Scientific animation with Python

@ Thereis a prospect of a thrilling
time ahead for you.

YOUR PATH IS ARDUOUS BUT WILL
BE AMPLE REWARDING,

© If your desires are not extravag-
ant,they will be granted.

The best

The best questions are ones that you ask yourself.
The best images, still or animated, are ones you make for yourself (or with your partner).
Borrowing animations from Wikipedia only takes you so far!

The goals today are
* Show what is possible and why you may want it.
* Get you started.

What's the big deal?

Technically there's no big deal. A video is a bunch of still frames presented in succession at over
10/second (looks smoother if it's over 25/second).

But psychologically it's a big deal: We process stories as narrative, with plots.

We'll see how you can just get Python to spit out a lot of individual frames, then show them to
you at a chosen rate.

But you'll also want to share your joy — in a presentation; in the supplement to your big article;
on social media; etc. For this you need to stitch them together into a file in one of the usual
formats, typically mp4 or m4a.

® You could make a video screenshot of Python playing your animation, e.g. with
screenshot.app. Usually poor resolution and wrong speed.

® Or you can emit individual frames and postprocess with ffmpeg, QuickTime, VLC, ImageJ, or
another such free helper app.

® Today explore a third method: more convenient, once you get over the learning curve.

It's true that "play" can involve frustration.

But your presentations may never be the same.

* If your Python-of-choice is Google Colab, then you're set -- it knows ffmpeg.

* | prefer to run Python on my own laptop. It is easy and free to install the "Anaconda distribution" from
https://www.anaconda.com/download
(Anaconda also has a cloud resource, but I'm not familiar with it.)

Anaconda users need an extra step to get ffmpeg. | recommend doing this the Anaconda way, because my
students who used other ways (pip, homebrew...) have not been able to connect it directly to Python.

The hard, supposedly easy, way:

Launch Anaconda Navigator. (See screenshot below.)

On the left click "Environments"

In the middle click "base (root)"

On the dropdown select "Installed"

In the search box enter "ffmpeg"

If ffmpeg appears in the results, you're already good to go. If not:

On the dropdown select "Not installed"

In the search box enter "ffmpeg"

If ffmpeg appears in the results, click its tickbox to select it.

Now at bottom right you should get a button called "Apply"; click it. This is the moment shown in the screenshot.
After a while a window pops up saying "these packages will be modified." Click the OK button.

Confirm by changing the dropdown menu to "Installed." You should now see ffmpeg.

The easy, supposedly hard way:

On macOS, Launch Terminal.app; on Windows launch Anaconda Prompt.
At the command prompt type
conda install ffmpeg
After a while you'll be asked to confirm; type
y<return>
After it finishes, confirm by typing
which ffmpeg
Now you should see something like
XXX/anaconda3/bin/ffmpeg
which indicates that ffmpeg is in the place where Python will look for it.

https://www.anaconda.com/download

Anaconda Navigator

00
i) ANACONDA NAVIGATOR

PTA

N

A Home
<Search Environments Q) [Not installed v] Channels Update index... (FFmpeg X)
Q@ Envirogments base (root) T ° Name v T Description Version
@ Ffmpeg 0 C_:joss-platform solution to record, convert and stream audio and 422
anaconda3 - video.

* Learning

an Community

NEw
Anaconda Toolbox
Supercharged

local notebooks.
Click the Toolbox
tile to Install.

Documentation

Anaconda Blog

ly Clear

Yy & ? B & 5 2

Create Clone TRe: Eeealm T 1 package available matching "ffmpeg" 1 package selected

In [3]:

Out[3]:

import numpy as np; import matplotlib.pyplot as plt

Generate plotting values

np.linspace(@, 2*np.pi, 200)

16 * np.sin(t)*x*3

13 % np.cos(t) = 5 % np.cos(2*t) — 2 * np.cos(3*t) - np.cos(4xt)

< X + R

Make the plot
plt.figure(figsize=(3,3))
plt.plot(x, y, 'r', linewidth=3)
plt.text(-1,0,'280")

Text(-1, 0, '280') , , .
I'd like a more impactful valentine, one that grows and

ok shrinks over time. Right away, | face a problem: My assistant,
Al trying to please me, will rescale the axes in every frame so
that the heart fills the frame! Instead of a fluctuating heart, I'll
ai get fluctuating axes labels! There are various workarounds,
but the general-purpose insight is that | want to make the
axes once, then serially replace the contents always leaving
the axes unchanged.

Pythonic matters

plt.figure() creates a "figure object," i.e an "object" in the class figure, and makes it the "current figure."

