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Graphene, the Quantum Spin Hall Effect
and topological insulators

I.     Graphene  
II.    Quantum Spin Hall Effect

- Spin orbit induced energy gap in graphene
⇒ A new 2D electronic phase

- Gapless Edge states and transport
- Time Reversal symmetry and Z2 topological

stability.

III.   Three Dimensional Generalization
- Topological Insulator, Surface States
- Specific Materials
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4 valence electrons in carbon
• 3 bonds to neighbors  (sp2 σ bonds)

Structural Rigidity within planes
Weak Van der Waals attraction between planes

• 1 delocalized π electron
Electrical Conductivity

Graphene = A single layer of graphite
A unique 2D electronic material

The Point of a Pencil 
Graphite



Isolating Single Planes of Graphene

Philip Kim  (Columbia) 
Zhang et al.  APL 2004

“Nanopencil” on AFM cantilever
deposits ~ 15 layer graphite films

Andre Geim (Manchester)
Novoselov et al. Science 2004 

Individual layers on SiO2 prepared 
by mechanical exfoliation.

SEM



Metal
• Partially filled band
• Finite Density of States

(DOS) at Fermi Energy

Semiconductor

Graphene  A critical state

• Filled Band
• Gap at Fermi Energy

Electronic Structure

• Zero Gap Semiconductor
• Zero DOS metal



• The conduction band and valence band touch at two 
“Fermi points” K and K’.

• Near K and K’ the dispersion is “relativistic” (ie linear). 

KK’

Tight Binding Model for π electrons on honeycomb lattice

F( ) v | |E q q+ = ±G G=K “Metallic” Fermi velocity
vF ~ 7 × 105 m/s ~ c/400

Brillouin ZoneHoneycomb Lattice

E
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Low Energy Theory:  Effective Mass (or kip) model
DiVincenzo, Mele (84)
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GG
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a sαψ ψ=
• 8 components :

• Γ = 8×8 Dirac Matrices     (diagonal in spin and K point indices)

' ' '' ' '            z
ss s

x x y
aa a s

y
aαα αατσ δσδ δΓ = Γ =
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• Massless Dirac Fermions in 2+1 Dimensions

• Sublattice index plays role of “pseudospin” for Dirac equation

Exact 
Wavefunction

Wavefunction
at K or K’

ψ(x) : Slow
Modulation= ×



Electrical Measurements on Graphene

Novoselov et al. & 
Zhang, et al. Nature 2005 • B=0 conductivity :

• n or p type upon gating. 

• High mobility ~ 104 cm2/Vs

• B>0 : Quantum Hall Effect Observed

• σxy quantized in half integer
multiples of 4e2/h.

• “Half quantized” :
Consequence of Graphene’s
Dirac electronic structure.
Berry’s phase for Dirac fermions



Broken Inversion Symmetry
Leads to a Band Insulator

Broken Time Reversal  Symmetry
Leads to Quantized Hall Effect

σxy=e2/h

2 2 2
F( ) vE p p= ± + ∆

z
CDWV σ= ∆

Haldane
z zV σ τ= ∆

1.  Staggered Sublattice Potential (e.g. BN)

2.  Periodic Magnetic Field with 0 net flux  (Haldane PRL ’88)

2∆

Energy Gaps: lift degeneracy at K

Both terms violate symmetries (P & T) present in graphene

+ + +

+ + + +

+ + + +



Respects ALL symmetries of Graphene, 
and WILL BE PRESENT.  An ideal sheet 
of graphene has an intrinsic energy gap

z z z
SOV sσ τ= ∆

3.  Intrinsic Spin Orbit Potential

2∆ p

E

and spins are independent :    “ (Haldane)2 ”
Leads to Quantum Spin Hall Effect for µ,T << ∆so
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The spin-orbit energy gap defines a time reversal invariant “topological 
insulator” phase of matter that is distinct from an ordinary insulator.



The Spin Orbit Gap in Graphene is small :

• Nearly Free Electron estimate (1st order) :                 2 ∆so ~ 15 K
• Tight binding estimate (2nd order), pseudopotential : 2 ∆so ~ 10 mK

Min, et al.  ’06, Yao et al. ‘06

• Bismuth bilayer (Murakami PRL 06)

QSH effect predicted in materials with strong spin orbit interactions :

Bi

• HgTe/CdTe Heterostructure (Bernevig, Hughes, Zhang, Science 06)

• 3D Materials (Fu, Kane ’06)

α-Sn, HgTe under uniaxial strain, and Bix Sb1-x

HgTe has inverted bandstructure at Γ
2D Quantum well exhibits QSH phase

2 ∆so ~  200 K for d ~ 70 Å.  

