘‘charge’’ sectorHr , and con-
tains all effects ofV2. The transmitted current operatorÎ
5@]xf2(x2.L)2]xf3(x3,L)#/2p may be written in the
form

Î 5 1
2 ~ Î s, in1 Î s,out!. ~4.3!

Here we have defined the incoming and outgoing curr
operators Î s, in5]xfs(x,0)/2p and Î s,out5]xfs(x
.0)/2p. In deriving Eq.~4.3! we have used the fact that th
corresponding incoming and outgoing currents in the cha
sector are equal in steady state,I r, in5I r,out.

The key observation that makes solution of this probl
by fermionization possible is the fact that the operatorc(x)
5eifs(x)/A2ph has dimension 1/2 and obeys fermion
commutation relations$c(x),c†(x8)%5d(x2x8).16 Directly
fermionizing, however, leads to a Hamiltonian with a te
linear in a fermionic operator, which is difficult to analyz
Following Matveev17 we introduce an auxiliary fermionic
operatora, and definec(x)5(a1a†)c(x). It is straightfor-
ward to show that$c(x),c†(x8)%5d(x2x8), so thatc(x) is
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also a fermionic operator. With this substitution, the ferm
onized Hamiltonian is quadradic in fermion operators,

Hs5E dx$2 ic†]xc1v2d~x!

3@~a1a†!c~x!

1c†~x!~a1a†!#%. ~4.4!

This Hamiltonian describes a scattering problem in wh
fermions incident fromx,0 scatter from an ‘‘impurity’’ at
x50. Due to the anomalous terms in the impurity interacti
the fermion can either be transmitted, or Andreev scatte
Hs can be diagonalized and written in a basis of scatter
states. To this end we consider the Heisenberg equation
motion

i ] tc~x!52 i ]xc~x!1v2d~x!~a1a†!, ~4.5!

i ] ta5v2@c~0!2c†~0!#. ~4.6!

Scattering state solutions are found by choosingc(x,t)
5ck, ine

ik(x2t)/L1/2 for x,0 andc(x,t)5ck,oute
ik(x2t)/L1/2

for x.0 with

ck,out5tkck, in1r kc2k, in
† . ~4.7!

Substituting into Eqs.~4.5! and ~4.6! and eliminatinga, the
equations are solved when

tk5
k

k12iv2
2 ; r k5

2iv2
2

k12iv2
2 . ~4.8!

Heretk andr k can be interpreted as the amplitudes for tra
mission and Andreev scattering of the incident fermions.

The incident and outgoing currents have the for
Î s, in/out5*(dk/2p):ck, in/out

† ck, in/out:. Thus, using Eqs.~4.3!
and ~4.7! the current operator may be written as

Î 5
1

2E dk

2p
@ utku2~ck, in

† ck, in2c2k, inc2k, in
† !

1 i utkuur ku~ck, in
† c2k, in

† 2c2k, inck, in!#. ~4.9!

Equation~4.9! expresses the operator for the current tra
mitted through the second junction in terms of an opera
that acts only on the incident edge states. The expecta
value of the current can thus be expressed in terms o
single-particle correlation function for the incident particle
The noise will be expressed in terms of a two-particle cor
lation function. In Secs. IV B and IV C we will calculate th
correlation functions perturbatively inv1, allowing for a full
solution of the current and noise as a function ofv2.

The correlation functions can be evaluated by comput
correlations in the channels incident on the second junct
pretending that the second junction is not present. To this
we transform back to the original bosonic variablesf2,3(x)
by writing

~a1a†!ck, in
† 5L21/2E dxO2v

1 ~x!e2 ikx ~4.10!

with
7-6
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O2v
6 ~x!5

1

A2ph
e6 i [f2(L1x)2f3(L2x)] . ~4.11!

Equation~4.9! may then be rewritten as

Î 5
1

2LE dx1dx2@d1$~x12x2!~O2v
1 ~x1!O2v

2 ~x2!

2O2v
2 ~x2!O2v

1 ~x1!%1d2~x12x2!

3$O2v
1 ~x1!O2v

1 ~x2!2O2v
2 ~x1!O2v

2 ~x2!%#, ~4.12!

where

d1~x!5d~x!2v2
2e22v2

2uxu, ~4.13!

d2~x!52sgn~x!v2
2e22v2

2uxu ~4.14!

are the Fourier transforms ofutku2 and i utkuur ku. Since (a
1a†)251 the auxiliary fermions do not enter into Eq
~4.12!. The factor ofL in the denominator is present becau
we have really calculated the integral of the current o
length, Î 5L21*dxÎ(x). The L in the denominator will be
canceled by an integral over a variable upon which the in
grand does not depend.

B. Current

In this section we evaluate the currentI 5^ Î & perturba-
tively in v1 using Eq.~4.12!. In this case, the anomalou
terms give no contribution. We thus write

I 5
1

2LE dx1dx2d1~x12x2!A~x1 ,x2!, ~4.15!

with d1(x) given in Eq.~4.13! and

A~x1 ,x2!5^TC@$O2v
1 ~x1!O2v

2 ~x2!2O2v
2 ~x2!O2v

1 ~x1!%

3exp2 i *CdtV1~t!#&0 . ~4.16!

Here ^•&0 is the thermal expectation value withv150. The
time integral is on the Keldysh contour, andTC specifies
time ordering on that contour. Expanding and keeping o
the term of orderv1

2, we then find

A~x1 ,x2!5
1

2
~2 i !2E

C
dt3dt4^TC@$O2v

1 ~x1!O2v
2 ~x2!

2O2v
2 ~x2!O2v

1 ~x1!%V1v~t3!V1v~t4!#&0 .

~4.17!

This has a structure similar to the perturbation theory for
current outlined in Sec. III B. As in that section we defer
Appendix A a discussion of our method for handling t
sums over Keldysh paths and the evaluation of the ma
elements. The result is
04530
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A~x1 ,x2!5v1
2E dt3dt4eiVt34/2@G1

1~x12!2G1
2~x12!#

3@G1
1~ t34!~K1/2

212K1/2
22!

1G1
2~ t34!~K1/2

122K1/2
11!#, ~4.18!

where G1
6(t) and K1/2

s3s4 are given in Sec. III B witht1,2

replaced byx1,2.
The current is then obtained by substituting Eq.~4.18!

into Eq. ~4.15!. The result can be put into the scaling form

I ~V,T,v2!5v1
2 Ĩ 2~v2 /T1/2,V/T! ~4.19!

5v1
2 Ĩ 28~v2 /V1/2,V/T!.

