
Scientific animation with Python

The best
The best questions are ones that you ask yourself.
The best images, still or animated, are ones you make for yourself (or with your partner).
Borrowing animations from Wikipedia only takes you so far!

The goals today are
 * Show what is possible and why you may want it.
* Get you started.

What's the big deal?
Technically there's no big deal. A video is a bunch of still frames presented in succession at over
10/second (looks smoother if it's over 25/second).
But psychologically it's a big deal: We process stories as narrative, with plots.

We'll see how you can just get Python to spit out a lot of individual frames, then show them to
you at a chosen rate.

But you'll also want to share your joy – in a presentation; in the supplement to your big article;
on social media; etc. For this you need to stitch them together into a file in one of the usual
formats, typically mp4 or m4a.

• You could make a video screenshot of Python playing your animation, e.g. with
screenshot.app. Usually poor resolution and wrong speed.

• Or you can emit individual frames and postprocess with ffmpeg, QuickTime, VLC, ImageJ, or
another such free helper app.

• Today explore a third method: more convenient, once you get over the learning curve.

It's true that "play" can involve frustration.

But your presentations may never be the same.

* If your Python-of-choice is Google Colab, then you're set -- it knows ffmpeg.

* I prefer to run Python on my own laptop. It is easy and free to install the "Anaconda distribution" from
https://www.anaconda.com/download

 (Anaconda also has a cloud resource, but I'm not familiar with it.)

Anaconda users need an extra step to get ffmpeg. I recommend doing this the Anaconda way, because my
students who used other ways (pip, homebrew...) have not been able to connect it directly to Python.

The hard, supposedly easy, way:

Launch Anaconda Navigator. (See screenshot below.)
On the left click "Environments"
In the middle click "base (root)"
On the dropdown select "Installed"
In the search box enter "ffmpeg"
If ffmpeg appears in the results, you're already good to go. If not:

On the dropdown select "Not installed"
In the search box enter "ffmpeg"
If ffmpeg appears in the results, click its tickbox to select it.
Now at bottom right you should get a button called "Apply"; click it. This is the moment shown in the screenshot.
After a while a window pops up saying "these packages will be modified." Click the OK button.
Confirm by changing the dropdown menu to "Installed." You should now see ffmpeg.

The easy, supposedly hard way:

On macOS, Launch Terminal.app; on Windows launch Anaconda Prompt.
At the command prompt type

conda install ffmpeg
After a while you'll be asked to confirm; type

y<return>
After it finishes, confirm by typing

which ffmpeg
Now you should see something like

XXX/anaconda3/bin/ffmpeg
which indicates that ffmpeg is in the place where Python will look for it.

https://www.anaconda.com/download

Created on Mon Aug 12 12:29:15 2019 @author: pcn Python 3.8 Description: draw a valentine

In [3]:

In []:

Out[3]: Text(-1, 0, '280')

import numpy as np; import matplotlib.pyplot as plt

Generate plotting values
t = np.linspace(0, 2*np.pi, 200)
x = 16 * np.sin(t)**3
y = 13 * np.cos(t) - 5 * np.cos(2*t) - 2 * np.cos(3*t) - np.cos(4*t)

Make the plot
plt.figure(figsize=(3,3))
plt.plot(x, y, 'r', linewidth=3)
plt.text(-1,0,'280')

heart Last Checkpoint: 5 minutes ago (autosaved) Logout

Python 3 !File Edit View Insert Cell Kernel Widgets Help

Code" + # $ % & ' (Run) * + ,

I'd like a more impactful valentine, one that grows and
shrinks over time. Right away, I face a problem: My assistant,
trying to please me, will rescale the axes in every frame so
that the heart fills the frame! Instead of a fluctuating heart, I'll
get fluctuating axes labels! There are various workarounds,
but the general-purpose insight is that I want to make the
axes once, then serially replace the contents always leaving
the axes unchanged.

Pythonic matters
plt.figure() creates a "figure object," i.e an "object" in the class figure, and makes it the "current figure."

Objects can contain other objects. For graphing, we want our figure object to "own" an "axes object."
plt.axes() creates such an object in the current figure and makes it the "current axes."
An axes object can in turn contain, e.g. the lines that we usually think of as the axes, but also tick marks, labels,
as well as data represented as symbols, curves, bars, etc.

plt.plot conveniently combines several operations:
create a figure object if none exists and make it "current figure" (otherwise use the existing current figure).
add an axes object to the current figure object if none exists and make it "current axes."
add symbols and/or curves to that axes object to represent data.
revise the limits and labels as needed to accommodate that plot and any others already present.