Objects can contain other objects. For graphing, we want our figure object to "own" an "axes object."
plt.axes () creates such an object in the current figure and makes it the "current axes."

An axes object can in turn contain, e.g. the lines that we usually think of as the axes, but also tick marks, labels,
as well as data represented as symbols, curves, bars, etc.

plt.plot conveniently combines several operations:
create a figure object if none exists and make it "current figure" (otherwise use the existing current figure).
add an axes object to the current figure object if none exists and make it "current axes."
add symbols and/or curves to that axes object to represent data.
revise the limits and labels as needed to accommodate that plot and any others already present.

But those operations can be unbundled for greater control.

In particular, we may wish to attach names to certain subobjects, so that we can go back and modify them by
calling their methods.

Thus, if my_ax is the name of an axes object then its method my_ax.plot() will draw a plot in that object,
regardless of whether it is "current.” It also returns a tuple containing the object(s) it created (lines, symbols,
etc.); if we wish we can assign a name to it. Later, we can then use that handle to change subobjects of the plot
without completely redrawing it.

Next slide uses a more subtle version of that idea.

First set your
environment
to give "live
plots." In
Spyder, you
only need to
do thls once:

0N\ e——

w

| [e S o 5} o I T o w

V7]

=S SRV

vo&aox @A o

0 @

Making animation on your screen

Spyder (Python 3.11)

[...pNil work/Projects/22EMP/MS-EMP/

O
Appearance
Application
Completion and linting
Files
Help
History
IPython console Graphics backend
. Decide how graphics are géing to be displayed in the console. If unsure, please select Inline to put graphics
Python interpreter inside the console or Aufomatic to interact with them (through zooming and panning) in a separatg window.
Plugins .
Backend: Automatic
Profiler
, Code Analysis .
Inline backend
U Decide how to render the figures created by this backend
Keyboard shortcuts
Format: PNG
Status bar
Variable explorer Resolution: 72.0 dpi
Working directory Width: 6 inches

»’

Reset to defaults Apply Cancel OK

M a ki n g a n i m ati O n O n yo u r SC re e n : Ju pyter Untitled Last Checkpoint: 7 minutes ago (unsaved changes)

File Edit View Insert Cell Kernel Widgets

B+ x & B 24 ¥ PR B C »

In [4]: import mat
smatplotli

lib.pyplot as plt;
. . . - . notebook
First set your environment to give "live plots." In
. . In [5]: plt.plot((0,1), (0,1))
Jupyter, you must do this every session:

1.0

0.8

0.6 -

0.4r

0.2

0.0

0.0 0.2 0.4

A & > 4 0O B

from matplotlib import animation
heartThrob.py° #4% set up: get_step draws a frame and is called by FuncAnimation below:

def get_step(n):

scale = np.abs(np.sin(2*np.pi*(n/30))) # this changes for each frame

.ne are defined outside the function but available inside <t
my_line.set_data(scale¥n®art[0], scalexheart[1])

In Python, a function ha
access to variables
defined in the
surrounding code.
Sticklers may prefer to
transmit them via the
"fargs" keyword in

4/ mow begin the main code: set gemeric graph values:

t = np.linspace(0, 2*np.pi, 200)

heart = [16 * np.sin(t)*#*3, 13 * np.cos(t) - 5 * np.cos(2*%t) - 2 * np.cos(3*t)

FuncAnimation.
—— np.cos(4xt)]

my_fig = plt.figure()

A "return my_ax = plt.axes(xlim=(-20,20), ylim=(-20,20)) # azes will be exactly same im,
statement here is

) —every frame
optional.

"""ereate an empty curve, which will be replaced for every frame, and assign tt
a name so that we can manipulate it. Note that the plot method of our axis azx
returns a tuple with one element for each line drawn (here there's just one).
We must unpack that tuple to get access to the line object: """

(my_line,) = my_ax.plot([]l, [, 1lw=3, color='red')

Give a name to the nnnpow make the animation:

first (and only) line

Tell FuncAnimation which figure window, what frame-drawing function to use, how
object in the plot.

many frames: """

my_movie = animation.FuncAnimation(my_fig, get_step, frames=60)

20

10

5 You can now just do a video
screen shot of the animation
or while Python is displaying it.

1 1 1 1 1 1
2920 —15 —10 -5 0 5 10 15 20

Your Turn

Challenge: Draw a fixed Lissajous figure, then an animated dot that traces it. Then do
something cool on you own initiative.

Challenge: Draw a fixed epicycloid or hypcycloid figure, then an animated dot that traces it.
Then do something cool on you own initiative.

