
Phil Nelson
University of 
Pennsylvania

Inference in biological 
physics

Image courtesy Mark Bates.

For these slides see: 
www.physics.upenn.edu/~pcn

http://www.physics.upenn.edu/~pcn


Is basic research important?



Is basic research important?

Spike protein conformations. Classes of images extracted from many copies of S from the 
severe acute respiratory syndrome coronavirus (SARS-CoV-1). Left: Natural form. Two quite 
different conformations are seen. Right: Corresponding images from a mutant designed to 
stabilize the pre-fusion conformation.  Pallesen, J, et al. 2017. Proc. Natl. Acad. Sci. USA, 114.



Is basic research important?

Spike protein conformations. Classes of images extracted from many copies of S from the 
severe acute respiratory syndrome coronavirus (SARS-CoV-1). Left: Natural form. Two quite 
different conformations are seen. Right: Corresponding images from a mutant designed to 
stabilize the pre-fusion conformation.  Pallesen, J, et al. 2017. Proc. Natl. Acad. Sci. USA, 114.

How did analogous images get made just a few weeks after SARS-CoV2 sequence 
was found? It takes forever to crystallize a new protein! And anyway, crystallography 
can't handle conformational heterogeneity – which is the whole point here.



Is basic research important?

Spike protein conformations. Classes of images extracted from many copies of S from the 
severe acute respiratory syndrome coronavirus (SARS-CoV-1). Left: Natural form. Two quite 
different conformations are seen. Right: Corresponding images from a mutant designed to 
stabilize the pre-fusion conformation.  Pallesen, J, et al. 2017. Proc. Natl. Acad. Sci. USA, 114.

How did analogous images get made just a few weeks after SARS-CoV2 sequence 
was found? It takes forever to crystallize a new protein! And anyway, crystallography 
can't handle conformational heterogeneity – which is the whole point here.



Part 1

1. Inference
2. Superresolution
3. Changepoint
4. Ribosome
5. CryoEM



Part 1

Conditional probability tells us what we can conclude from data,

1. Inference
2. Superresolution
3. Changepoint
4. Ribosome
5. CryoEM



Part 1

Conditional probability tells us what we can conclude from data,
and

1. Inference
2. Superresolution
3. Changepoint
4. Ribosome
5. CryoEM



Part 1

Conditional probability tells us what we can conclude from data,
and
we live in a world with boatloads of data,

1. Inference
2. Superresolution
3. Changepoint
4. Ribosome
5. CryoEM



Part 1

Conditional probability tells us what we can conclude from data,
and
we live in a world with boatloads of data,
but

1. Inference
2. Superresolution
3. Changepoint
4. Ribosome
5. CryoEM



Part 1

Conditional probability tells us what we can conclude from data,
and
we live in a world with boatloads of data,
but
conditional probability is not hardwired into our intuition,

1. Inference
2. Superresolution
3. Changepoint
4. Ribosome
5. CryoEM



Part 1

Conditional probability tells us what we can conclude from data,
and
we live in a world with boatloads of data,
but
conditional probability is not hardwired into our intuition,
so

1. Inference
2. Superresolution
3. Changepoint
4. Ribosome
5. CryoEM



Part 1

Conditional probability tells us what we can conclude from data,
and
we live in a world with boatloads of data,
but
conditional probability is not hardwired into our intuition,
so
we need to systematize it via the Bayes formula.
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men

mortal

*
In classical logic it’s fairly easy to spot errors of inference.

Suppose I stood here and said “all men are mortal; Socrates is mortal; 
therefore Socrates is a man.”

But what if I said “92.7% of all men are mortal...” Suddenly we find such 
questions tricky.
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Work it out
We are asked for P(sick|+) = B/(B+D).