But those operations can be unbundled for greater control.
In particular, we may wish to attach names to certain subobjects, so that we can go back and modify them by
calling their methods.
Thus, if my_ax is the name of an axes object then its method my_ax.plot() will draw a plot in that object,
regardless of whether it is "current." It also returns a tuple containing the object(s) it created (lines, symbols,
etc.); if we wish we can assign a name to it. Later, we can then use that handle to change subobjects of the plot
without completely redrawing it.
Next slide uses a more subtle version of that idea.

Making animation on your screen
First set your
environment
to give "live
plots." In
Spyder, you
only need to
do thls once:

Making animation on your screen

First set your environment to give "live plots." In
Jupyter, you must do this every session:

heartThrob2

October 12, 2020

Created on Mon Aug 12 12:29:15 2019 @author: pcn Python 3.8 heartThrob.py Description: draw
animated valentine

[]: import numpy as np; import matplotlib.pyplot as plt
from matplotlib import animation
#%% set up: get_step draws a frame and is called by FuncAnimation below:
def get_step(n):

scale = np.abs(np.sin(2*np.pi*(n/30))) # this changes for each frame
heart and my_line are defined outside the function but available inside it

my_line.set_data(scale*heart[0], scale*heart[1])

#%% now begin the main code: set generic graph values:
t = np.linspace(0, 2*np.pi, 200)
heart = [16 * np.sin(t)**3, 13 * np.cos(t) - 5 * np.cos(2*t) - 2 * np.cos(3*t)␣
↪→- np.cos(4*t)]

my_fig = plt.figure()
my_ax = plt.axes(xlim=(-20,20), ylim=(-20,20)) # axes will be exactly same in␣
↪→every frame

"""create an empty curve, which will be replaced for every frame, and assign it
a name so that we can manipulate it. Note that the plot method of our axis ax
returns a tuple with one element for each line drawn (here there's just one).
We must unpack that tuple to get access to the line object: """
(my_line,) = my_ax.plot([], [], lw=3, color='red')

"""Now make the animation:
Tell FuncAnimation which figure window, what frame-drawing function to use, how
many frames: """
my_movie = animation.FuncAnimation(my_fig, get_step, frames=60)

[]: # render via ffmpeg: requires conda install ffmpeg
my_movie.save('heartThrob.mp4', fps=30)

[]:

1

heartThrob.py:

In Python, a function has
access to variables
defined in the
surrounding code.
Sticklers may prefer to
transmit them via the
"fargs" keyword in
FuncAnimation.

Give a name to the
first (and only) line
object in the plot.

A "return"
statement here is
optional.

You can now just do a video
screen shot of the animation
while Python is displaying it.

Your Turn

Challenge: Draw a fixed Lissajous figure, then an animated dot that traces it. Then do
something cool on you own initiative.

Challenge: Draw a fixed epicycloid or hypcycloid figure, then an animated dot that traces it.
Then do something cool on you own initiative.

Challenge: make a delta function out of cosine waves. Let each one
evolve via the Schrodinger equation, and thus see how that delta
wavepacket spreads.
Actually, forget about the SE: All you need to know is that each
component wave has frequency related to its wavenumber via

. And your starting superposition is a bunch of cosines all
with equal weight (the Fourier transform of a delta function).
ω = k2

Traveling waves (sound
in air or light in vacuum):

Time evolution of a distribution

#!/usr/bin/env	python3
#	-*-	coding:	utf-8	-*-
"""
Created	on	Fri	Oct	20	10:59:57	2023
@author:	pcn
Python	3.11
Description:	harmonicRWanim.py		random	walk	in	harmonic	potential	well;	animate	the	histogram
"""
import	numpy	as	np;	import	matplotlib.pyplot	as	plt;	plt.close("all")
from	numpy.random	import	binomial	as	brn
from	matplotlib	import	animation

