Charge and Statistics of Dilute Laughlin Quasiparticles

- C. L. Kane University of Pennsylvania
- I. Introduction
 - Laughlin Quasiparticle and Shot Noise
- II. Transmission of Dilute Quasiparticles through a point contact PRB 67, 45307 (03) w/ Matthew Fisher (ITP)
 - Three Terminal Geometry for preparing "dilute quasiparticle beam"

(Moty Heiblum et al. '02)

- Shot Noise Puzzle
- Luttinger Liquid Theory
- III. Proposed measurement of fractional statistics: Telegraph Noise PRL 90, 226802 (03)
 - Corbino Geometry (Moty Heiblum et al. '03)
 - Telegraph Noise and fractional statistics
 - Luttinger Liquid Theory

Laughlin Quasiparticle for v = 1/m

- Energy Gap $\sigma_{xx} = 0$
- Quantized Hall Conductance $\sigma_{xy} = (1/m)e^2/h$

Fractionally Charged Excitations

 $Q = \sigma_{xy}(h/e) = e/m \equiv e^*$

Fractional Statistics

Halperin 1984; Arovas, Schrieffer, Wilczek 1984

• Phase $\Theta = \pi/m$ under interchange:

• Phase when one circles another:

• Signature of topological order

Thouless 1989; Wen, Niu 1990

m-fold topological degeneracy on torus

Measurement of Fractional Charge

1. Capacitive Measurement

Resonant Tunneling Through Anti-dot Goldman & Su (Science, 1995)

$$\Delta V_{BG} = e^{*}/C$$

2. Shot Noise Measurement

Backscattering at Quantum Point Contact

Kane, Fisher (PRL 1994); De Picciotto et al. (Nature 1997); Glattli et al. (PRL 1997)

t = 0.73

400

200

Backscattered current, I_R (pA)

2

Three Terminal Configuration

Comforti et al. (Nature 2002)

• When QPC2 is open, a "Dilute Beam" of quasiparticles is isolated in lead 3.

• Transport of Dilute beam through QPC2 probes transmission of individual quasiparticles.

Transmission of Dilute Quasiparticles Through a Point Contact

Can Dilute Charge e/3 Quasiparticles Traverse a Nearly Opaque Barrier ?

Luttinger Liquid Model : v = 1/m

Analysis:

QPC1:

• Perturbative for small v₁ (Dilute Limit)

QPC2:

- Perturbative for small v₂
- Perturbative for large v_2 (small t_2)
- Exact Solution for m=2 via fermionization

Perturbative Analysis 1. Small t_2 (T<<V) $I(V) = cv_1^2 t_2^2 V^{2m+2/m-3}$ $S(V) = ecv_1^2 t_2^2 V^{2m+2/m-3}$ **V**₁ 2. Small v_2 (T<<V) V₂ $I(V,T) = c_1 \frac{V_1^2}{V^{1-2/m}} \left[1 - c_2 \frac{V_2^2}{T^{2-2/m}} \right]$ $S(V,T) = e^* c_1 \frac{V_1^2}{V^{1-2/m}} \left[1 - c_3 \frac{V_2^2}{T^{2-2/m}} \right]$ **V**₁ $Q = e^{*} + c \frac{V_2^2}{T^{2-2/m}}$

Perturbation theory diverges for T=0 even for fixed finite V.

Exact Solution

For m=2 map problem to free fermions

 $\mathbf{Q} = \mathbf{e}$, independent of v_2 , even when transmission through QPC2 is nearly perfect.

2. Finite Temperature:

Limits T $\rightarrow 0$ and $v_2 \rightarrow 0$ do not commute: $Q(T \rightarrow 0, v_2 = 0) = e/m$ $Q(T=0, v_2 \rightarrow 0) = e$

A nasty integral

$$\frac{8}{\pi^3} \int_R d^4 y du \Theta(\{y_k\}, u) \sin\left(\frac{u}{2X^2}\right) \frac{e^{-2(y_{12}+y_{34})}}{uy_{13}y_{24}} \frac{(y_1(y_3-u)+y_3(y_1-u))(y_2(y_4-u)+y_4(y_2-u))}{|y_1(y_1-u)y_2(y_2-u)y_3(y_3-u)y_4(y_4-u)|^{1/2}}$$

with
$$\Theta(\{y_k\}, u) = \begin{cases} 1 & \text{for } y_1 > u > y_2 > y_3 > 0 > y_4 \\ -1 & \text{for } y_1 > y_2 > y_3 > u > 0 > y_4 \\ -1 & \text{for } y_1 > u > 0 > y_2 > y_3 > u_4 \end{cases}$$

0 otherwise.

= 1 (independent of X) !

Interpretation: Andreev Reflection

Three possible scattering products for an incident quasiparticle

Theory predicts T=0 at zero temperature

- Strong Pinch-off: $R \sim 1$, 0 < A << 1
- Weak Pinch-off: R=1-1/m, A=1/m

Observe Andreev processes by measuring correlations between transmitted and reflected currents.

What about the experiments?

The measured charge does approach e for small t_2 and low temperature, but "high" temperature data remains unexplained.

- Role of irrelevant operators, eg. $(d\phi/dx)^3$
- Role of smooth edges near point contact.

Fractional Statistics

Halperin 1984; Arovas, Schrieffer, Wilczek 1984

• Phase $\Theta = \pi/m$ under interchange:

• Phase when one circles another:

 $\Psi \to \Psi e^{2i\Theta}$

• Model: Bosons + Statistical Flux

Measurement of Fractional Statistics

Quantum Interference Necessary To Measure Statistical Phase

Two Point Contact Interferometer Chamon et al. (1997)

- Net phase changes by $2\Theta = 2\pi/m$ when qp tunnels from outside ring to inside of ring.
- Equilibrium h/e* oscillations eliminated by qp tunneling.

An Ohmic contact in the middle of a ring

Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu and H. Shtrikman, Nature (03)

A "Mach-Zehnder Interferometer"

Telegraph Noise in ring with inner contact: A Direct Signature of Fractional Statistics

- Net phase changes by $2\Theta = 2\pi/m$ when qp passes from lead 1 or 2 to lead 3.
- m-state telegraph noise for n = 1/m
- Related to m-fold "topological degeneracy"

•
$$\langle \mathbf{I}^2 \rangle_{\omega \sim 0} = \mathbf{e}^* \Delta \mathbf{I}^2 / \mathbf{I}_3$$

Chiral Luttinger Liquid Model

$$\sim \frac{e^* \Delta I^2}{2I_3} \qquad e^* V_3 >> kT$$
$$\sim \frac{e^{*2} \Delta I^2}{4G_3 T \sin^2 \Theta} \qquad e^* V_3 << kT$$

Conclusion

- Fractionally charged quasiparticles can not traverse a nearly opaque barrier. At T=0 they can't even get past a nearly perfectly transmitting barrier!
- Telegraph Noise is predicted for a ring with an inner contact. It is a direct consequence of a fractional statistical phase, and has a unique signature in the low frequency noise.

Questions

- Origin of observed suppression of transmitted charge for moderately weak tunneling and moderately low temperature?
 Smooth edges?
 Irrelevant operators?
- Observation of Andreev processes?
- Exact Solution for n=1/3?
- Telegraph Noise for Hierarchical Quantum Hall States?
- Effect of dephasing on edge state transport?