N
o

Traveling waves (souna
in air or light in vacuum):-

—10 A

—-15 A

Challenge: make a delta function out of cosine waves. Let egch-one—

evolve via the Schrodinger equation, and thus see how that delta
wavepacket spreads.

Actually, forget about the SE: All you need to know is that each
component wave has frequency related to its wavenumber via

@ = k*. And your starting superposition is a bunch of cosines all
with equal weight (the Fourier transform of a delta function).

Time evolution of a distribution

Molecular diffusion involves the spread of a distribution. It's instructive to look at the
randomness in a single instance. But instead of a single histogram at final time, why
not make a video of the time development of the histogram?

myfig = plt.figure() # set up one invariant axes for all frames

movie ax = plt.axes(xlim=(-1,Nbins+l), ylim=(0,Nwalk/2)) # stays constant over all frames
my bars = movie_ax.baﬁi;ange(Nbins), binpops[:,0]) # first frame

Each bar is a separate object;
<< blah blah, create binpops[which bin, which time] >> my_bars is an array of them all.

def get step(n):) .
for i in range(Nbins): To animate bar plot, in each frame

my_bars[i].set_height(binpops([i,n]) :
ymars —ergnTReRs reset the array of bar heights.

Random walkers in potential trap

The distribution spreads at first, then
stops spreading. It also migrates, slowly, 20
eventually becoming centered on the
bottom of the potential energy well

(x=50).

200

150

population

100
A movie object returned by

FuncAnimation contains a "save"

method. or

This one line renders the animation and
writes it to a file for use elsewhere: 0

0

‘)0

my movie.save('harmonicRW.mp4', £fps=35)

40

60

80

1
100

Brownian in a trap: Details

myfig = plt.figure() # set up one invariant axes for all frames
movie_ax = plt.axes(xlim=(-1,Nbins+1), ylim=(0,Nwalk/2)) # must stay constant over many frames
binpops = np.zeros((Nbins,Nstep)) #history of histogram
half = Nwalk//2 5200
binpops[3xNbins//4,0] = half
binpops [-1+3%Nbins//4,0] = Nwalk - half i+
my_bars = movie_ax.bar(range(Nbins), binpops|[:,0]) # first frame
#°%%
for time in range(1,Nstep):
temp = np.zeros(Nbins) i
temp[1] = binpops[0,time-1] #handle left edge separately: all bounce
temp[-2] = binpops[-1,time-1] #handle right edge separately
for xbar in range(1, Nb1ns 1): # exclude ends which were handled separately
Pplus = (1 — (xbar - Nbins//2)/400)/2
= brn(binpops[xbar,time-1], Pplus) # partition walkers
temp [xbar+1] += m
temp[xbar-1] += binpops[xbar,time-1] - m
binpops[:,timel]l = temp
if temp.sum() !'= Nwalk: print("oops", time, binpops.sum()) #should never happen but check

#%%

def get stepn(n):
for i in range(Nbins):)
my_bars[i].set_height(binpops[i,n]) How to animate bar p|Ot

Your Turn

Challenge: simulate Ehrenfest's Fleas, and display the results as an animated bar
chart. Then do something cool on you own initiative.

Second visualization: The Swarm

This time, compute the actual trajectories of just 20 walkers. Release the walkers at a variety
of initial positions, say, evenly spaced atXx =2, 7, 12, ... 97. Where do they end up?

myfig = plt.figure(figsize=(6,1)) # set up one invariant axes for all frames
movie ax = plt.axes(xlim=(-1,Nbins+l)) # must stay constant over many frames
my gnats = movie ax.scatter(trajects[:,0], np.zeros(Nwalk))

<< blah blah, create trajects[which walker, which time] >>

def get step(n):
my_gnats.set_offsets(np,zgﬁack((trajects[:,n],np.zeros(Nwalk))).T)

To animate scatterplot, in each frame reset the xy values by supplying an-array with 20 rows and two columns.

Finally, let's distinguish each walker by giving each its own color. There are various ways to do
this. [Hint: Check the documentation for scatter for its keyword argument color.]

The walkers never stop getting transiently pushed out to large excursions.

