
Electron Interactions and
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• Brief Introduction to nanotubes
• Independent electron model for optical spectra
• 2D interactions:  nonlinear scaling with 1/R
• 1D interactions:  excitons
• Short Range Interactions: exciton fine structure

C.L. Kane & E.J. Mele
Large radius theory of optical transitions in semiconducting 

nanotubes derived from low energy theory of graphene
Phys. Rev. Lett. in press
cond-mat/ 0403153



Carbon Nanotubes as Electronic Materials
Source DrainGate

~ 1 µm

~ 1 nm

A Molecular 
Quantum Wire

Tans et al. 
(Nature 1998)

• Ballistic Conductor
• Field Effect Transistor
• Logic Gates



Carbon Nanotubes as Optical Materials

• Nanotubes in surfactant micelles
Bachillo et al. (2002).

• Photoluminescence from 
individual suspended nanotubes 
Lefebvre et al. (2003).

Photoluminescence Electroluminescence
& Photoconductivity

• Infrared Emission, photoconductivity 
in individual nanotube field effect 
devices Freitag et al., (IBM) 2004



Carbon Nanotube : Wrapped Graphene

• Radius : R = |C|/2π
• Chiral Angle : 0 < θ < 30ο

• Chiral Index : ν = n1-n2 mod 3
= 0,1,-1

C = n1 a1 + n2 a2

Tubes characterized by [n1,n2] or



Metal
• Finite Density of States

(DOS) at Fermi Energy

Semiconductor

Graphene

• Gap at Fermi Energy

Electronic Structure

• Zero Gap Semiconductor

• Zero DOS metal



Low Energy Theory of Graphene

“Effective Mass” Model: Massless Dirac Hamiltonian
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Wrap it up…...
• Flat Graphene:

A zero gap semiconductor

• Periodic boundary conditions on cylinder:

n1-n2 = 0 mod 3

n1-n2 = +/-1 mod 3

1D Metal

Semiconductor



Near-infrared Photoluminescence from 
Single-wall Carbon Nanotubes

Excitation (661 nm) Emission (> 850 nm)

O’Connel et al. (Science 02) 
Bachillo et al.  (Science 02)



Nanotube Fluorescence Spectroscopy O’Connel et al. (Science 02) 
Bachillo et al.  (Science 02)

v1
v2

c2
c1

Each peak in the correlation plot corresponds to a particular
species [n1,n2] of semiconducting nanotube

GOAL:
Understand observed transition energies in terms of low energy
properties of an ideal 2 dimensional graphene sheet.



Free Electron Theory of Nanotube Bandgaps

• Zeroth order:
0 2 v
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Systematic expansion for large radius, R



Free Electron Theory of Nanotube Bandgaps

• Zeroth order:
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Curvature and Trigonal Warping:

• Vary as 1/R2

• Alternate with band index n
• Alternate with chiral index ν
• Vanish for armchair tubes, θ=0

Different dependence on n

The large R limit is most accurate for nearly armchair tubes: θ ~ 0
En

0 describes tight binding gaps accurately for R > .5 nm

• Trigonal Warping Correction

• Curvature Correction



Experimental “Ratio Plot” Theory (includes sin3θ/R2

deviations)

• By comparing the experimental and theoretical ratio plots the
[n1,n2] values (and hence R and θ) for each peak can be 
identified.

• Corroborated by Raman spectroscopy of the radial breathing
mode.

Nanotube Assignments from Pattern of sin 3θ/R2 Deviations



The Ratio Problem

• Free electron theory predicts

• Consequence of linear dispersion of graphene
22 11/ 2   for   RE E → → ∞
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Scaling of Optical Transition 
Energies 

• ν sin 3θ / R2 deviations are clear

Free electrons for θ=0

(Kane,Mele ’04)

• Separatrix between ν=+1 and 
ν=−1describes nearly armchair
tubes with θ=0, where sin 3θ/R2

deviations vanish.

0
F( ) 2 v / 3nnE R n R=



Scaling of Optical Transition 
Energies 

• ν sin 3θ / R2 deviations are clear

Free electrons for θ=0

(Kane,Mele ’04)

• Separatrix between ν=+1 and 
ν=−1describes nearly armchair
tubes with θ=0, where sin 3θ/R2

deviations vanish.

Nearly armchair
[p+1,p] tubes

0
F( ) 2 v / 3nnE R n R=



Scaling of Optical Transition 
Energies 

Free electrons for θ=0

(Kane,Mele ’04)

Nearly armchair
[p+1,p] tubes

Ratio Problem:

Blue Shift Problem:

0
F( ) 2 v / 3nnE R n R=

22 11/ 2E E <

Nonlinear scaling Enn(R)=E(qn=n/3R) accounts for both effects.

