


Graphene, the Quantum Spin Hall Effect

and topological insulators
.  Graphene
.  Quantum Spin Hall Effect

- Spin orbit induced energy gap in graphene
= A new 2D electronic phase
- Gapless Edge states and transport
- Time Reversal symmetry and Z, topological
stability.
lll. Three Dimensional Generalization

- Topological Insulator, Surface States
- Specific Materials
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The Point of a Pencil
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4 valence electrons in carbon

3 bonds to neighbors (sp? ¢ bonds)

Structural Rigidity within planes

Weak Van der Waals attraction between planes
* 1 delocalized & electron

Electrical Conductivity
Graphene = A single layer of graphite

A unique 2D electronic material



Isolating Single Planes of Graphene

AFM Cantilever

Philip Kim (Columbia) (b)

Zhang et al. APL 2004

“Nanopencil” on AFM cantilever
deposits ~ 15 layer graphite films

Andre Geim (Manchester)
Novoselov et al. Science 2004

Scotch

Maglc Tape

Individual layers on SiO, prepared
by mechanical exfoliation.



Electronic Structure

Metal

* Partially filled band

* Finite Density of States
(DOS) at Fermi Energy
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Semiconductor

4+ DOS
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A DOS
* Filled Band /\ /\
* Gap at Fermi Energy — E
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Graphene A critical state
* Zero Gap Semiconductor

e Zero DOS metal =
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Tight Binding Model for t electrons on honeycomb lattice

Honeycomb Lattice Brillouin Zone

 The conduction band and valence band touch at two
“Fermi points” K and K.

* Near K and K’ the dispersion is “relativistic” (ie linear).

~\ — = “Metallic™ Fermi velocity
E(K_l_q)_ihVF ] Ve ~ 7 x 105 m/s ~ ¢/400



Low Energy Theory: Effective Mass (or kep) model
DiVincenzo, Mele (84)

Exact _ |Wavefunction| 4| W(X) : Slow
Wavefunction| — atK or K’ Modulation E
® Massless Dirac Fermions in 2+1 Dimensions

Hy =inve (C-V)y

® 8 components :
a =AorB Sublattice index o7,

W =Y, {Oﬂ =KorK Kpointindex 77,

s =1or] Spinindex §?

ss’

® I" = 8x8 Dirac Matrices (diagonal in spin and K point indices)

=070 =0 0 .

aa'" o' ss' aa' " ao' ss'

® Sublattice index plays role of “pseudospin” for Dirac equation
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Electrical Measurements on Graphene

Novoselov et al. &
Zhang, et al. Nature 2005
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B=0 conductivity :
* nor p type upon gating.
« High mobility ~ 10* cm?/Vs

B>0 : Quantum Hall Effect Observed

* 0,, quantized in half integer
multiples of 4e2/h.

» “Half quantized” :
Consequence of Graphene’s
Dirac electronic structure.
Berry’s phase for Dirac fermions



Energy Gaps: lift degeneracy at K \E/
2A 4 k
\

E(p)=£{V; P’ +A’ —

P2

1. Staggered Sublattice Potential (e.g. BN)

Broken Inversion Symmetry
Leads to a Band Insulator

V = ACDWO-Z

2. Periodic Magnetic Field with O net flux (Haldane PRL '88)

°°°° Broken Time Reversal Symmetry

ooo V = AHaldaneO-ZTZ Leads to Quantized Hall Effect

00006 G,,~¢’/h

Both terms violate symmetries (P & T) present in graphene
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3. Intrinsic Spin Orbit Potential E

/\

Z Z~Z
V=A,07T"S
Respects ALL symmetries of Graphene,

and WILL BE PRESENT. An ideal sheet
of graphene has an intrinsic energy gap

T and | spins are independent : “(Haldane)?”
Leads to Quantum Spin Hall Effect for u, T << A,

- ez . _

JN =+ —72xE =) S

h AJ A \J
1 h 37 E1 — —
s _ 7 . — S &
J _Ze(J JY)=0,2xE = ) E
€ vJ
S
o, =—sgn(Ag)
Yo r

The spin-orbit energy gap defines a time reversal invariant “topological
insulator” phase of matter that is distinct from an ordinary insulator.



