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III.  Instabilities of the Sliding Phase

II.  The Sliding Phase
• The 1D Luttinger Liquid

• A 2D Luttinger liquid

• The Fractional Quantum Hall Effect 
from 1D Bosonization
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Weakly Coupled 1D Electron Systems

• Strip Phases of Cuprate 
Superconductors

• Weakly Coupled Wires
e.g. Nanotube ropes

Theoretical Motivation:

Can the powerful techniques from 1D be used to 
understand strongly correlated states in higher
dimensions?

• Quantum Hall Smectic
Phases



Three Views of the 1D Electron Gas
1. Non Interacting

2.  Repulsive Interactions

Fermi Liquid

3.  Attractive Interactions

“Almost” a superconductor
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• Power Law Correlations with exponent
depending on interactions.

• Analogous to classical 2D XY model
• Bosonization:
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Coupled Luttinger Liquids
• Expect instabilities due to coupling between wires

• Renormalization Group Analysis: int
ˆH Oα αλ=

(2 )d
d

α
α α

λ λ= − ∆
A

Relevant if ∆  < 2.α

1.  Charge Density Wave

2. Superconductor

3.  2D Fermi Liquid
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Is the Luttinger Liquid always unstable?
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Two Kinds of Interactions:

1. Forward Scattering

2. Interchannel Scattering

FS ij x i x j ij x i x j
ij
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ˆ ˆ ˆ, , , ... ,  many moreO O O

• Responsible for Instabilities
• Dimensions depend on HFS

Sliding Luttinger Liquid

“Smectic Metal”

•Choose HFS to make  “all” Oα irrelevant

• Anisotropic Electrical Conductivity
• Power Law correlations (like 1D L.L.)
• Collective Modes propagate in 2D

• An anisotropic 2D Luttinger Liquid

• Analogous to Sliding Phase of coupled
classical 2D XY models

Ohern, Lubensky, Toner PRL 99



Model Interaction
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• Higher order operators reduce region of 
stability

• Sliding phase stable close to boundary of 
instability to transverse CDW with 
wavevector q0

Ohern, Lubensky, Toner PRL 99

Emery,Fradkin,Kivelson,
Lubensky  PRL 01

• Nearest neighbor model

λ2 = 0, nearest neighbor 
CDW, SC and FL terms 
only.

• More general model

K

λ1

Vishwanath, Carpentier  PRL 01
Mukhopadyay, Kane, Lubensky PRB 01
Sondhi, Yang PRB 01

- Further neighbor CDW, SC, FL
- Correlated hopping, etc.
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Nearest neighbor model

• Nearest neighbor CDW, SC
and FL terms only.

• Model Interaction:
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K  (~ 1/g)      

λ1

- Further neighbor CDW, SC, FL
- Correlated hopping, etc.

Higher order operators lead to instability
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Model  Interaction:

Vishwanath, Carpentier  PRL 01
Mukhopadyay, Kane, Lubensky PRB 01

Stabilizing the Sliding phase

Values of λ1, λ2 for
which SLL phase is
stable to a large 
class of operators for 
some K

• Large density fluctuations at wavevector q0 for small δ
frustrate CDW formation.

• Perpendicular Magnetic field increases region of stability 
by eliminating superconducting instability.

Sondhi, Yang, PRB 01



Crossed Sliding Luttinger Liquid

• Interactions between perpendicular wires
are marginal but do not affect dimensions 
of operators.

• Tunneling between perpendicular wires
is irrelevant in sliding phase.

• Electrical conductivity isotropic at low 
(but finite) temperature.

An “isotropic” 2D Luttinger Liquid



Instabilities of the Sliding Phase

• Integer Quantum Hall Effect

• From Bosonization:
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• Gap in bulk
• Edge Mode φ = ϕ1-θ1 remains 

gapless



Laughlin State:   ν = 1/3

3 particle correlated
tunneling process

Rescale: θ’ = 3 θ

“Switch Partners”
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• Edge Mode:  g=1/3 Chiral Luttinger Liquid

• 2π soliton in θ’ :  Charge e/3 quasiparticle
~



I.  Quantum Hall States

II.  Crystals

III.  Degenerate Operators
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Three Categories

• Allowed at special magnetic fields
• Generalized Hierarchy
• cos Θ Θ2 :   Bulk Gap + Edge states

• Allowed at any magnetic field:
• cos Θ Θ2 :   2D Phonon mode

Crystal of Electrons

Crystal of Laughlin Quasiparticles

Fermi Liquid (B=0)

ν = 1/2:  Composite Fermi Liquid?

• Difficult to analyze  :   cos Θ Θ2
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(“Bilayer state”)



Conclusion

I.  Sliding Luttinger Liquid

II.  Instabilities of Sliding Phase
• 1D bosonization offers a new, concrete 

framework for describing the fractional 
quantum Hall effect.

III.  Can this be used to describe other 
strongly correlated states?

• Non Abelian Quantum Hall States
• Spin Liquid states, spin/charge separation
• ….

• Anisotropic 2D phase with power law 
correlations characteristic of 1D Luttinger 
Liquid.

• Residual Couplings “irrelevant”