A=Sick, –

B=Sick, +

C=Healthy, –

D=Healthy, +

But what we were given was P(+|sick) = B/(A+B).
These are not the same thing: they have different 
denominators. To get one from the other we need some 
more information:

B
B+D = B

A+B ⇥ A+B
B+D

Posterior 
estimate
(desired)

Prior
estimate
(given, 0.3%)

Likelihood
(given, 50%)

Still need this

P(sick|+) = P(+|sick)⇥ P(sick)

P(+)

A=Sick, –

B=Sick, +

C=Healthy, –

D=Healthy, +
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In words

“The probability that X is true given the data”
is

“The probability that the data you did 
observe would have been observed in a 
world where X is true”

times
“The prior probability of X”

and
“A normalization factor.”

P(X|observed data) = P(data|X)
P(X)

P(data)
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P(+) = B +D

=
B

A+B
(A+B) +

D
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Finish working it out

A=Sick, –

B=Sick, +

C=Healthy, –

D=Healthy, +

Is that last factor really important?
P(sick) was given, but we also need:

P(+) = B +D

=
B

A+B
(A+B) +

D

C +D
(C +D)

= P(+|sick)P(sick) + P(+|healthy)P(healthy)
= (0.5)(0.003) + (0.03)(0.997) ⇡ 0.03

Bayes Formula:

P(sick|+) = P(+|sick)⇥ P(sick)

P(+)

Yes, it’s important: in this made-up 
example a positive test result means only 
a 5% chance you’re sick. Not 97%.

P(sick)

P(+)
⇡ 0.003

0.03
⇡ 0.1
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Part 2

You can specifically label molecules of interest,
and
you can watch them going about their cellular business, in video,
but
everything is blurred out to 200nm by diffraction,
so
how can you observe nanometer-scale motions and structures?
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How does one measure myosin steps to within a few nm accuracy using visible 
light? The diffraction-limited spot is at least 200 nm wide!
The key point is to realize that although we cannot resolve two spots closer than 
this, sometimes all we want is to detect motion of one spot.
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How does one measure myosin steps to within a few nm accuracy using visible 
light? The diffraction-limited spot is at least 200 nm wide!
The key point is to realize that although we cannot resolve two spots closer than 
this, sometimes all we want is to detect motion of one spot.

 F.I.O.N.A.

Fluorescence Imaging at One Nanometer 
Accuracy... but what principle does it rest on? 
Can it be improved?

Superresolution microscopy
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Its log is simple:

lnP(x⇤ | x1, . . . , xM ) =
MX

i=1

⇥
� 1

2 ln(2⇡�
2)� (xi � x⇤)

2/(2�2)
⇤
.

We wish to maximize this function over x⇤, holding � and all the data {x1, . . . , xM}
fixed. The beauty of this approach is that it can be generalized to include a
more accurate point-spread function, background, etc.
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From P. Nelson, From Photon to Neuron: Light, Imaging, Vision (Princeton, 2017).

Same principle, with 
some extra realism: 
Even with real-world 
complications you can 
get not only sub-
diffraction, but even 
sub-pixel resolution, by 
maximizing likelihood.
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But usually we want an image, something a lot more structured than one point of light.

P. Nelson, Physical models of living systems (2/e, 2022)
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Part 3

We’d like to know the spatial orientation of a molecule in real time,
and
polarized TIRF microscopy can deliver that information,
but
a cruel tradeoff must be made between orientation accuracy and time 
resolution,
so
we need to find the changepoints in order to optimize that tradeoff.



Myosin V stepping
Defects in myosin V are associated with human immunological and neurological disorders.

We’d like to know things like: How does it walk? What are the steps in the kinetic 
pathway? What is the geometry of each state?
One classic approach is to monitor the position in space of a marker (e.g. a bead) attached 
to the motor. But this does not address the geometry of each state.

JF Beausang, Yale Goldman, PN



Myosin V stepping

The approach I’ll discuss involves attaching a 
bifunctional fluorescent label to one lever arm. The 
label has a dipole moment whose orientation in 
space reflects that of the arm.

Defects in myosin V are associated with human immunological and neurological disorders.

We’d like to know things like: How does it walk? What are the steps in the kinetic 
pathway? What is the geometry of each state?
One classic approach is to monitor the position in space of a marker (e.g. a bead) attached 
to the motor. But this does not address the geometry of each state.