0.050

0.025

0.000-r® @ ® o o ® ¢ ¢ 6 6 & & ¢ o o

0.025 -

0.050 p L L 1 1 L
0 20 40 60 80 100

Raster=bitmap=heatmap Animation

y
1.1 +sint

x2+

N IR0

Your turn

2
2 4 Y

1.1 +sint

0

Challenge: Instead, show 2D diffusion from a point (or
something more interesting) in such a representation:
c(t,X) =t~ exp(—||X||*/t

(1,X) p(—=|lx]|</2) 0
Challenge: Instead, show the real part of a p orbital
in the xy plane:

ReW(r,p,t) = re”" cos(p — 1) O

Challenge: The same, but this time as a surface N 928N
plot.

nmesh = 500 7
Exporting animation by~ Inin = —ne-pi

tmax np.pi

writing many still images 9t = %1
def x(i):

Here is a method that makes no use return 2.x(i/nmesh) — 1.0

of matplotlib.animation: def y(j): return 2.x(j/nmesh) - 1.0
values = np.zeros((nmesh,nmesh))
nframe = 0

for t in np.arange(tmin, tmax,dt):
nframe += 1
for i in range(nmesh):
for j in range(nmesh):
values[i,j]l = np.sqrt(x(i)*x2 + y(j)**2/(np.sin(t)+1.1))
plt.imshow(values.T, cmap='hot', interpolation='nearest', origin='lower")
plt.text(20, 50, 't="+format(t,'.2f"))
plt.savefig('rasterMovie'+format(nframe, '05d')+"'.png'); plt.close('all')

Then use an external helper app to postprocess the resulting image fil
via the Anaconda Navigator app, or by

$ conda install ffmpeg (Windows: Ca
Then use it:

or example, Anaconda users can install FFmpeg
e this command in Anaconda Prompt app.) (Mac: Use the Terminal app.)

$ ffmpeg -i rasterMovie%$05d.png -pix fmt yuv420p rasterMovie.mp4

In case of error, may need (see https://stackoverflow.com/questions/20847674/ffmpeg-1ibx264-height-not-divisible-by-2)
$ ffmpeg -i rasterMovie%05d.png -pix fmt yuv420p -vf "pad=ceil(iw/2)*2:ceil(ih/2)*2" rasterMovie.mpd

from matplotlib.animation import FuncAnimation

! nmesh = 500
Exporting tnin = npopi
tmax = np.pi

animation by a0

all_times = np.arange(tmin, tmax, dt)

||n |(| ng FFm peg Sg;cca)l(rrit)]Tber_of_frames = len(all_times)

return 2.%x(i/nmesh) - 1.

to PythOﬂ def y(j): return 2.%(j/nmesh) - 1.

values = np.zeros((total_number_of_frames, nmesh, nmesh))
nframe = -1
for t in all_times:

nframe += 1

for i in range(nmesh):

for j in range(nmesh):
values[nframe,i,j] = np.sqrt(x(i)**2 + y(j)**x2/(np.sin(t)+1.1))

theTop = values.max(); theBot = values.min()

def animate(frame):

Animation function.
global values, image
image.set_array(values[frame].T)
return image

animation = FuncAnimation(fig, animate, np.arange(total_number_of_frames),
interval=1000 / 25)

animation.save("rasterMovie2.mp4", dpi=nmesh)

http://joshborrow.com/blog/posts/making research movies in python/

Animation, plus ultra

fig, ax = plt.subplots(l, figsizez=3.6, 2.9))
image = ax.imshow(<<first frame>%zj:> # to be changed each frame
mobilepoint, = ax.plot([]1,[], 'g*' —Ms=3) # to be changed each frame
mytext = ax.text (6,4, 'variable label') # to be changed each frame
plt.xlabel(r'sx\ [a.u.]') # fixed stuff
ax.text (6, 2.6, 'fixed label') # fixed stuff
def animate(k): # make video ame k by changing what needs changing
image.set array(<<frame k> <4 make x,y what you expect
mobilepoint.set data([posityefi(k)], [0.])
mytext.set text(str(k)) 4 dynamic text
return image, mobilepoint, mytext # return changed objects

http://joshborrow.com/blog/posts/making research movies in python/

Boring kinetics

Description: demoThreestates.py Gillespie simulation of A<-->B<-->C model"""
import numpy as np; import matplotlib.pyplot as plt; plt.close('all')
from numpy.random import random as rng

Three states defining the cols of stoichiometry matrix:

0=A; 1 =B; 2=2°0C
Four reactions, all first-order, defining the four rows of stoichometry matrix:
0 = A-->B; 1 = B-->A; 2 = B-->C; 3 = C-->B nen

stoich = np.array([[-1,1,0], [1,-1,0], [O,-1,1], [0,1,-1]]) # each row sums to O
rate constants:
ks = np.array([[1,0,031, [(0,0.2,01, [0,1,0], [0,0,0.2]]) # only one entry in each row nonzero