Worse for large R

0( ) ( )nn nnE R E R>



• Intermediate Range Interaction :  (a < r < 2πR)

Electron Interactions in large radius tubes

• Long Range Interaction :  (r > 2πR)

One Dimensional in character
Strongly bound excitons

• Short Range Interaction :  (r~a)

For 2πR>>a electron interactions can be classified into
three regimes, which lead to distinct physical effects.

Two Dimensional in character

Nonlinear Scaling with n/R

Atomic in character

Exciton “Fine Structure”



Long Range Interaction : (r > 2πR)

• Renormalize Single Particle Gap

Increase observed energy gap

• Leads to exciton binding
Decrease observed energy gap

• Single Particle and Particle hole gaps both scale linearly with 1/R :

• Gap renormalization and exciton binding largely cancel each other.
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Cancellation of gap  renormalization and exciton binding:

• Single Particle excitation:
Self energy ~ e2/εR
Depends on dielectric environment

• Particle-hole excitation:
Bound exciton is unaffected by 
the long range part of the interaction.

The cancellation is exact for an infinite range interaction 

• Coulomb Blockade Model :
Bare gap:   2∆ Interaction energy:   U N2/2

• Single particle gap   2∆ + U   
• Particle-hole gap      2∆



• Leads to nonlinear q log q
dispersion of graphene.

• Responsible for nonlinear
scaling of  E11(n/R).

Intermediate Range Interaction: (a < r < 2πR)

Short Range Interaction: (r ~ a)
• Leads to “fine structure” in the

exciton spectrum:  S=0,1, etc.

• Splittings ~ e2 a / R2



Interactions in 2D Graphene Gonzalez, Guinea, Vozmediano, PRB 99

• Renormalized Quasiparticle Dispersion:
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4

( ) vFE q g
q

q⎛ ⎞Λ+⎜ ⎟
⎝

=
⎠

Singularity due to long range Coulomb interaction V(q) = 2πe2/q.  
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Interactions in 2D Graphene Gonzalez, Guinea, Vozmediano, PRB 99

• Renormalized Quasiparticle Dispersion:

1 log
4
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• “Dielectric Screening” in 2 Dimensions
gscreened = g/ε       Πstatic(q) = q/4vF εstatic =  1+gπ/2

Singularity due to long range Coulomb interaction V(q) = 2πe2/q.  
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Interactions in 2D Graphene Gonzalez, Guinea, Vozmediano, PRB 99

• Renormalized Quasiparticle Dispersion:

1 log
4
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⎝
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⎠

• “Dielectric Screening” in 2 Dimensions
gscreened = g/ε       Πstatic(q) = q/4vF εstatic =  1+gπ/2

• Scaling Theory

21
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d
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Λ Marginally Irrelevant

( ) ;    v =v ( ) F Fg g= Λ Λ

• q ln q correction is exact for q 0

Singularity due to long range Coulomb interaction V(q) = 2πe2/q.  
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Fermi Liquid



Compare 2D Theory with Experiment
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2D Interacting Theory
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Compare 2D Theory with Experiment
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The optical spectra reflects the finite size scaling 
of the 2D Marginal Fermi Liquid

Nearly armchair
[p+1,p] tubes



Exciton effects:  Compute particle-hole binding due to statically screened 
interaction  (similar to Ando ‘97).

• Lowest exciton dominates oscillator strength for each subband.
• Lineshape for absorption is not that of van Hove singularity.
• Large bandgap renormalization mostly cancelled by exciton binding.

E/E11
0

Related Work:

Spaturu et al (Berkeley)
PRL 03  

Perebeinos et al (IBM)
PRL 04



Scaling behavior: En(R)  = E( qn = n/3R )?
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KK’

Exciton Fine Structure
Degenerate exciton states:
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Degeneracy lifted by short range (q~1/a) interactions:
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Exciton Eigenstates:

Classify by momentum, spin, parity under C2 rotation

 ;  0 ; q K S= ± =

0  ;  0 ; odd      Optically Allowedq S= =

0  ;  0 ; evenq S= =

0  ;  1 ; oddq S= =

 ;  1 ;q K S= ± =

0  ;  1 ; evenq S= =

~30 meV
(R~.5nm)

“Dark States”

See also Zhao, Mazumdar PRL 04



Conclusion
Fluorescence spectroscopy data for nearly armchair tubes
is well described by a systematic large radius theory.

• 2D  interactions:

- q log q renormalization of graphene dispersion.
- Non linear scaling with 1/R.
- Explains ratio problem and blue shift problem.

• 1D  interactions

- Lead to large gap enhancement AND large exciton binding
- Largely cancels in optical experiments revealing 2D effects.

• Short Range interactions
-Lead to fine structure in exciton levels
-Dark Ground State

Experiments:   measure single particle energy gap

- Tunneling (complicated by screening)
- Photoconductivity
- Activated transport