JF Beausang, Yale Goldman, PN



Fluorescence illumination by the evanescent wave eliminates a lot of noise, and 
importantly, maintains the polarization of the incident light.
To read out the orientation, we send in polarized light and see how many fluorescence 
photons, in each polarization, emerge. In this experiment a total of 8 different 
incoming polarizations was used.

Polarized total internal reflection 
fluorescence microscopy
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pol-TIRF setup

For each of the 8 incoming beams, outgoing photons were analyzed into 2 
polarizations, for a total fo 16 channels.



Previous state of the art

JN Forkey et al. Nature 2003

For our purposes, the upshot is that: We need to know the arrival rates of photons in 
each of several channels. Once we’ve got that, then we can use quantum mechanics to 
determine the orientation of the molecule in space.
Unfortunately, existing analyses gave noisy rate determinations. That in turn led to 
poor determinations of orientation – garbage in/garbage out.

Left: binned photon counts in 8 channels.
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Previous state of the art

JN Forkey et al. Nature 2003

Noisy rate estimates lead to noisy orientation estimates. 
Also, a state transition will generally happen in the middle of a time bin, spoiling our 
estimation of rates in that entire bin.
Moreover, you could easily miss a short-lived state -- e.g. the elusive diffusive-search 
step (if it exists). Can we do better?

For our purposes, the upshot is that: We need to know the arrival rates of photons in 
each of several channels. Once we’ve got that, then we can use quantum mechanics to 
determine the orientation of the molecule in space.
Unfortunately, existing analyses gave noisy rate determinations. That in turn led to 
poor determinations of orientation – garbage in/garbage out.

Right: Polar and azimuthal 
angles of the fluorescent label, 
inferred from data on the left. 

Left: binned photon counts in 8 channels.
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The problem is that only a few thousand photons can be observed – makes it hard to 
estimate the rate:

So we have a tough choice: 
Longer time bins degrade our ability to observe transient states, get kinetics, 
etc.
Shorter time bins give worse relative standard deviation for our rate estimate.

Can we evade the cruel logic of photon statistics? If only we could find the 
changepoints first, then use the entire durations between consecutive changepoints 
as our windows–the biggest choice possible! That would lead to the best possible 
estimate of photon rates, and hence the best possible estimate of orientation.
But seems a chicken-and-egg problem: I need changepoints to find orientation, but 
the changepoints are themselves defined as changes in... orientation!



Here is some real experimental data. For simplicity, we look at only two channels. Only 
1200 photons were observed in each.
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information. Something magical happens if 
instead of binning, we just plot photon arrival 
time versus photon sequence number. Despite 
some ripples from Poisson statistics, suddenly it’s 
obvious that each trace has a sharp changepoint, 
and moreover that the two changepoints found 
independently in this way are simultaneous. 
(A similar approach in the context of FRET was 
pioneered by Haw Yang.)

JF Beausang, YE Goldman, and PN, Meth. Enzymol. 487:431 (2011).
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Left: Realistic, but fake, data, shown in traditional 
binned form and in the improved version.

JF Beausang, YE Goldman, and PN, Meth. Enzymol. 487:431 (2011).
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Below: Likelihood function for placement of the 
changepoint. Dashed line, maximum-likelihood 
point. Black triangle: Actual changepoint used to 
generate the simulated data. The analysis found a 
robust changepoint, even though there were a total 
of just 200 photons in the entire dataset.



Payoff
Oh, yes--it also works on multiple-channel data, data with 
many different changepoints...
Previously, people would take data from multiple 
polarizations, bin it, and pipe the inferred intensities into a 
maximum-likelihood estimator of the orientation of the 
fluorophore. 
That procedure leads to the rather noisy dots shown here. 
One problem is that if a transition happens in the middle of a 
time bin, then the inferred orientation in that time bin can be 
crazy.
Our approach first finds changepoints, shown as dashed 
lines.
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fluorophore. 
That procedure leads to the rather noisy dots shown here. 
One problem is that if a transition happens in the middle of a 
time bin, then the inferred orientation in that time bin can be 
crazy.
Our approach first finds changepoints, shown as dashed 
lines.