Nwalk	=	10000	#later	10000	number	of	walkers
Nstep	=	1500	#duration	of	each	walk
Nbins	=	100		#	currently	only	works	properly	with	100
#%%
myfig	=	plt.figure()	#	set	up	one	invariant	axes	for	all	frames
movie_ax	=	plt.axes(xlim=(-1,Nbins+1),	ylim=(0,Nwalk/2))	#	must	stay	constant	over	many	frames
binpops	=	np.zeros((Nbins,Nstep))	#history	of	histogram
half	=	Nwalk//2
binpops[3*Nbins//4,0]	=	half
binpops[-1+3*Nbins//4,0]	=	Nwalk	-	half
my_bars	=	movie_ax.bar(range(Nbins),	binpops[:,0])				#	first	frame
#%%
for	time	in	range(1,Nstep):
				temp	=	np.zeros(Nbins)
				temp[1]	=	binpops[0,time-1]	#handle	left	edge	separately:	all	bounce
				temp[-2]	=	binpops[-1,time-1]	#handle	right	edge	separately
				for	xbar	in	range(1,	Nbins-1):	#	exclude	ends	which	were	handled	separately
								Pplus	=	(1	-	(xbar	-	Nbins//2)/400)/2
								m	=	brn(binpops[xbar,time-1],	Pplus)	#	partition	walkers
								temp[xbar+1]	+=	m
								temp[xbar-1]	+=	binpops[xbar,time-1]	-	m
				binpops[:,time]	=	temp
				if	temp.sum()	!=	Nwalk:	print("oops",	time,	binpops.sum())	#should	never	happen	but	check
#%%

def	get_step(n):
				for	i	in	range(Nbins):
								my_bars[i].set_height(binpops[i,n])
				#return	my_bars

1

To animate bar plot, in each frame
reset the array of bar heights.

<< blah blah, create binpops[which bin, which time] >>

Molecular diffusion involves the spread of a distribution. It's instructive to look at the
randomness in a single instance. But instead of a single histogram at final time, why
not make a video of the time development of the histogram?

myfig = plt.figure() # set up one invariant axes for all frames
movie_ax = plt.axes(xlim=(-1,Nbins+1), ylim=(0,Nwalk/2)) # stays constant over all frames
my_bars = movie_ax.bar(range(Nbins), binpops[:,0]) # first frame

Each bar is a separate object;
my_bars is an array of them all.

Random walkers in potential trap

my_movie.save('harmonicRW.mp4', fps=35)

A movie object returned by
FuncAnimation contains a "save"
method.
This one line renders the animation and
writes it to a file for use elsewhere:

The distribution spreads at first, then
stops spreading. It also migrates, slowly,
eventually becoming centered on the
bottom of the potential energy well
(x=50).

Brownian in a trap: Details

#!/usr/bin/env	python3
#	-*-	coding:	utf-8	-*-
"""
Created	on	Fri	Oct	20	10:59:57	2023
@author:	pcn
Python	3.11
Description:	harmonicRWanim.py		random	walk	in	harmonic	potential	well;	animate	the	histogram
"""
import	numpy	as	np;	import	matplotlib.pyplot	as	plt;	plt.close("all")
from	numpy.random	import	binomial	as	brn
from	matplotlib	import	animation

Nwalk	=	10000	#later	10000	number	of	walkers
Nstep	=	1500	#duration	of	each	walk
Nbins	=	100		#	currently	only	works	properly	with	100
#%%
myfig	=	plt.figure()	#	set	up	one	invariant	axes	for	all	frames
movie_ax	=	plt.axes(xlim=(-1,Nbins+1),	ylim=(0,Nwalk/2))	#	must	stay	constant	over	many	frames
binpops	=	np.zeros((Nbins,Nstep))	#history	of	histogram
half	=	Nwalk//2
binpops[3*Nbins//4,0]	=	half
binpops[-1+3*Nbins//4,0]	=	Nwalk	-	half
my_bars	=	movie_ax.bar(range(Nbins),	binpops[:,0])				#	first	frame
#%%
for	time	in	range(1,Nstep):
				temp	=	np.zeros(Nbins)
				temp[1]	=	binpops[0,time-1]	#handle	left	edge	separately:	all	bounce
				temp[-2]	=	binpops[-1,time-1]	#handle	right	edge	separately
				for	xbar	in	range(1,	Nbins-1):	#	exclude	ends	which	were	handled	separately
								Pplus	=	(1	-	(xbar	-	Nbins//2)/400)/2
								m	=	brn(binpops[xbar,time-1],	Pplus)	#	partition	walkers
								temp[xbar+1]	+=	m
								temp[xbar-1]	+=	binpops[xbar,time-1]	-	m
				binpops[:,time]	=	temp
				if	temp.sum()	!=	Nwalk:	print("oops",	time,	binpops.sum())	#should	never	happen	but	check
#%%

def	get_step(n):
				for	i	in	range(Nbins):
								my_bars[i].set_height(binpops[i,n])
				#return	my_bars

1

How to animate bar plot

Your Turn

Challenge: simulate Ehrenfest's Fleas, and display the results as an animated bar
chart. Then do something cool on you own initiative.