~4.20!

The general form ofĨ 2(v2 /T1/2,V/T) may be found in Ap-
pendix B. It a three-dimensional integral that cannot
evaluated analytically. A numerical evaluation of the integ
is discussed in Sec. V. Here we focus on the limiting beh
ior, where an analytic solution is possible.

In the limit of perfect transmissionv2 /T1/2→0, we find

Ĩ 2~0,V/T!5
1

2
tanh

V

4T
. ~4.21!

This agrees precisely with the result of Sec. III A, Eq.~3.1!.
In the large barrier limitv2 /T1/2→` we find

Ĩ 2~v2 /T1/2→`,V/T!5
V214p2T2

128v2
4 tanh

V

4T
. ~4.22!

This agrees precisely with the smallt2 perturbation theory
for m52 @Eq. ~3.16!# given the identificationt25p/(2v2

2).
In the limit of zero temperature, an analytic solution

also possible. In this case it is better to use the scaling fu
tion Ĩ 28 , and we find

Ĩ 28~v2 /V1/2,`!5
1

2 F12
2

p
K S 2

V2

16v2
4D G , ~4.23!

whereK is the elliptic integral of the second kind. This func
tion shows a crossover between the large barrier li
Ĩ 28(v2 /V1/2→`,`)5V2/(128v2

4) and the small barrier limit

Ĩ 28(v2 /V1/2→0,̀ )51/22@4v2
2/(pV)# ln(4V/v2

2). Note the
nonanalytic behavior of the limitv2→0.

C. Noise

The noise is evaluated using Eqs.~2.7! and ~4.12!. By
shifting variablesxk→xk2t the integral in Eq.~2.7! be-
comes independent oft. The integral overt then cancels one
factor of L and we find

DS5
1

4LE dx1dx2dx3dx4@d1~x12!d1~x34!A1~$xk%!

2d2~x13!d2~x24!A2~$xk%!#, ~4.24!
7-7
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whered1(x) and d2(x) are given in Eqs.~4.13! and ~4.14!
and

A1~$xk%!5^@O2v
1 ~x1!O2v

2 ~x2!2O2v
2 ~x2!O2v

1 ~x1!#

3@O2v
1 ~x3!O2v

2 ~x4!2O2v
2 ~x4!O2v

1 ~x3!#&,

~4.25!

A2~$xk%!5^O2v
1 ~x1!O2v

1 ~x3!O2v
2 ~x2!O2v

2 ~x4!

1O2v
2 ~x4!O2v

2 ~x2!O2v
1 ~x3!O2v

1 ~x1!&.

~4.26!

In the second term of Eq.~4.24! and in Eq.~4.26! we have
permuted the dummy variablesx2↔x3 andx1↔x4 to make
x1 , x3 the arguments ofO1 and x2 , x4 the arguments of
O2. Again the integral depends on only three of the fourxk .
The remaining integral cancels theL in the denominator. The
expectation values are expanded to orderv1

2 and evaluated in
a manner similar to that in the preceding section. Details
this may be found in Appendix A 4, where the analog of E
~4.18! is derived.

The noise is then obtained by substituting Eq.~A.38! into
Eq. ~4.24!. The result can be cast in the scaling form

DS~V,T,v2!5v1
2S̃2~v2 /T1/2,V/T! ~4.27!

5v1
2S̃28~v2 /V1/2,V/T!. ~4.28!

The general form ofS̃2(v2 /T1/2,V/T) may be found in Ap-
pendix B. It involves a five-dimensional integral that can n
be evaluated analytically. A numerical evaluation of the in
gral is discussed in Sec. V. As in Sec. IV B we focus
limiting behavior, where an analytic solution is possible.

In the limit of perfect transmissionv2 /T1/2→0, we find

S̃2~0,V/T!5
1

4
tanh2

V

4T
. ~4.29!

This agrees precisely with the result of Sec. III A, Eq.~3.2!.
In the large barrier limitv2 /T1/2→`, we find

S̃2~v2 /T1/2→`,V/T!5
V214p2T2

128v2
4 tanh2

V

4T
. ~4.30!

This agrees precisely with the smallt2 perturbation theory
for m52 @Eq. ~B 4!#, again with the identificationt2

5p/(2v2
2). This confirms that the smallt2 perturbation

theory is indeed correct and that in the large barrier limit
low temperature and voltage only electrons can be trans
ted through the second junction.

In the limit of zero temperature the five-dimensional in
gral can still not be fully evaluated. However, as explained
Appendix B we have establishednumericallythat the noise
is equal to

S̃28~v2 /V1/2,`!5
1

2 F12
2

p
K S 2

V2

16v2
4D G , ~4.31!
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whereK is the elliptic integral of the second kind. This
precisely equal to the current in Eq.~4.23!.

This result is quite surprising because it implies that
zero temperature the effective charge is

Q̃8~v2 /V1/2,`!51, ~4.32!

independentof the barrier strengthv2. Thus the shot noise
measured in the third contact indicates that electrons
transmitted even whenv2 /V1/2 is small and the transmissio
through the second contact is nearly perfect.

V. DISCUSSION

We now synthesize the results of the previous two s
tions and discuss physical meaning and their implications
experiment. We begin with a summary of our results for t
dependence of the current and noise on temperature and
age. We then discuss in detail the zero-temperature limit,
identify the processes responsible for the peculiar beha
that occurs there. We propose an experiment to probe
physics that occurs near zero temperature. Finally, we
cuss the implications of our results for existing experimen

A. Current and noise

Figure 2 shows the transparency of QPC
T̃2(v2 /T1/2,V/T) and the effective chargeQ̃2(v2 /T1/2,V/T)
for n51/2 as a function ofV/T for various temperatures
The lowest temperatures have the smallest transparency
the largest effective charge. These curves were obtaine
evaluating the integrals in appendixes B 3 and B 4 num
cally. The thick curves in Fig. 2~b! are the asymptotic result
from the perturbation theory in the limitsv2 /T1/2→0 @Eq.
~3.3!# and v2 /T1/2→` @Eq. ~B6!#. In the limit of low tem-
perature~or large backscattering at QPC2! the results of the
exact calculation reduce to the results of the perturba
theory based on the weak tunneling of electrons. Moreo
comparing Figs. 2~a! and 2b, it is clear that when the tran
parency is small, the effective charge~for V/T sufficiently
large! is very close to 1.