Then the solid lines shown are the inferred 
orientations of the probe molecule during 
successive states defined by changepoint 
analysis. We see a nice alternating stride in φ.
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Payoff
Oh, yes--it also works on multiple-channel data, data with 
many different changepoints...
Previously, people would take data from multiple 
polarizations, bin it, and pipe the inferred intensities into a 
maximum-likelihood estimator of the orientation of the 
fluorophore. 
That procedure leads to the rather noisy dots shown here. 
One problem is that if a transition happens in the middle of a 
time bin, then the inferred orientation in that time bin can be 
crazy.
Our approach first finds changepoints, shown as dashed 
lines.

Then the solid lines shown are the inferred 
orientations of the probe molecule during 
successive states defined by changepoint 
analysis. We see a nice alternating stride in φ.

We got a 50-fold improvement in time resolution for 
finding changepoints, compared to the binning 
method, without changing the apparatus.

JF Beausang, YE Goldman, and PN, Meth. Enzymol. (2011); JF Beausang, DY Shroder, PN, and YE Goldman, Biophys J (2013).



Summary Part 3
✴When you only get a million 

photons, you’d better make every 
photon count.

✴A simple maximum-likelihood 
analysis accomplishes this.

✴In the context of TIRF it can 
dramatically improve the tradeoff 
between time resolution and 
accuracy.

JF Beausang, DY Shroder, PN, and YE 
Goldman, Biophys J (2013).
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✴When you only get a million 

photons, you’d better make every 
photon count.

✴A simple maximum-likelihood 
analysis accomplishes this.

✴In the context of TIRF it can 
dramatically improve the tradeoff 
between time resolution and 
accuracy.

✴That can help you find substeps, 
like the diffusive-search step in 
myosin-V’s kinetic scheme.

JF Beausang, DY Shroder, PN, and YE 
Goldman, Biophys J (2013).
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Part 4

Sometimes your model's prediction is a probability distribution (really 
always); 
and
Single-molecule biophysical techniques give you individual data points 
for individual molecular transactions; 
but
Many of us grew up binning data, then least-squares fitting it, which 
destroys some of its information content, distorts relative importance of 
different parts of the data, etc. 
so
The fact that that that's often unnecessary is potentially interesting, 
even beyond the scope of today's applications.
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The ribosome has various "proofreading" steps. They've been studied 
closely in bacterial ribosome – not so much yet in eukaryotes.
There are ~7000 genetically transmitted disorders, ~ 11% of which are 
nonsense mutations like cystic fibrosis (CF), Duchenne muscular 
dystrophy (DMD), etc. which specifically involve transition of a valid 
codon to a "stop" codon. 
Symptoms in patients can be alleviated even with just small amount of 
full length protein.
Drugs such as Ataluren hold promise for helping ribosome to chug 
through this particular "stop." How do they work? 
 
I won't answer, but it would be good to know as much as possible about 
the working cycle of the eukaryotic ribosome.

Shalev, M. and Baasov, T. (2014) Med Chem. Commun,  5(8):1092-1105. Loudon, J.A. (2013) J Bioanal 
Biomed, 5:079-096. Nadeem Siddiqui, and Nahum Sonenberg PNAS 2016;113:12353-12355
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Experiment and puzzle

Single-molecule Fluorescence Resonance Energy 
Transfer (smFRET) tells exactly when two 
specifically labeled molecules are spatially close 
(high transfer) or not (low transfer). Hundreds, 
even thousands of molecules can be 
simultaneously monitored yielding individual 
time courses.
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Experiment and puzzle

Schematic showing ribosome assembled on an mRNA 
with a UGA (stop) codon positioned in the A-site of 
the ribosome. To visualize every binding event, my 
colleagues made a FRET pair consisting of ternary 
complex in solution with a donor fluorophore and 
already-incorporated tRNA in the ribosome with an 
acceptor fluorophore in the P-site.

Single-molecule Fluorescence Resonance Energy 
Transfer (smFRET) tells exactly when two 
specifically labeled molecules are spatially close 
(high transfer) or not (low transfer). Hundreds, 
even thousands of molecules can be 
simultaneously monitored yielding individual 
time courses.