Second visualization: The Swarm

<< blah blah, create trajects[which walker, which time] >>

This time, compute the actual trajectories of just 20 walkers. Release the walkers at a variety
of initial positions, say, evenly spaced at 2, 7, 12, ... 97. Where do they end up?x̄ =

myfig = plt.figure(figsize=(6,1)) # set up one invariant axes for all frames
movie_ax = plt.axes(xlim=(-1,Nbins+1)) # must stay constant over many frames
my_gnats = movie_ax.scatter(trajects[:,0], np.zeros(Nwalk))

def get_step(n):
 my_gnats.set_offsets(np.vstack((trajects[:,n],np.zeros(Nwalk))).T)

To animate scatterplot, in each frame reset the xy values by supplying an array with 20 rows and two columns.

Finally, let's distinguish each walker by giving each its own color. There are various ways to do
this. [Hint: Check the documentation for scatter for its keyword argument color.]

The walkers never stop getting transiently pushed out to large excursions.

Raster=bitmap=heatmap Animation

x2 +
y2

1.1 + sin t

Your turn

Challenge: Instead, show 2D diffusion from a point (or
something more interesting) in such a representation:
 c(t, ⃗x) = t−1 exp(−∥ ⃗x∥2/t)

x2 +
y2

1.1 + sin t

Challenge: Instead, show the real part of a p orbital
in the xy plane:
 Re Ψ(r, φ, t) = re−r cos(φ − t)

Challenge: The same, but this time as a surface
plot.

Then use an external helper app to postprocess the resulting image files. For example, Anaconda users can install FFmpeg
via the Anaconda Navigator app, or by
 $ conda install ffmpeg (Windows: Can issue this command in Anaconda Prompt app.) (Mac: Use the Terminal app.)
Then use it:
 $ ffmpeg -i rasterMovie%05d.png -pix_fmt yuv420p rasterMovie.mp4

In case of error, may need (see https://stackoverflow.com/questions/20847674/ffmpeg-libx264-height-not-divisible-by-2)
 $ ffmpeg -i rasterMovie%05d.png -pix_fmt yuv420p -vf "pad=ceil(iw/2)*2:ceil(ih/2)*2" rasterMovie.mp4

"""
Python 3.8 pcn 4/2021
Description: rasterMovie.py illustrate animation using ffmpeg from commandline
postprocess:
 ffmpeg -i rasterMovie%05d.png -pix_fmt yuv420p rasterMovie.mp4
"""
import numpy as np; import matplotlib.pyplot as plt; plt.close('all')

nmesh = 500 # number of mesh points
tmin = -np.pi # start
tmax = np.pi # end
dt = 0.15 #

def x(i): # converts index to physical distance
 return 2.*(i/nmesh) - 1.0
def y(j): return 2.*(j/nmesh) - 1.0

values = np.zeros((nmesh,nmesh)) # allocate
nframe = 0
for t in np.arange(tmin,tmax,dt):
 nframe += 1
 for i in range(nmesh):
 for j in range(nmesh):
 values[i,j] = np.sqrt(x(i)**2 + y(j)**2/(np.sin(t)+1.1))
 plt.imshow(values.T, cmap='hot', interpolation='nearest', origin='lower')
 plt.text(20, 50, 't='+format(t,'.2f'))
 plt.savefig('rasterMovie'+format(nframe,'05d')+'.png'); plt.close('all')

1

Exporting animation by
writing many still images

Here is a method that makes no use
of matplotlib.animation:

"""Following Josh borrow:
 http://joshborrow.com/blog/posts/making_research_movies_in_python/
Python 3.8
Description: rasterMovie2.py illustrate animation
"""
import numpy as np
import matplotlib.pyplot as plt; plt.close('all')

from matplotlib.animation import FuncAnimation

nmesh = 500 # number of mesh points
tmin = -np.pi # start
tmax = np.pi # end
dt = 0.15 #

all_times = np.arange(tmin, tmax, dt)
total_number_of_frames = len(all_times)
def x(i): # converts index to physical distance
 return 2.*(i/nmesh) - 1.
def y(j): return 2.*(j/nmesh) - 1.

values = np.zeros((total_number_of_frames, nmesh, nmesh)) # allocate
nframe = -1
for t in all_times:
 nframe += 1
 for i in range(nmesh):
 for j in range(nmesh):
 values[nframe,i,j] = np.sqrt(x(i)**2 + y(j)**2/(np.sin(t)+1.1))
theTop = values.max(); theBot = values.min()

1

http://joshborrow.com/blog/posts/making_research_movies_in_python/

Exporting
animation by
linking FFmpeg
to Python.

 values[nframe,i,j] = np.sqrt(x(i)**2 + y(j)**2/(np.sin(t)+1.1))
theTop = values.max(); theBot = values.min()

fig, ax = plt.subplots(1, figsize=(1, 1))
image = ax.imshow(values[0].T, vmin=theBot, vmax=theTop, cmap='hot', origin='lower')

def animate(frame):
 """
 Animation function. """
 global values, image # Not strictly neccessary
 image.set_array(values[frame].T)
 return image # return whatever you changed
animation = FuncAnimation(fig, animate, np.arange(total_number_of_frames),
 interval=1000 / 25)
set the DPI to the actual number of pixels you're plotting to avoid interpolation
animation.save("rasterMovie2.mp4", dpi=nmesh)

2

Animation, plus ultra

http://joshborrow.com/blog/posts/making_research_movies_in_python/

fig, ax = plt.subplots(1, figsize=(3.6, 2.9))
image = ax.imshow(<<first frame>>.T) # to be changed each frame
mobilepoint, = ax.plot([],[],'g*', ms=3) # to be changed each frame
mytext = ax.text(6,4,'variable label') # to be changed each frame
plt.xlabel(r'x\ [a.u.]') # fixed stuff
ax.text(6, 2.6, 'fixed label') # fixed stuff

def animate(k): # make video frame k by changing what needs changing
 image.set_array(<<frame k>>.T)
 mobilepoint.set_data([position(k)], [0.])
 mytext.set_text(str(k))
 return image, mobilepoint, mytext # return changed objects

make x,y what you expect

dynamic text

Boring kinetics

0 2 4 6 8 10 12

time [s]

0

5

10

15

20

25

30

35

40 A

B

C

"""Description: demoThreestates.py Gillespie simulation of A<-->B<-->C model"""
import numpy as np; import matplotlib.pyplot as plt; plt.close('all')
from numpy.random import random as rng

"""Three states defining the cols of stoichiometry matrix:
 0 = A; 1 = B; 2 = C
Four reactions, all first-order, defining the four rows of stoichometry matrix:
 0 = A-->B; 1 = B-->A; 2 = B-->C; 3 = C-->B """
stoich = np.array([[-1,1,0], [1,-1,0], [0,-1,1], [0,1,-1]]) # each row sums to 0
rate constants:
ks = np.array([[1,0,0], [0,0.2,0], [0,1,0], [0,0,0.2]]) # only one entry in each row nonzero

Mtot = 40 # total number of molecs is constant
Ntrans = 250 # number of steps to simulate
pops = np.zeros((Ntrans+1, 3)) # allocate for populations in states A, B, C
pops[0, 0] = Mtot # initialize
ts = np.zeros(Ntrans+1) # allocate

rxnchooser = rng(Ntrans)
timechooser = rng(Ntrans)

for j in range(Ntrans):
 propens = np.sum(pops[j,:]*ks, axis=1) # propensities for each rxn
 norm = propens.sum() # prob/time for anything to occur
 breakpoints = np.cumsum(propens/norm)
 which_event = np.searchsorted(breakpoints, rxnchooser[j])
 pops[j+1] = pops[j] + stoich[which_event,:]
 ts[j+1] = ts[j] - np.log(timechooser[j])/norm
plt.figure(figsize=(3,3))
plt.plot(ts, pops)
plt.legend(('A','B','C'))
plt.xlabel('time [s]')

Kinetics as a thrilling story
Challenge: Upgrade it to make a dancing bar-chart (or roll your
own example). To get started, initialize with
my_bars = movie_ax.bar(np.arange(0,3), np.zeros(3))
Then, in the animation function, modify the bars on each frame
using
 for i in range(3):
 my_bars[i].set_height(h[i,n])
where h is the result from your simulation.