A striking feature of these curves is their behavior f
largeV/T. For each of the curves in Fig. 2~a! the transpar-
ency increases with increasingV/T and eventually ap-
proaches 1. This is because the transmission through Q
becomes perfect forV@v2

2. By contrast, the curves for th
effective charge in Fig. 2~b! saturate at a constant value fo
V/T→`. Thus, even though the transmission through QP
T̃2(v2 /T1/2,`)51 is perfect, the chargeQ̃2(v2 /T1/2,`) of
the transmitted particles isnot equal to the charge 1/2 of th
quasiparticles incident on QPC2, but rather varies betw
1/2 and 1 as the temperature is lowered. In striking contr
at zero temperature, Eqs.~4.23! and ~4.31! show that the
effective charge of the transmitted particlesQ̃28(v2 /V1/2,`)
51, independent of the voltageV. The scaling functions
Q̃2(v2 /T1/2,V/T) and Q̃28(v2 /V1/2,V/T) thus show qualita-
tively different behavior. This is quite unusual, since usua
the dependence of scaling functions on voltage and temp
7-8
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FIG. 2. ~a! Transparency of QPC2,T̃2(v2 /T1/2,V/T) as a function ofV/T for different temperatures,T/v2
250.2,0.5,1,2,5,10,20. The

lowest temperatures have the lowest transparency.~b! Effective charge transmitted through QPC2,Q̃2(v2 /T1/2,V/T) as a function ofV/T for
the same set of temperatures as in~a!. The lowest temperatures have the largest effective charge. The thick lines are the asymptoti
Q(0,V/T) andQ(`,V/T) discussed in the text.
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ture are qualitatively similar. The origin of this behavior c
be traced to the singular behavior of limitT→0 with fixedV:

Q~v250,T→0,V!51/2,

Q~v2→0,T50,V!51. ~5.1!

The limits of T→0 andv2→0 do not commute.
In Sec. V B we will offer a physical interpretation of thi

peculiar behavior. However, before doing so it is importa
to ask whether it is an artifact of the chiral edge theory
n51/2, or whether it also occurs more generally. In Fig
we show perturbative calculations ofQ̃3(0,V/T) @Eq. ~3.3!#
and Q̃3(`,V/T) @Eqs. ~3.21!, ~3.16!, and ~B 4!#. It seems
quite plausible that for intermediate temperatu
Q̃3(v2 /T2/3,V/T) should interpolate smoothly between th
two limits as in Fig. 2~b!. This does not exclude the poss
bility, however, that the curves cross over to 1/3 forV/T
@v2

3/2/T. This is ruled out, however, by the perturbatio
theory in v2. Equation ~3.24! shows that forv2

3/2!T!V,

Q̃21/3}v2
2/T4/3. Thus, Q̃3(v2 /T2/3,`).1/3 for finite v2,

and it presumably then crosses over to 1 forv2@T2/3.

FIG. 3. Scaling functions for the effective charge transmit

into lead 3 forn51/3, Q̃3(v2 /T2/3,V/T). The bottom curve is in

the weak backscattering or high-temperature limitQ̃3(0,V/T),

whereas the top curve is in the low-temperature limitQ̃3(`,V/T).
Notice that in this limit of an opaque barrier (v2@T2/3) only elec-
trons are transmitted through QPC2 whenV@T.
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The smallv2 perturbation theory also gives a divergin
correction to the transparency at zero temperature@Eq.
~3.22!#. This divergence was absent forn51/2. One may
therefore worry that the transparency also goes to zeroT
50 for fixedV. However, this is contradicted by the smallt2
perturbation theory, Eqs.~3.14! and ~3.18!, which gives a
finite transparencyT3}t2

2V11/3 at T50. It is most likely that
the divergence for smallv2 signifies that transparency is no
analytic atv250. Such a nonanalyticity also occurs form
52, where Eq.~4.23! givesT2;12(v2

2/V)ln V/v2
2.

The above arguments give strong evidence that the sin
lar behavior atT50 that we have established forn51/2 also
occurs forn51/3 and other Laughlin filling fractions. None
theless, it would be desirable to obtain a full solution forn
51/m. Using the thermodynamic Bethe ansatz, Fendl
Ludwig, and Saleur13,15have calculated the current and noi
for a single point contact, accounting for the full crossov
between the weak backscattering and strong backscatte
limits. It should be possible to generalize their formalism
the present three-terminal geometry.

B. Physical picture for the T\0 limit

In this section we attempt to make sense out of the pe
liar behavior we have established at zero temperature.
wish to understand how electrons can be transmitted thro
QPC2 into lead 3 even when the transparency of QPC
nearly perfect. We assume here that this effect occurs fon
51/m.

At zero temperature quasiparticles backscattered by Q
come in wave packets of chargee/m and duration;1/V at a
rate ;v1

2V(2/m)21. For v1!V12(1/m) the quasiparticle wave
packets are independent and can be considered one at a
The interaction of a quasiparticle with QPC2 presents a s
tering problem. When a quasiparticle scatters from QPC
is natural to ask what comes out. Unlike the noninteract
electron version of this problem, the number of quasipa
cles is not necessarily conserved in this scattering proc
However, the total charge is conserved. We consider th
processes.~1! The quasiparticle is transmitted with probab
7-9
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C. L. KANE AND MATTHEW P. A. FISHER PHYSICAL REVIEW B67, 045307 ~2003!
ity T into lead 3.~2! The quasiparticle is reflected with prob
ability R into lead 1.~3! The quasiparticle isAndreev re-
flectedwith probability A. In this process an electron wit
chargee is transmitted into lead 3 while a hole with charg
(2111/m)e is reflected into lead 1. It is straightforward t
show that if these are the only allowed processes~i.e., T
1R1A51), the transparency is given by

T5T1mA. ~5.2!

Moreover, the effective charge will be

Q5
T1m2A

mT1m2A
. ~5.3!

For v2!T121/m, we clearly haveR5A50 andT51. On
the other hand, at zero temperature our noise calcula
shows thatT50, since only electrons were found to b
transmitted into lead 3. The transmitted current is thus ap
ently dominated by Andreev processes. This is no surpris
the large barrier limitv2@V121/m, whereT is small, so that
A is small and R;1. In the small barrier limit v2
!V121/m, however, we haveT;1. This then implies that
A51/m and R5121/m. Thus, quite remarkably, the inci
dent quasiparticle is either reflected or Andreev reflec
with probabilities that have saturated at values that cons
to giveperfecttransmission of thecurrent. Moreover, in this
limit the time-averaged current backscattered off QPC2van-
ishes, although it will be noisy as we now detail.