The Spin Orbit Gap in Graphene is small :

* Nearly Free Electron estimate (15t order) : 2A,~15K

* Tight binding estimate (29 order), pseudopotential : 2 A, ~ 10 mK
Min, et al. 06, Yao et al. ‘06

QSH effect predicted in materials with strong spin orbit interactions :

® Bismuth bilayer (Murakami PRL 06)

QSH phase predicted with 2 A,, ~ 1000 K

® HgTe/CdTe Heterostructure (Bernevig, Hughes, Zhang, Science 06)

HgTe has inverted bandstructure at I
2D Quantum well exhibits QSH phase

2 A, ~ 200K ford~70A.

HgTe

® 3D Materials (Fu, Kane ’06)

o-Sn, HgTe under uniaxial strain, and Bi, Sb,_,



“Spin Filtered” Edge States
Tight binding model:

H=t) c'c, +ilg Z v,c'sc
<i,j> <i, j> A

Ay, =33t dxd,) vy =y =+I(=)
2
“Zigzag Two Terminal Conductance: | = 2e—V
Strip - . = l><T
1 \ ——— 0 > o8
W V > o
E/t S 2 © < o ><
-® > ®-
0

Charge Transport = Spin Accumulation
p Spin = nRT = JCharge / F

IO Charge = nRT + n JSpm /

“Half” an ordinary 1D electron gas



Beyond The (Haldane)? Model

S, is NOT actually conserved. Violations will arise from:

® Rashba Interaction (broken mirror symmetry due to substrate)

V = 2,2 (Sx p)

* Multiband effects (e.g. p,, orbitals) :
V=aoL-S

® Electron-Electron Interactions

Is the QSH state distinguishable from a simple insulator ?
®* YES

® Important role played by TIME REVERSAL symmetry

® Gapless edge states persist, but spin Hall conductivity is no longer
precisely quantized (though the correction is small).



The Quantum Spin Hall Phase

* Include Rashba term A; and staggered sublattice potential Ay
« QSH phase persists even when S, is not conserved

w S . I -
0 | il *
AYA
=3 0 3 0 n ka 2r
7\‘CD\)\7/7\’SO

QSH Phase

® Single pair of time reversed edge states traverse gap on each edge
®* Crossing of edge states at w protected by time reversal symmetry

* Elastic Backscattering forbidden by time reversal. No localization

Insulating (I) Phase
®* Edge states do not traverse gap, or in general localized

®* QSH and | phases are distinguished by number of edge state pairs mod 2



Topological Invariant
® Integer Quantum Hall Effect Thouless, et al. (TKNN) (1982)

Hall conductivity is a Chern invariant, c,,=ne?/h,

1
n=—_— _d%k(V,u(k) x| V,uck))

® Spin Conserving (Haldane)? Model

- Independent TKNN invariants: N, , N,
- Time Reversal Symmetry: N, +N; =0
- Spin Hall conductivity : n.—n #0

® Quantum Spin Hall Phase (without spin conservation)

- The single defined TKNN integer is ZERO.
- QSH phase characterized by a new Z, invariant protected
by time reversal symmetry.



Physical Meaning of Invariants
Sensitivity to boundary conditions in a multiply connected geometry

v=N IQHE on cylinder: Laughlin Argument

A AD=0d,=hle
—( O aa- ne

Flux 0 = Quantized change in Charge Polarization:

Quantum Spin Hall Effect on cylinder

;Qxl E l)@%% AD = ¢y / 2

A Kramers
E

<
<

Flux ¢y /2 = Change in Degeneracy

“Time Reversal Polarization”, >< «— No Kramers
which signals Kramers’ ~ (p Degeneracy
>

degeneracy at end

0y/2 O



Fu, Kane & Mele PRL, 106803 (07), cond-mat/0611341

3D General ization Moore & Balents cond-mat/0607314;
Roy, cond-mat/0607531

There are 4 Z, invariants v;(v,v,V3) distinguishing 16

“Topological Insulator” phases. &
Model system: Distorted diamond lattice o c?o
with spin orbit interaction v P
: =~ Ao . &
H=> (t+6dt,)c'c,, +idy D ¢'5-(dxd)c, ¢ "¢
I,a <i,j>

® ot,=0 is a critical point with 3D
Dirac points at 3 X points.

* ot, (a=1,..,4) opens gaps leading

to 8 different TI phases

vy = 0, 1 distinguishes “weak” and “strong” topological insulators



|. Weak Topological Insulator v, =0

Electronic structure of a 2D slab : -

surface states
— with 2D
Dirac points

® Equivalent to layered 2D QSH states (analogous to 3D IQHE states)
stacked perpendicular to “mod 2" reciprocal lattice vector (v,v,vj).