QSH phase predicted with 2 ∆so ~  1000 K

HgTe

HgxCd1-xTe

HgxCd1-xTe
d
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“Spin Filtered” Edge States

“Zigzag 
Strip”

Two Terminal Conductance:
2
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Charge Transport = Spin Accumulation
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Tight binding model:

“Half” an ordinary 1D electron gas



Beyond The (Haldane)2 Model

Sz is NOT actually conserved. Violations will arise from:
• Rashba Interaction (broken mirror symmetry due to substrate)

• Multiband effects (e.g. px,y orbitals) :   

• Electron-Electron Interactions
V L Sα= ⋅

GG
ˆ ( )RV z S pλ= ⋅ ×
G G

Is the QSH state distinguishable from  a simple insulator ?

• YES

• Important role played by TIME REVERSAL symmetry

• Gapless edge states persist, but spin Hall conductivity is no longer
precisely quantized (though the correction is small).   



The Quantum Spin Hall Phase

λCDW/λSO

λ R
/λ

SO QSH

I
QSH I

QSH Phase
• Single pair of time reversed edge states traverse gap on each edge

• Crossing of edge states at π protected by time reversal symmetry

• Elastic Backscattering forbidden by time reversal.  No localization

Insulating (I) Phase
• Edge states do not traverse gap, or in general localized

• QSH and I phases are distinguished by number of edge state pairs mod 2

I

• Include Rashba term λR and staggered sublattice potential λCDW
• QSH phase persists even when Sz is not conserved



Topological Invariant
• Integer Quantum Hall Effect   Thouless, et al. (TKNN) (1982)

Hall conductivity is a Chern invariant, σxy=ne2/h, 

• Spin Conserving  (Haldane)2 Model
- Independent TKNN invariants:
- Time Reversal Symmetry :   
- Spin Hall conductivity :  

• Quantum Spin Hall Phase  (without spin conservation)
- The single defined TKNN integer is ZERO.
- QSH phase characterized by a new Z2 invariant protected 
by time reversal symmetry.
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Physical Meaning of Invariants

∆Φ = φ0 = h/e
∆Q =   N e

Flux φ0 ⇒ Quantized change in Charge Polarization:

ν=N IQHE on cylinder: Laughlin Argument

Quantum Spin Hall Effect on cylinder

∆Φ = φ0 / 2

Flux φ0 /2 ⇒ Change in 
“Time Reversal Polarization”,
which signals Kramers’
degeneracy  at end

Kramers
Degeneracy

No Kramers
Degeneracy

Sensitivity to boundary conditions in a multiply connected geometry



3D Generalization 

There are 4 Z2 invariants ν0;(ν1ν2ν3) distinguishing 16 
“Topological Insulator” phases.

Fu, Kane & Mele PRL, 106803 (07), cond-mat/0611341
Moore & Balents cond-mat/0607314;    
Roy, cond-mat/0607531

Model system: Distorted diamond lattice 
with spin orbit interaction
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• δta=0 is a critical point with 3D 
Dirac points at 3 X points.

• δta (a=1,..,4) opens gaps leading 
to 8 different TI  phases

STI
WTI

ν0 = 0, 1 distinguishes “weak” and “strong” topological insulators



I.  Weak Topological Insulator ν0 = 0 

• Equivalent to layered 2D QSH states  (analogous to 3D IQHE states)
stacked perpendicular to “mod 2” reciprocal lattice vector (ν1ν2ν3). 

• Each surface has either 0 or 2 2D Dirac points.

• Fragile:  Disorder eliminates topological distinction.

Electronic structure of a 2D slab :

surface states
with 2D 

Dirac points



II.  Strong Topological Insulator ν0 = 1

• Surface states have odd number of Dirac points on all faces.

• Robust to disorder :
- weak antilocalization (symplectic universality class)
- states can not be localized, even for strong disorder.

• Truly* “half quantized” QHE  σxy = (n+1/2)e2/h      

Electronic structure of a 2D slab :



Evaluating the Z2 Invariants for Real Materials

• In general, requires knowledge of global properties of Bloch
wavefunctions.  Non trivial numerically.