A key feature of the Andreev processes is that the tra
mitted and reflected currents arecorrelated. These correla-
tions give an unambiguous signature in the noise. We th
fore propose that the noise be measured inboth leads 1 and
3. It may be desirable to add an additional lead betw
leads 1 and 3, which can isolate the current reflected
QPC2. In any case, this will not affect the following zer
temperature predictions. As above, the noise measure
lead 3 should reflect the chargee of the Andreev transmitted
electrons,

DS335I 3 . ~5.4!

The noise measured in lead 1, however, will be a comb
tion of the charge-1/m reflected quasiparticles and th
charge-(1/m)21 Andreev reflected holes. In terms of th
measured currents, it will be given by

DS115~1/m!DI 11~121/m!I 3 . ~5.5!

HereDI 1 is the current flowing into lead 1 due to the refle
tions from QPC2, that is,DI 15I 11Ve2/(mh). If an addi-
tional lead, say lead 4, is present between leads 1 and 3,
for DS44 one would have simplyDI 1 replaced byI 4 in Eq.
~5.5!. The cross correlations are determined solely by
Andreev processes,

DS1352~121/m!I 3 . ~5.6!

In the limit of weak pinch off for QPC2, we haveDI 150 at
zero temperature. Nevertheless, the current flowing into l
1 is noisy, with DS1152DS135(121/m)DS33. Thus, in
this way one can prepare a noisy but zero time-avera
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nonequilibrium current, present in the zero-temperature li
where equilibrium current fluctuations vanish. While u
doubtedly challenging, it would be fascinating to detect t
effect and the presence of Andreev processes more gene

C. Relation to existing experiments

We close by commenting briefly on the implications
our results for the experiments of Comfortiet al.7 It is clear
that our results give no support to the notion of fraction
charges traversing a nearly opaque barrier. So the interp
tion of the data remains a puzzle. However, it is worthwh
to point out some possible sources of discrepancy.

The exact scaling functions form52 that we have com-
puted are, strictly speaking, only applicable for a point co
tact that backscatters high energy~but still below the bulk
FQHE gap! incident particles only weakly. A point contac
that is strongly pinched off will not generally follow th
universal crossover between weak and strong backscatte
embodied in the scaling functions. Nevertheless, since
results show an absence of any subtle nonperturbative ef
in the limit of weak tunneling through the point contact, it
difficult to imagine that this could modify our basic conclu
sion that only electrons can traverse an opaque barrie
seems plausible that the experimentally observed charg
0.45 is a finite-temperature crossover effect, which mi
well revert to a charge ofe as the temperature is lowere
further. But it remains difficult reconciling a transmitte
charge well below the electron charge for a point cont
with such a small measured transparency of only 0.1.

Comforti et al.7 extracted the effective charge by fittin
the measuredI (V,T) andDS(V,T) to an ‘‘independent par-
ticle model,’’ which is essentially the noninteracting electr
version (m51) of the scaling functionsĨ m(V/T) and S̃m .19

In Fig. 4 we compare the scaling functions for the effecti
charge in the large barrier limitQ̃m(`,T/V) for m51, 2,
and 3. HereQ̃1(`,x)5cothx/222/x, Q̃2(`,x)5tanhx/4,
and Q̃3(`,x) is computed numerically as in Fig. 3. Th
curves clearly differ quantitatively. The results of this pap
thus suggest an alternative method for analyzing the d
For a fixed temperature, we plot the measured values
DS(V,T)/I (V,T) as a function ofV/T and compare with the

FIG. 4. Scaling functionsQ̃m(v2 /T121/m,V/T) for the effective
charge transmitted into lead 3 through QPC2 in the large bar
limit v2 /T121/m→`. The three curves correspond to fillingn
51/m51,1/2,1/3 as labeled.
7-10
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scaling functionsQ̃3(0,V/T) and Q̃3(`,V/T) in Fig. 3. For
data taken at voltagesV*10T, conclusions about the
asymptotic charge forV@T should not depend on the fittin
method. But for smaller voltages there may well be a diff
ence.
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APPENDIX A: EXPECTATION VALUES AND KELDYSH
SUMS

In this appendix we demonstrate our technique for eva
ating the expectation values and sums over Keldysh path
Sec. 1 of this appendix we do in detail the calculation for
small t2 limit. This will establish our method, which can the
be applied to the other calculations. In Sec. 2 we discuss
limit of small v2. Finally in Sec. 3 we briefly discuss th
calculations for the exact current and noise form52.

1. Small t2 perturbation theory

In this section we provide some details of the calculat
which lead from Eqs.~3.8!–~3.11!. Our starting point is the
expansion of the current and noise to orderv1

2t2
2. It is useful

to introduce an indexs56 which specifies the forward an
backward paths of the Keldysh contour. Then,*Cdt
→(ss*dt. For the variablet1 ~and t2 for the noise! we
introduce a dummy sum overs1 ~ands2). In addition, we
write the two terms in the tunneling Hamiltonian~3.4! and
the current operator~3.6! as a sum overs56. The current
and noise can then be written as
in

ak
by

r
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I 5
1

4
v1

2t2
2 (
$sk ,sk%

s1s2s3s4E d3te2 iV(s3t31s4t4)/m

3^TC@O2t
s1~s1t1!O2t

s2~s2t2!O1v
s3 ~s3t3!O1v

s4 ~s4t4!#&0

~A1!

DS5
1

8
v1

2t2
2 (
$sk ,sk%

s1s2s3s4E d3te2 iV(s3t31s4t4)/m

3^TC@O2t
s1~s1t1!O2t

s2~s2t2!O1v
s3 ~s3t3!O1v

s4 ~s4t4!#&0 .

~A2!

The three time integrals are overt2 , t3, and t4. Note, how-
ever, that due to invariance with respect to time translati
they can be shifted to any three of the timest1 ,t2 ,t3 ,t4.
Clearly we must haves11s25s31s450 in each of the
sums on$sk%. By appropriately relabeling the integratio
variables, we may specifys152s252s35s451.

I 5
1

2
v1

2t2
2(
$sk%

~s22s1!s3s4E d3tP~$sk ,tk%!eiVt34 /m

~A3!

DS5
1

2
v1

2t2
2(
$sk%

s3s4E d3tP~$sk ,tk%!eiVt34 /m, ~A4!

where

P~$sk ,tk%!5^TC@O2t
1~s1t1!O2t

2~s2t2!

3O1v
2 ~s3t3!O1v

1 ~s4t4!#&0 . ~A5!

P($sk ,tk%) is computed by first computing th
imaginary-time-ordered correlation function.