Experiment
tRNA is supplied solution in the form of 
"ternary complex," or "TC." It  samples the 
A-site of ribosome, binding transiently 
until eventually it is (wrongly) bound 
stably. FRET lets us see individual binding 
and unbinding events with high time 
resolution.

Experiment by Clark Fritsch, Arpan Bhattacharya, Martin Ng, Hong Li, Barry S. Cooperman, Yale E. Goldman
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tRNA is supplied solution in the form of 
"ternary complex," or "TC." It  samples the 
A-site of ribosome, binding transiently 
until eventually it is (wrongly) bound 
stably. FRET lets us see individual binding 
and unbinding events with high time 
resolution.

Experiment by Clark Fritsch, Arpan Bhattacharya, Martin Ng, Hong Li, Barry S. Cooperman, Yale E. Goldman
Time [s]

Representative single-molecule 
trace collected to study 
eukaryotic tRNA selection on 
ribosomes programmed on a 
near-cognate mRNA. 

a.u.
donor fluorescence

acceptor fluorescenceℰFRET



Uh-oh

In the simplest model, of course initial binding should be faster if ternary complex 
(TC) is more abundant. But every binding event is predicted to be independent of 
every other one, and in particular:

The distribution of waiting times to bind near-cognate TC should be the same for 
every attempt.
The distribution of the number of attempts before stable binding should be 
independent of TC concentration.



Uh-oh

In the simplest model, of course initial binding should be faster if ternary complex 
(TC) is more abundant. But every binding event is predicted to be independent of 
every other one, and in particular:

The distribution of waiting times to bind near-cognate TC should be the same for 
every attempt.
The distribution of the number of attempts before stable binding should be 
independent of TC concentration.

Both of those predictions were found to be false.
•The distribution of waiting times for near-cognate TC to bind the first time (single 

exponential) was qualitatively different from subsequent times (double exponential).
•The mean number of attempts before stable binding of near-cognate TC was an 

increasing function of ternary complex concentration.



Revised proposal for kinetic cycle

Hypothesize a new side-branch 
with a dead-end, as the main 
route for the tentatively bound 
ternary complex to be rejected 
from RT. 
I won't attempt to argue for this 
model; I will try to work out its 
experimental signatures.

Crucially, hypothesized state R1 has the the 
same FRET (zero) as the initial R0. 
Similarly, the hypothesized state RU has 
the same FRET (high) as RT.

Instead of:
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with a dead-end, as the main 
route for the tentatively bound 
ternary complex to be rejected 
from RT. 
I won't attempt to argue for this 
model; I will try to work out its 
experimental signatures.

Crucially, hypothesized state R1 has the the 
same FRET (zero) as the initial R0. 
Similarly, the hypothesized state RU has 
the same FRET (high) as RT.

Instead of:

zero-FRET (unbound) states

higher-FRET (bound) states
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On fitting
The power of single-molecule methods is that instead of ensemble-averaged 
data, we have the actual duration of every binding event, thousands of them (and 
similarly unbinding events).

If we can get a model to predict the probability density function of those 
durations in terms of a few parameters, then we can compute the likelihood of an 
experimental dataset in terms of those parameters, that is, the probability that the 
data we did observe would have been observed in a world with certain values of 
the parameters.

Then we maximize over parameters, holding the data fixed, to get the values best 
supported by the data.

It's easy in the familiar case of a simple mass-action binding model, in which the 
probability per time for binding ternary complex is a rate constant times the 
concentration. PN, Physical models of living systems 2nd ed. (2022).



Initial binding

Kou et al, J. Phys. Chem. B 
2005, 109, 19068--19081.
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First binding
In the model, first binding is a Michaelis–Menten type process. Luckily smart
people have already worked out the PDF of completion times: Let

B0 = (1 + k�1 + k2)/2, A =
p
(B0)2 � 1k2.