• Enormous simplification if there is inversion symmetry:

• The Z2 invariants can be determined from knowledge of the parity
of the wavefunctions at the 8 “Time Reversal Invariant points”
k = Γi that satisfy  −Γi = Γi + G.

Parity Eigenvalue :      ;  ( ( )) (  ) 1( )n i n i n i n iP ψ ξ ψ ξΓ = ΓΓ = ±Γ

“Strong” Topological Index ν0 = 0 , 1 :

0
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2
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υ ξ
=

− = Γ∏∏

Kramers Degeneracy : 2 2 1( ) ( )n i n iξ ξ −Γ = Γ



Application : Bi1-x Sbx

• Semiconducting for .07< x < .22

• Eg ~ 30 meV at x = .18

• Occupied valence band evolves 
smoothly into the valence band
of antimony 

• Conclude Bi1-xSbx is a strong
topological insulator 

Band structure of Antimony
Liu and Allen  PRB 95

Other predicted strong topological insulators:

• α-Sn and HgTe under uniaxial stress

• Pb1-xSnxTe under uniaxial stress in vicinity of band inversion
transition at x ~ 0.4
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Conclusion
• The quantum spin Hall phase shares many similarities with the

quantum Hall effect: 

- bulk excitation gap
- gapless edge excitations
- topological stability
- 3D generalization

• But there are also important differences:

- Spin Hall conductivity not quantized (but non zero).
- Edge states are not chiral, but “spin filtered”.
- Edge transport diffusive (but not localized) at finite T.

• Open Questions :

- Experiments on graphene?   bismuth?  HgCdTe?  3D materials?
- Formulation of Z2 invariant for interacting systems
- Effects of disorder on surface states, and critical phenomena



Disorder and Interactions at the Edge

( )† †
F disorder interactionsv x xR R L Li ψ ψ ψ ψ↑ ↑ ↓ ↓= ∂ − ∂ + +H H H

Low Energy Hamiltonian:

( ) ( )† †
disorder ( ) . . ( ) . . ...xR L R Lx h c i x h cξ ψ ψ η ψ ψ↑ ↓ ↑ ↓= + + ∂ + +H

( )† †
interactions ( ) ( )( ) . . ...x xL L R Ru x h cψ ψ ψ ψ↓ ↓ ↑ ↑= ∂ ∂ + +H

Perturbative Renormalization Group Analysis : (Giamarchi & Schultz ’89)

Without the leading term, Hdisorder and Hinteractions are irrelevant
perturbations, and do not lead to a gap or to localization.

Weak interactions:
• Edge states are not localized : “absence of localization in d=1”!
• Finite 1D resistivity due to inelastic backscattering ρ ~ Tα.

Strong interactions:            (Wu, Bernevig & Zhang ’05; Xu & Moore ’05)
• Giamarchi - Schultz transition: Edge magnetic instability
• Spontaneously broken time reversal symmetry.

violates time reversal

EF

R↑L↓

k

E



“Quantum” but not “Quantized”
Spin Hall conductance on a cylinder

0
h
e

Φ =

z s
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d S dG
dt dt

Φ=• Rate of spin accumulation on edge:

( ) 0
F

s
xy z zR L E

eG S S
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= − ≠• Spin Hall Conductance NOT quantized

emf = d
dt
Φ−

• For insulator no edge states, or else localized :   0s
xyG =

• Spin relaxation rate  ~  Inelastic backscattering rate ~ Tα



1. Spin Hall Effect in Doped Semiconductors
• Experiments:  Kato et al. ‘05; Wunderlich et al. ‘05

• Theory:  
Extrinsic:   Dyakonov & Perel ’71; ... 
Intrinsic:    Murakami, Nagaosa, Zhang ’03; Sinova et al. ’04; ...

• Differ from QSH because there is no energy gap

2. Spin Hall Insulators  Murakami, Nagaosa, Zhang ’05
Narrow gap semiconductors, e.g.  PbTe, HgTe

• Band Insulators with large spin Hall conductivity from Kubo formula
• Spin currents are not transport currents
• Generically no edge states
• No spin accumulation at edges

3. GaAs with uniform strain gradient  Bernevig, Zhang ’05
• Quantum spin Hall state with single pair of edge states.

Contrast with other spin Hall effects