P~$tk%!5^Tt@O2t
1~t1!O2t

2~t2!O1v
2 ~t3!O1v

1 ~t4!#&0 .
~A6!

The expectation value factorizes into three terms,
P~$tk%!5
^Tt@ei [f1(0,t3)2f1(0,t4)] #&0^Tt@ei [f3(L,t1)2f3(L,t2)] #&0^Tt@ei [f2(L,t1)2f2(L,t2)2f2(0,t3)1f2(0,t4)] #&0

~2ph!2m12/m , ~A7!

whereTt signifies time ordering in imaginary time. Using Hamiltonian~2.1!, it is straightforward to show that

P~$tk%!5
~T/2!2m12/m

sin2mpT~h1s12t12!sin2/mpT~h1s34t34!

sinpT@h1s13~t132 iL !#sinpT@h1s24~t242 iL !#

sinpT@h1s23~t232 iL !#sinpT@h1s14~t142 iL !#
. ~A8!
e
Here s i j 5sgn(t i2t j ) reflects ordering of the operators
the imaginary-time-ordered product.

The real-time correlation functions are determined by t
ing t i j → i t i j . The operator ordering is now determined
the time ordering on the Keldysh contour. Thuss i j 561
depending on whether the timet is i comes later or earlie
than t js j on the Keldysh contour.s i j now depends on the
-

Keldysh pathss i , s j as well as on the sign of the tim
differencesi j 5sgn(t i2t j ). Explicitly it may be written

s i j 5
1
2 @~s j2s i !1si j ~s i1s j !#. ~A9!

In the limit of largeL the only times to contribute will be
those with t1,2;t3,41L. Therefore, from Eq.~A10! s13
7-11
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5s235s3 and s145s245s4. The real-time correlation
function may then be expressed in the form

P~$sk ,tk%!5G2m
s12~ t12!G2/m

s34~ t34!K1
s3s4 ~A10!

with

Ga
6~ t !5S T

2 sinpT~h6 i t ! D
a

~A11!

and

Ka
s3s4

5S sinpT@h1 is3~ t132L !#sinpT@h1 is4~ t242L !#

sinpT@h1 is3~ t232L !#sinpT@h1 is4~ t142L !# D
a

.

~A12!

Ga
6(t) may be interpreted as a two-point Green’s functi

more commonly referred to asG,,.(t). For instance,
G2m

1 (t)5^O2t
1(t)O2t

2(0)&0 andG2m
2 (t)5^O2t

2(0)O2t
1(t)&0.

Substituting Eqs.~A10!–~A12! into Eq.~A3! the sums on
$sk% may be evaluated giving

I 5v1
2t2

2E d3teiVt34 /m@G2m
1 ~ t12!2G2m

2 ~ t12!#@G2/m
1 ~ t34!$K1

21

1 1
2 ~K1

111K1
22!1 1

2 s34~K1
112K1

22!%1G2/m
2 ~ t34!

3$K1
121 1

2 ~K1
111K1

22!2 1
2 s34~K1

112K1
22!%#. ~A13!

This equation may be simplified by considering the dep
dence of the integrand on the ‘‘average time difference’’t0
5(t11t22t32t4)/2. t0 enters only in the formL→L2t0
and may be interpreted as the time it takes quasiparticle
propagate between the two junctions. It can be shown
contour integration that

E dt0~K112K22!50. ~A14!

This allows us to rewrite Eq.~A13! in a simpler form,

I 5v1
2t2

2E dt2dt3dt4eiVt34 /m@G2m
1 ~ t12!2G2m

2 ~ t12!#@G2/m
1 ~ t34!

3~K1
212K1

22!1G2/m
2 ~ t34!~K1

122K1
11!#. ~A15!

The sum oversk for the noise is almost the same, except
the first term in Eq.~A3!. This gives

DS5v1
2t2

2E dt2dt3dt4eiVt34 /m@G2m
1 ~ t12!1G2m

2 ~ t12!#

3@G2/m
1 ~ t34!~K1

212K1
22!1G2/m

2 ~ t34!~K1
122K1

11!#.

~A16!

Finally, in Eqs.~3.10! and ~3.11! we have shiftedt1,2→t1,2
2L to eliminate the variableL.
04530
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2. Current and noise for v2Ä0

Here we briefly outline the calculation of the current a
noise when the second junction transmits perfectly. Sim
results have been obtained earlier for the single junction.4,8,9

We include the calculation here because the result is slig
different and because we use a somewhat different met
which will be useful when generalizing to finitev2.

We express the currentI 5I 3 in terms of incident currents
and the current backscattered at the first junction

Î 5 Î 2in2 Î 3in1 Î b1 , ~A17!

whereI 2,3in5]xf2,3/2p are the currents carried by the chir
edge states incident from leads 2 and 3. The current ba
scattered at the first junction is

Î b152 i ~v1 /m!~O1v
1 e2 iVt/m2O1v

2 eiVt/m!. ~A18!

The backscattered current is related to the voltage d
across the junction, as discussed in Ref. 4. For the curren
first two terms in Eq.~A18! cancel, and we haveI 5^I b1&.
This may be evaluated using the procedure in Sec. 1 of
appendix to be

I 5
v1

2

mE dteiVt/m@G2/m
1 ~ t !2G2/m

2 ~ t !# ~A19!

with G2/m
6 (t) given in Eq.~A11!. Evaluation of the integral

gives the result quoted in Eq.~3.1!.
The excess noise contains two contributions,

DS5DSb1,b112DSb1,2in. ~A20!

The fluctuation in the backscattered currentDSb1,b1

5(1/2)*dt^ Î b1(t) Î b1(0)& is related to the voltage fluctua
tions across the junction. It has the form~check sign!

DSb1,b15
v1

2

m2E dteiVt/m@G2/m
1 ~ t !1G2/m

2 ~ t !#. ~A21!

Using the fact thatG2(t1 i /T)5G1(t) it is straightforward
to establish thatdSbb5(I /m)cothV/2mT. Physically, the
two terms in Eqs.~A19! and ~A21! describe the rates fo
forward and backward tunneling of quasiparticles across
voltage differenceV which are related by a factoreV/mT.

The second termDSb1,2in5(1/2)*dt^$ Î b1(t), Î 2in(0)%&
gives the cross correlation between the backscattered cu
and thermal fluctuations in the current incident from lead
This cross correlation can be shown to have the form

DSb1,2in5T
]^I b1&
]V2

. ~A22!