}(t1) =
1k2
2A

e(A�B0)t1
�
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This distribution can be used to define a likelihood function that determines k1
and k2 from t1 data. We have several sets of t1 values, each with a di↵erent,
but known, [TC].
[First unbinding is easier—no concentration dependence.]
Subsequent binding
Every unbinding brings us to state R1. Because RT and RU are both high-
FRET states, we want the distribution of first-passage times to either one.
The probability density function (PDF) is just a weighted sum of two exponen-
tial distributions:

}(t2) = Ak0[TC]e�t2k0[TC] + (1�A)(k2 + k3[TC])e�t2(k2 + k3[TC]),

where the weighting is A = k2/(k2 + k3[TC]� k0[TC]).
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Right: This PDF is shown for various [TC] and illustrative k values.
Below: It's easy to confirm the result by simulation. "Trust but 
verify."
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[Subsequent binding]

Every unbinding brings us to state R1. Because RT and RU are both 
high-FRET states, we want the distribution of the first-passage time 
to either one. This one I had to work out for myself. 

This time the formulas are too long to decently display, but it comes 
down to convolving two steps for the upper pathway, then finding 
probability per unit time for first arrival at either R1 or RU, given 
that the event is "sampling," that is, known to not be the final 
binding.

We are using all the data in the likelihood function. If we wish, we 
can then look at reduced statistics to get a human-viewable look at 
some aspects of our fit.



So great – we got our model 
to divulge its PDF. Can the 
model actually fit real 
experimental data? It's a tall 
order – lots of data, just a few 
fit parameters to get a global 
fit. – highly overdetermined, 
which means highly 
falsifiable.

Initial binding looks pretty good 
and determines some rate 
constants.

Clark Fritsch, et al., submitted 2023

Results: First-binding waiting time
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Results: Subsequent binding
It's good to have a lot of data, so that we can 
see deep into the telltale tails of the 
distributions – the transition from one 
exponential to the other.

0 20 40 60 80 100 120

time [s]

−6

−5

−4

−3

ln
(P
D
F
×
1
s)

time to initial binding

TC= 9.3nM; N= 820

TC= 15.6nM; N= 1608

TC= 25.0nM; N= 930

TC= 32.5nM; N= 280

TC= 40.0nM; N= 576

50 100 150 200

time [s]

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

time to initial binding

0 10 20 30 40

TC [nM]

0.00

0.05

0.10

0.15

0.20

m
ea
n
ra
te
[1
/s
]

mean rates for:

initial binding

subseq. sampl. bind.

subseq. final bind.

0 1 2 3 4

time [s]

−4

−3

−2

−1

0

ln
(P
D
F
×
1
s)

durations of initial binding

fit excl. t >4.0s; N=335

0 1 2 3

time [s]

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

durations of initial binding

fit excl. t >4.0s; N=335

0 20 40 60 80 100 120

time [s]

−7

−6

−5

−4

−3

−2

ln
(P
D
F
×
1
s)

time to subsequent sampling

TC= 9.3nM; N= 161

TC= 15.6nM; N= 1367

TC= 25.0nM; N= 2584

TC= 40.0nM; N= 2674

20 40 60 80 100

time [s]

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

time to subsequent sampling

10 15 20 25 30 35 40

TC [nM]

0.3

0.4

0.5

0.6

p
ro
b
ze
ro
sa
m
p
li
n
g
ev
en
ts

Psamp(0) versus TC

10 15 20 25 30 35 40

TC [nM]

0.5

1.0

1.5

2.0

2.5

3.0

3.5

�N
sa
m
p
�

mean sampling attempts

k5/106[s−1]

3.2 3.3 3.4 3.5 3.6 3.7 3.8
k6
/1
0
6

4.2
4.3
4.4
4.5
4.6
4.7
4.8

k
7

0.10

0.12

0.14

0.16

0.18

Moreover, bootstrap replicates of the 
experimental data (red) define a cloud of 
credible rate values that excludes infinity and 
hence argues for the hypothesized new state:

Clark Fritsch, et al., submitted 2023

Also highly overdetermined, also looks pretty good, and 
determines more rate constants (green star below).