Populations of the three species ultimately
equilibrate to the relative values predicted by the
Boltzmann distribution, but they never stop
fluctuating, and the fluctuations are big if the total
numbers are small.

Boring ODEs

0 25 50 75 100 125 150 175 200

0

5

10

15

20

25from mpl_toolkits.mplot3d import Axes3D
param = [50, 0, 0.2, 2]
Initial conditions.
y0 = [1.5, 0.5, 1, 1.5, 2, 2]
Set number of points and frames to use, frame rate.
num = 200
max_frames = 80
rate = 20
Times at which solution to ODE will be evaluated.
times = np.arange(0, num)
Function to use with odeint: dy/dt = F(y,t)
def repressilatorVF(y, t):

input: y = array of 6 dynamical variables
returns: vector field VF of derivatives

 VF = np.zeros(6)
 VF[0] = -y[0] + param[0]/(1.+y[5]**param[3])+ param[1];
 VF[1] = -y[1] + param[0]/(1.+y[3]**param[3])+ param[1];
 VF[2] = -y[2] + param[0]/(1.+y[4]**param[3])+ param[1];
 VF[3] = -param[2]*(y[3]-y[0]);
 VF[4] = -param[2]*(y[4]-y[1]);
 VF[5] = -param[2]*(y[5]-y[2])
 return VF
#%% Solve the ODE.
y = odeint(repressilatorVF, y0, times)

Thrilling ODEs

Challenge: Make some sort of 3D animated line or point plot of your own
(maybe an explicit function, not the solution to an ODE). This time, the
key is that you must create the axes with
ax3d = plt.figure().add_subplot(projection = '3d')
... then initialize the moving point:
my_point, = ax3d.plot([], [], [], 'ro', ms=9)
... then in the rendering function:
my_point.set_data_3d((y[now, 0],), (y[now, 1],), (y[now, 2],))

Useful shortcut
#!/usr/bin/env	python3
#	-*-	coding:	utf-8	-*-
"""
reviewed	1/2024
@author:	pcn
Python	3.11
Description:	demoSpiral3D.py		demonstrate	3D	graphics.	Demonstrate	animation.
"""
import	numpy	as	np;	import	matplotlib.pyplot	as	plt;	plt.close('all')
from	mpl_toolkits.mplot3d	import	Axes3D #	import	3D	plotting	tool

fig	=	plt.figure()
ax	=	fig.add_subplot(111,	projection='3d')#	create	3D	plotting	object	attached	to	figure
t	=	np.linspace(0,	5*np.pi,	101) #	define	parameter	for	parametric	plot

ax.plot3D(t	*	np.cos(t),	t	*	np.sin(t),	t) #	generate	3D	plot

#	onward	to	animation
"""Easy	matplotlib	animation.
https://github.com/jwkvam/celluloid/blob/master/celluloid.py	:"""
from	celluloid	import	Camera
fig	=	plt.figure()
ax	=	fig.add_subplot(111,	projection='3d')#	create	3D	plotting	object	attached	to	figure
ax.set_aspect('equal')																							#	distortion?	no	thanks
camera	=	Camera(fig)

for	thist	in	t:
				ax.plot3D(t	*	np.cos(t),	t	*	np.sin(t),	t,	'b') #	same	in	every	frame
				ax.plot3D([thist	*	np.cos(thist)],	[thist	*	np.sin(thist)],	[thist],	'or')
				camera.snap()
animation	=	camera.animate(interval=100,	blit=True)

1

The best

The best questions are ones that you ask yourself.
The best images, still or animated, are ones you make for yourself (or with your partner).
Go ahead.

<-- Princeton Univ Press, August 2021

Pine, D J. Introduction to Python for science and
engineering. CRC Press 2019.
J W-B Lin, H Aizenman. E M Cartas Espinel,
K Gunnerson, and J Liu, Introduction to
Python programming for scientists and
engineers. Cambridge Univ. Press 2022.
C Hill, Learning scientific programming with
Python. Cambridge Univ. Press 2020.