In equilibrium,V→0; this is simply a statement of the fluc
tuation dissipation theorem. However, as shown in Ref. 4
is also valid forV.0.

Combining Eqs.~A21! and~A22! we get the result quoted
in Eq. ~3.2!. Note that the other terms present inS do not
contribute to the excess noise. In particular the current in
dent from lead 3 will have no correlation withI b .
7-12
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3. Small v2 perturbation theory

Whenv2 is finite we write the current as

Î 5I 2,in2I 3,in1I b12I b2 , ~A23!

where the current backscattered at the second junction i

Î b252 i ~v2 /m!~O2v
1 2O2v

2 !. ~A24!

The average current at orderv2
2 is then given byI 5I b2.

This may be computed along the lines of the preceding s
tion. The structure is almost identical to~A15!, except that
the dimensions of the operators are changed. We find

I b25
v1

2v2
2

m E d3tei (V12t342V32t12)/m@G2/m
1 ~ t12!2G2/m

2 ~ t12!#

3@G2/m
1 ~ t34!~K1/m

212K1/m
22!1G2/m

2 ~ t34!~K1/m
122K1/m

11!#.

~A25!

For use in the following section we have included voltag
Vk in all three contacts, andVkl5Vk2Vl . The current is
evaluated withV25V350 andV15V.

From Eq.~A23!, the nonzero contributions to the exce
noise at orderv2

2 will be given by

DS5DSb2,b222DSb1,b222DSb2,2in12DSb2,3in
~A26!

As in the preceding section, the cross correlations with
incident currents have the form

DSb2,kin5T
]I b2

]Vk
~A27!

for k51,2. In addition we find

DSb2,b25
v1

2v2
2

m2 E d3teiVt34 /m@G2/m
1 ~ t12!1G2/m

2 ~ t12!#

3@G2/m
1 ~ t34!~K1/m

212K1/m
22!

1G2/m
2 ~ t34!~K1/m

122K1/m
11!#. ~A28!

The cross correlation is given by

DSb2,b15
v1

2v2
2

m2 E d3teiVt34 /m@G2/m
1 ~ t12!2G2/m

2 ~ t12!#

3@G2/m
1 ~ t34!K1/m

212G2/m
2 ~ t34!K1/m

12#. ~A29!

4. Current for mÄ2

In this section we provide details of the calculation rel
ing Eq. ~4.17! to ~4.18! in the evaluation of

A~x1 ,x2!5^O2v
1 ~x1!O2v

2 ~x2!2O2v
2 ~x1!O2v

1 ~x2!&.
~A30!

The procedure is quite similar to that of Sec. 1 of Appen
A. We begin by rewriting Eq.~4.17! as
04530
c-

s

e

-

x

A~x1 ,x2!5
1

2
v1

2(
$sk%

~s22s1!s3s4

3E dt3dt4eiVt34 /mP~$sk ,tk ,xk%!

~A31!

with

P~$sk ,tk ,xk%!5^TC@O2v
1 ~s10,x1!O2v

2 ~s20,x2!

3O1v
2 ~s3t3!O1v

1 ~s4t4!#&0 . ~A32!

The correlation function has the same structure as Eq.~A5!

P~$sk ,tk ,xk%!5G1
s12~x12!G1

s34~ t34!K1/2
s3s4 ~A33!

with G6(x) andK1/2
s3s4 given in Eqs.~A12! and ~A13! with

t1,2 replaced byx1,2. Summing on the Keldysh indices, w
find

A~x1 ,x2!5v1
2E dt3dt4eiVt34 /m~G1

1~x12!2G1
2~x12!!

3@G1
1~x34!~K1/2

212K1/2
22!

1G1
2~ t34!~K1/2

122K1/2
11!#. ~A34!

The first term in the integrand can be interpreted as
zeroth-order expectation value,

A0~x1 ,x2!5^O2v
1 ~x1!O2v

2 ~x2!2O2v
2 ~x1!O2v

1 ~x2!&0

5G1
1~x12!2G1

2~x12!. ~A35!

5. Noise formÄ2

Calculation of the expectation valuesA1,2($xk%) in Eqs.
~4.25! and~4.26! of Sec. IV B can be done in the same ma
ner as in the preceding section. Again, the expectation va
can be factored into a zeroth-order expectation value tim
an integral. We find

A1,2~$xk%!5v1
2A1,2

0 ~$xk%!E dt5dt6eiVt34/2@G1~ t56!~K21

2K22!1G2~ t56!~K122K11!#, ~A36!

whereG6(t) is the same as in Eq.~A12! and
7-13
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Ks5s65S sinpT~h1 is5z15!sinpT~h1 is5z35!sinpT~h1 is6z26!sinpT~h1 is6z46!

sinpT~h1 is5z25!sinpT~h1 is5z45!sinpT~h1 is6z16!sinpT~h1 is6z36!
D 1/2

, ~A37!
f

th

he

ract-

ion

tion

s

where we use the notationzi j 5xi2t j . The zeroth-order ex-
pectation values can be evaluated using Wick’s theorem
the fermionic operatorsO2v

6 ,

A1
0~$xk%!5@G1~x12!2G2~x12!#@G1~x34!2G2~x34!#

14G1~x14!G
1~x23! ~A38!

A2
0~$xk%!5G1~x14!G

2~x23!2G1~x12!G
1~x34!

1G2~x14!G
1~x23!2G2~x12!G

2~x34!.

~A39!

APPENDIX B: EVALUATION OF INTEGRALS

1. Small t2 perturbation theory

In this section we simplify integrals~3.10! and ~3.11!.
One of the integrals can be easily done because

K1
212K1

225~K1
122K1

11!*

52~2/T!d~ t14!
sin~pTit34!sin~pTit12!

sin@pT~h2 i t 23!#
.

~B1!

This allows us to write the current (I 5C2) and noise
(S5C1) as

C652v1
2t2

2E dt2dt3eiVt3 /m@G2m21
1 ~ t2!6G2m21

2 ~ t2!#

3@G2/m21
1 ~ t3!G1

2~ t23!1G2/m21
2 ~ t3!G1

1~ t23!#. ~B2!

Definingu5pTt26 ip/2 for the terms involvingG2m21
6 (t2)

andv5pTt36 ip/2 for the terms involvingG2/m21
6 (t3), the

terms in the integral can be combined and written in
scaling formC6(V,T)5v1

2t2
2T2m12/m23C̃6(V/T) with

C̃t,m~X!5
2222m22/msinh~X/2m!

p2

3E
2`

`

dudv
eiXv/mp

cosh2m21u cosh2/m21v

3S 1

sin@h1 i ~u2v !#
7

1

sin@h2 i ~u2v !# D .