Mtot = 40 # total number of molecs is constant
Ntrans = 250 # number of steps to simulate

pops = np.zeros((Ntrans+l, 3)) # allocate for populations in states A, B, C
pops[0, 0] = Mtot # initialize
ts = np.zeros(Ntrans+l) # allocate

rxnchooser = rng(Ntrans) 30
timechooser = rng(Ntrans)

for j in range(Ntrans):

propens = np.sum(pops[j,:]1*ks, axis=1) # propensities for each rxn 20F

norm = propens.sum() # prob/time for anything to occur

breakpoints = np.cumsum(propens/norm) Br

which event = np.searchsorted(breakpoints, rxnchooser[j])

pops[Jj+1l] = pops[j] + stoich[which event, :] or

ts[j+1] = ts[j] - np.log(timechooser[j])/norm L
plt.figure(figsize=(3,3)) ’
plt.plot(ts, pops) ok

plt.legend(('A','B','C")) L

. 0 2 :1 6 8 10 12
plt.xlabel('time [s]') time [s]

Kinetics as a thrilling story .

35 -

Challenge: Upgrade it to make a dancing bar-chart (or roll your
own example). To get started, initialize with

my bars = movie ax.bar(np.arange(0,3), np.zeros(3))
Then, in the animation function, modify the bars on each frame

30

population
RN
o t

—_
(@)

using
for i in range(3):
my bars[i].set height(h[i,n])
where h is the result from your simulation.

A < B < C model

Populations of the three species ultimately
equilibrate to the relative values predicted by the
Boltzmann distribution, but they never stop
fluctuating, and the fluctuations are big if the total

numbers are small.

Boring ODEs

from mpl toolkits.mplot3d import Axes3D
param = [50, 0, 0.2, 2]
Initial conditions.
y0 = [1.5, 0.5, 1, 1.5, 2, 2]
Set number of points and frames to use, frame rate.
num = 200
max_frames = 80
rate = 20
Times at which solution to ODE will be evaluated.
times = np.arange(0, num)
Function to use with odeint: dy/dt = F(y,t)
def repressilatorVF(y, t):
input: y = array of 6 dynamical variables
returns: vector field VF of derivatives
VF = np.zeros(6)

VF[0] = -y[0] + param[0]/(l.+y[5]**param[3])+ param[l];
VF[1l] = -y[l] + param[0]/(l.+y[3]**param[3])+ param[l];
VF[2] = -y[2] + param[0]/(l.+y[4]**param[3])+ param[1l];
VF[3] = -param[2]*(y[3]-y[0]);
VF[4] = -param[2]*(y[4]-Y[1]);
VF[5] = -param[2]*(y[5]-Y[2])

return VF
Solve the ODE.
odeint (repressilatorVF, y0, times)

Nk
oo
I o

25

20

10

25

50

75

1
100

1
125

1
150

1
175

1
200

Thrilling ODEs

Challenge: Make some sort of 3D animated line or point plot of your own
(maybe an explicit function, not the solution to an ODE). This time, the

key is that you must create the axes with

ax3d = plt.figure().add subplot(projection = '3d')

... then initialize the moving point:

my point, = ax3d.plot([], [], [], 'ro', ms=9)

... then in the rendering function:

my point.set data 3d((y[now, 0],), (y[now, 11,), (y[now, 21],))

30 O

Useful shortcut

t = np.linspace(@, 5%np.pi, 101) # define parameter for parametric plot S, R

ax.plot3D(t * np.cos(t), t * np.sin(t), t) # generate 3D plot

onward to animation

"""EFasy matplotlib animation.
https://github.com/jwkvam/celluloid/blob/master/celluloid.py :"""

from celluloid import Camera

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')# create 3D plotting object attached to figure
ax.set_aspect('equal') # distortion? no thanks

camera = Camera(fig)

for thist in t:
ax.plot3D(t * np.cos(t), t * np.sin(t), t, 'b") # same in every fram
ax.plot3D([thist * np.cos(thist)], [thist * np.sin(thist)], [thist], 'or')
camera.snap()

animation = camera.animate(interval=100, blit=True)

The best

The best questions are ones that you ask yourself.
The best images, still or animated, are ones you make for yourself (or with your partner).
Go ahead.

A STUDENT'S GUIDE TO

PYTHON

FOR PHYSICAL MODELING
SECOND EDITION

JESSE M. KINDER
PHILIP NELSON

count < max iterations

x,y = (x0 + x*xx - y*xy, y0 + 24

<-- Princeton Univ Press, August 2021

Pine, D J. Introduction to Python for science and
engineering. CRC Press 2019.

J W-B Lin, H Aizenman. E M Cartas Espinel,
K Gunnerson, and J Liu, Introduction to
Python programming for scientists and
engineers. Cambridge Univ. Press 2022.

C Hill, Learning scientific programming with
Python. Cambridge Univ. Press 2020.