® Each surface has either 0 or 2 2D Dirac points.

® Fragile: Disorder eliminates topological distinction.



Il. Strong Topological Insulator v, = 1

Electronic structure of a 2D slab : -
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Surface states have odd number of Dirac points on all faces.

Robust to disorder :

- weak antilocalization (symplectic universality class)
- states can not be localized, even for strong disorder.

Truly™ “half quantized” QHE o, = (n+1/2)e?/h



Evaluating the Z, Invariants for Real Materials

* In general, requires knowledge of global properties of Bloch
wavefunctions. Non trivial numerically.

®* Enormous simplification if there is inversion symmetry:
®* The Z, invariants can be determined from knowledge of the parity

of the wavefunctions at the 8 “Time Reversal Invariant points”
k=T, thatsatisfy —I',=T;+G.

Parity Eigenvalue : P‘Wn (I’ )> =¢ (T, )‘wn (T )> ; & (T)=+I1
Kramers Degeneracy : ¢, (I') =4, ,(I7)

“Strong” Topological Indexv,=0, 1:

(=D = HHfzn(Fi)



Band structure of Antimony

Application : Bi,_ Sb, Liu and Allen PRB 95

® Semiconducting for .07< x < .22
*E,~30meVatx=.18

® Occupied valence band evolves
smoothly into the valence band
of antimony

® Conclude Bi,_ Sb, is a strong
topological insulator

Other predicted strong topological insulators:
®* o-Sn and HgTe under uniaxial stress

* Pb,Sn,Te under uniaxial stress in vicinity of band inversion
transition at x ~ 0.4



Conclusion

® The quantum spin Hall phase shares many similarities with the
quantum Hall effect:

- bulk excitation gap

- gapless edge excitations
- topological stability

- 3D generalization

® But there are also important differences:

- Spin Hall conductivity not quantized (but non zero).
- Edge states are not chiral, but “spin filtered”.
- Edge transport diffusive (but not localized) at finite T.

® Open Questions :

- Experiments on graphene? bismuth? HgCdTe? 3D materials?
- Formulation of Z, invariant for interacting systems
- Effects of disorder on surface states, and critical phenomena



Disorder and Interactions at the Edge

Low Energy Hamiltonian:

i f t
H = IVF (WRTaXWRT a WL\LaXWL\L ) + 7—[disorder + 7—[interac:tions E

ALl R
H sionder =W+ (inOQw 0w, +he)+.. By
violates time reversal
j{interactions — (U(X) (W&ax@”& )(WRTaxWRT) T hC ) T... > k

Perturbative Renormalization Group Analysis . (Giamarchi & Schultz '89)

Without the leading term, e ger @NA Hieractions are irrelevant
perturbations, and do not lead to a gap or to localization.

Weak interactions:

® Edge states are not localized : “absence of localization in d=1"!
® Finite 1D resistivity due to inelastic backscattering p ~ T,

Strong interactions: (Wu, Bernevig & Zhang ’'05; Xu & Moore ’05)

® Giamarchi - Schultz transition: Edge magnetic instability
® Spontaneously broken time reversal symmetry.



*Quantum’” but not “Quantized”

Spin Hall conductance on a cylinder

* Rate of spin accumulation on edge:

® Spin Hall Conductance G, =E(<S >R —(S >L)

* Spin relaxation rate ~ Inelastic backscattering rate ~ T¢

® For insulator no edge states, or else localized : ny =0



Contrast with other spin Hall effects
1. Spin Hall Effect in Doped Semiconductors

* Experiments: Kato et al. ‘05; Wunderlich et al. ‘05

®* Theory:
Extrinsic: Dyakonov & Perel '71; ...
Intrinsic: Murakami, Nagaosa, Zhang ’'03; Sinova et al. ’04; ...

* Differ from QSH because there is no energy gap

2. Spin Hall Insulators Murakami, Nagaosa, Zhang '05
Narrow gap semiconductors, e.g. PbTe, HgTe

Band Insulators with large spin Hall conductivity from Kubo formula
Spin currents are not transport currents

Generically no edge states

No spin accumulation at edges

3. GaAs with uniform strain gradient Berevig, Zhang '05
®* Quantum spin Hall state with single pair of edge states.