~B3!

The integrals forĨ t,m(V/T) can be evaluated because t
factor in parentheses is ad function. The result is given in
Eq. ~3.16!. The integral forS̃t,m(V/T) has the form
04530
or

e

S̃t,m~X!5
2322m22/msinh~X/2m!

p2

3E
2`

`

dudv
sinXv/mp

cosh2m21u cosh2/m21v sinh~u2v !
.

~B4!

This is evaluated numerically in Sec. V.
In special cases the above results simplify. Form51 we

find Ĩ t,1(X)5X/2p and S̃t,1(X)5(X cothX/222)/2p. Thus,

Q̃1~X,`!5coth~X/2!22/X. ~B5!

These results are the same as those one gets for noninte
ing electrons.19 For m52 we find Ĩ t,2(X)5(1/32p2)
3(X214p2)tanh(X/4) and S̃t,2(X)5(1/32p2)(X214p2)
3tanh2(X/4). Thus,

Q̃2~X,`!5tanh~X/4!. ~B6!

2. Small v2 perturbation theory

In this section we evaluate the integrals for the correct
to the current and noise at orderv2

2. Since the purpose of this
calculation is to establish the divergence of the perturba
theory forT→0 with fixed V, we will focus on the limitV
@T.

We begin with Eq.~A26! for the current. ForV/T→` and
m.1 the integral overt34 is dominated by the region with
t34!t31,t32, whereK1/m

s3s4 is independent oft34. The integral
over t3 can then be evaluated~with t450), giving

I b25v1
2v2

2 ~V/~2pm!!2/m21

G~2/m!
E dt1dt2@G2/m

1 ~ t12!2G2/m
2 ~ t12!#

3~K1/m
212K1/m

22! ~B7!

Using the fact thatG2/m
6 (t12)5e7 is12p/m(T/2sinpTut12u)2/m

and K1/m
s3s45ei (p/2m)(s32s4)(s102s20) ~for t35t450) we then

obtain

I b25amv1
2v2

2V2/m21T2/m22 ~B8!

with

am5
1

~2pm!2/m

G~1/m!2

G~2/m!2sin~2p/m!. ~B9!

Note thata250. Thev2
2 correction to the current vanishe

for V@T for m52.
A similar calculation for the noise gives

DS5bmv1
2v2

2V2/m21T2/m22. ~B10!
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bm has contributions from the four terms in Eq.~A23!, bm
5bb2,b2,m22bb1,b2,m12bb2,2in,m22bb2,3in,m . The first two
terms can be evaluated by applying the analysis in Eq.~B7!
to Eqs. ~A28! and ~A29!. We find bb2,b2,m5bb1,b2,m
5am /m, with am given above. The third and fourth term
are evaluated by differentiating with respect toV2 and V3.
The dominant contribution forV@T is due to the term where
the differentiation pulls down a factor ofi t 12/m. Following
the above analysis, we then find

bm5
4

m~2pm!2/m

G~1/m!2

G~2/m!2

sin3~p/m!

cos~p/m!

3S 2

p2 c8~1/m!21D2
am

m
, ~B11!

wherec8(x) is the derivative of the digamma function. Th
coefficients can be evaluated form52,3 to bea250, b2
514z(3)/p350.5428.a350.4786,b350.8414. The effec-
tive charge then has the expansion

Q̃m~v2 /T121/m ,V/T→`!5
1

m
1cm

v2
2

T222/m
~B12!

with

cm5
2

mp

sin3~p/m!

cos~p/m!

G~1/m!2

G~2/m! S 2

p2 c8~1/m!21D .

~B13!

Thenc150, c2528z(3)/p351.0855, andc351.5279.

3. Exact current mÄ2

In this section we evaluate the integrals for the exact c
culation of the current form52 described in Sec. IV B
Combining~4.15! and ~4.18! we find
04530
l-

I 5
v1

2

2L
E dx1dx2d1~x12!@G1

1~x12!2G1
2~x12!#

3E dt3dt4eiVt34/2@G1
1~ t34!~K1/2

212K1/2
22!

1G1
2~ t34!~K1/2

122K1/2
11!#. ~B14!

Using the fact thatG1
1(t342 ipT)5G1

2(t34) and similar
identities forK, we found it convenient to rewrite the integra
over t3,4 as

tanh
V

4TE dt3dt4eiVt34/2@G1
1~ t34!~K1/2

212K1/2
22!

2G1
2~ t34!~K1/2

122K1/2
11!#. ~B15!

The integration is then simplified usingG1
1(t34)1G1

2(t34)
5pTd(t34). The term involvingd(t34) does not contribute
becauseK1/2

212K1/2
222K1/2

121K1/2
1150 for t35t4. Then the

integral overt3,4 is then

2 tanh
V

4TE dt3dt4e2 iVt34/2@G1
1~ t34!2G1

2~ t34!#r12~ t3 ,t4!

~B16!

with

r12~ t3 ,t4!5 1
4 ~K1/2

211K1/2
122K1/2

222K1/2
11!. ~B17!

This integral can be further simplified by symmetrizing t
integrand with respect to permutations oft3 and t4 and per-
mutations ofx1 and x2, and then restricting the integratio
region to bex1.x2 and t3.t4 We then sett450 to cancel
the L. Using a trigonometric identity it can be shown that
econd

en
r12~ t3,0!2r21~ t3,0!5
sinhpTt3sinhpTx12

AsinhpT~x12t3!sinhpT~ t32x2!sinhpT~x1!sinhpT~2x2!
~B18!

whenx2,0,t3,x1 and 0 otherwise. We then find

I 52v1
2T2tanh

V

4TE0

`

dx1E
2`

0

dx2E
0

x1
dt3

@d~x12!2v2
2e22v2

2ux12u#cos~Vt3/2!

AsinhpT~x12t3!sinhpT~ t32x2!sinhpTx1sinhpT~2x2!
. ~B19!

The two terms in parentheses in Eq.~B19! can be interpreted as the incident and backscattered currents for the s
junction, I 5I in2I b2. The d-function term can be evaluated using a concrete regularization of thed function, d(x12)
5 lim

Z→`
Zexp(22Zux12u). This gives

I in5
v1

2

2
tanh

V

4T
, ~B20!

in agreement with the current calculated forv250 in Sec. III form52.
For the second term we define new variablesy15pT(x12t3), y252pTx2 , u5pTt3. The backscattered current can th

be written in the form
7-15
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I b25
2v1

2v2
2

p3T
tanh

V

4T
E

0

`

dudy1dy2

e22(u1y11y2)v2
2/pTcos~Vu/2pT!

Asinhy1sinh~u1y1!sinhy2sinh~u1y2!
. ~B21!

Combining Eqs.~B20! and ~B21! the final result can be cast in the scaling formI (V,T)5v1
2 Ĩ (v2 /T1/2,V/T) with

Ĩ 2~v2 /T1/2,V/T!5
1

2
tanh

V

4T S 12
4v2

2

p3TE0

`

du cos
uV

2pTF E
0

`

dy
e2(u12y)v2

2/pT

Asinhysinh~y1u!
G 2D . ~B22!
n
f
te

on

-

e

e
e

the
d

an
nd

n
on.

n
iza-
The integrals can be evaluated in the limit of large a
small v2, with results quoted in Sec. III B. In the limit o
zero temperature, the integrals simplify. Rescaling the in
gration variables byv2

2/pT we may write the current in the
form ~4.20! with

Ĩ 28~v2 /V1/2,`!5
1

2 S 12
4

p2E
0

`

du cos
Vu

2v2
2

3F E
0

`

dy
e2(u12y)

Ay~y1u!
G 2D . ~B23!

The integral overy in the square brackets is a Bessel functi
K0(u). The remaining integral overu then gives

Ĩ 28~v2 /V1/2,`!5
1

2 F12
2

p
K S 2

V2

16v2
4D G , ~B24!

whereK is the elliptic integral of the second kind.

4. Exact noisemÄ2

Combining Eqs.~4.24! and ~A37! and using the transfor
mations~B9!–~B12!, the noise may be written as

DS5
v1

2

2L
tanh

V

4TE d4xdt5dt6F~$xk%!@G1
1~ t56!

2G1
2~ t56!#r~$xk%,t5 ,t6!eiVt56/2, ~B25!

where asr($xk%,t5 ,t6)5(K1/2
211K1/2

122K1/2
222K1/2

11)/4 with
K given in Eq.~A38! and

F~$xk%!5d1~x12!d1~x34!A1
0~$xk%!

2d2~x13!d2~x24!A2
0~$xk%!. ~B26!

A1,2
0 ($xk%) is given in Eqs.~A39! and~A40!, andd1,2(x) are

in Eqs.~4.13! and~4.14!. It is again useful to symmetrize th
integrand with respect to permutations ofx1 ,x2 ,x3 ,x4 and
permutations oft5 and t6 . t6 is then set to zero, and w
defineyk5pTxk , u5pTt5. After some lengthy algebra on
finds
04530
d

-
DS5

2v1
2

p3 tanh
V

4TER
d4yduQ~$yk%,u!

3sin
Vu

2pT

D~$yk%!M ~y1 ,y3 ,u!M ~y2 ,y4 ,u!

sinhu sinhy13sinhpy24
,

~B27!

where the integration regionR is y1.y2.y3.y4 and u
.0. In addition

D~$yk%!5d12d341
v2

2

pT
~d23e

22y14v2
2/pT2d12e

22y34v2
2/pT

2d34e
22y12v2

2/pT!1
v2

4

p2T2 e22(y121y34)v2
2/pT,

~B28!

M ~yi ,yj ,u!5
sinhyisinh~yj2u!1sinhyjsinh~yi2u!

Ausinhyisinhyjsinh~yj2u!sinh~yi2u!u
,

~B29!

and

Q~$yk%,u!55
1 for y1.u.y2.y3.0.y4

21 for y1.y2.y3.u.0.y4

21 for y1.u.0.y2.y3.y4

0 otherwise.
~B30!

We have evaluated these integrals numerically to obtain
scaling functionS̃(v2 /T1/2,V/T). The results were discusse
in Sec. V.

In the limit of zero temperature it is possible to obtain
analytic solution. Due to the complexity of the integral, a
to explain a subtlety in dealing with thed functions, we
divide the result into three contributions by writingI 5I in
2I b2, whereI in is the current incident on the second junctio
and I b2 is the current backscattered by the second juncti
The noise is then a sum of three terms,

DS5DSin,in22DSin,b21DSb2,b2. ~B31!

These three terms arise from the three terms inD($xk%).
The term with twod functions gives the noise incident o

the second junction. It can be evaluated using the regular
tion d i j [d(yi j )5 lim

Z→`
Z exp(22Zuyij u). We find
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DSin,in5
v1

2

4
tanh2S V

4TD , ~B32!

in agreement with the result forv250 discussed in Sec
III A. Thus at zero temperatureDSin,in(T50)5v1

2/4.
The terms with a singled function describe the cros

correlations betweenI b2 andI in . Again using the regularized
d function, two of the integrals in Eq.~B23! can be evaluated
analytically. At finite temperature the remaining three in
grals must be evaluated numerically. At zero temperat
el
uc

-

ev

-

-

04530
-
e,

however, the cross correlation is simply related to the ba
scattered current computed in Sec. 3 of this appendix.

DSb2,in~T50!5
1

2
I b25

1

2p
K S 2V2

16v2
4D . ~B33!

The final term in Eq.~B24! describes the backscattere
noise. At zero temperature we may writeDSb2,b2

5v1
2S̃b2,b28 (v2 /V1/2) with
n

ering

r

S̃b2,b28 ~X!5
2

p3E
R
d4yduQ~$yk%,u!sinS u

2X2De22(y121y34)

uy13y24

@y1~y32u!1y3~y12u!#@y2~y42u!1y4~y22u!#

uy1~y12u!y2~y22u!y3~y32u!y4~y42u!u1/2 . ~B34!

While we have been unable to evaluate this integral analytically, we computed it numerically and found thatS̃b2,b28 (X)51/4
independent ofX. We checked this result analytically in the limits of large and smallX. We thus conclude that the noise, whe
written in the scaling form, is

S̃8~v2 /V1/2,`!5
1

2 F12
2

p
K S 2V2

16v2
4D G . ~B35!

This is exactly the same as the transmitted current~B24!; so the shot noise is due to electrons, even in the weak backscatt
limit.

The limiting behavior ofS̃(v2 /T1/2,V/T) for v250 is given by Eq.~B28!, in agreement with the results of Sec. III A. Fo
largev2 we may writeD($yk%)5(p2T2/4v2

4)d8(y12)d8(y34), whered8(y)5 lim
Z→`

2Z2sgn(y)exp(22Zy). This leads to in-

tegrals identical to those given in Sec. III B.
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