An acid test
But once we've found our best version of the model, can it also explain other, 
different phenomena that it wasn't trained on? We asked it to predict in detail the 
probability distribution for the number of attempts before stable binding. With no 
additional adjustment we got:

0.0 2.5
Nsamp

°2.5

°2.0

°1.5

°1.0

°0.5

0.0

ln
P

(N
sa

m
p
)

[TC]=9.3 nM

global fit

0 5
Nsamp

°5

°4

°3

°2

°1

0
[TC]=15.6 nM

global fit

0 20
Nsamp

°6

°5

°4

°3

°2

°1

0
[TC]=25 nM

global fit

0 20
Nsamp

°6

°5

°4

°3

°2

°1

0
[TC]=40 nM

global fit

Clark Fritsch, et al., submitted 2023



Part 4: Summary
Let's return to the  the qualitative observed, surprising, phenomena that motivated 
the model:
•The distribution of waiting times for near-cognate TC to bind the first time was 

different from subsequent times. <-- looks pretty good

Clark Fritsch, et al., submitted 2023
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Let's return to the  the qualitative observed, surprising, phenomena that motivated 
the model:
•The distribution of waiting times for near-cognate TC to bind the first time was 

different from subsequent times. <-- looks pretty good

Clark Fritsch, et al., submitted 2023
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Part 5

We've can improve noisy images by aligning and averaging, 
and
that procedure has an impeccable probabilistic foundation,
but
it's not obvious how to align images at ultra-low SNR,
so
we need  to deploy slightly heavier artillery, following F. Sigworth 1999.

1. Inference
2. Superresolution
3. Changepoint
4. Ribosome
5. CryoEM
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2011:

"The revolution will not be 
crystallized"

https://www.nobelprize.org/prizes/chemistry/2017/advanced-information/

2011 2016

https://www.nobelprize.org/prizes/chemistry/2017/advanced-information/


When you try to image a single molecule, naturally your contrast is very low–
lots of background.
Here are 3 examples of the raw images taken from the thousands in a typical 
cryo-EM setup. There's something hiding here. It's not a tiger, but we still need 
to find it.

A challenge

Scheres, S. H. W., et al. (2005). Journal of Molecular Biology, 348(1), 139–149. 
http://doi.org/10.1016/j.jmb.2005.02.031



1d Warmup

PN, Physical models of living systems (2/e, 2022)

Here are three "objects": First with sharp edges, second and third with softer edges:

As intensity:

As raster:



Reasonable but doesn't work (1D)
"If you've got many imprecise measurements, average them." (Wisdom of crowds)
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problem. To 
reduce noise by 
averaging, we 
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to align the 
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Unfair advantage

One approach is to throw it all at some huge deep neural net and hope something useful 
comes out. That's "data-driven" approach, and it's all the rage.

But we can do much better if we know something about the biology and physics of what 
generated those data. Let's exploit any unfair advantage we may have. What we know is that:

Each pixel has shot noise independent of other pixels.
Each image has been rigidly translated by an unknown amount relative to every 
other image but otherwise represents the same PDF for electron arrivals.

Why is this information so helpful? Because in 1D, the right shift to align each instance 
with the others is a single number, determined globally by the entire image, which means 
we have a lot of data to determine it to good accuracy.

“Physics”



Cross-correlation: 1D
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Cross-correlation: 1D
The same 1500 
instances as before.

We can translate each 
instance of the noisy 
data by an amount that 
optimizes its correlation 
with a "template," then 
average the instances 
point by point.
This is more successful 
than naive averaging, 
though still not great at 
low SNR (soon we will 
do better).
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In 2D, and even moreso in 3D, jitter also includes random rotations. Again it's a chicken/egg problem. To 
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the noise!
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Cross-correlation: 2D
We translate each instance of the noisy data by an amount that optimizes its cross-correlation with 
a template, for each of many possible rotations of the template. Then we choose the rotation that gave 
the biggest peak in the cross-correlation function. Then we shift and rotate each data instance to 
undo the shift and rotation we found, prior to averaging the instances point by point.
This is far more successful than naive averaging – but still not great at low SNR.
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Back to the unfair advantage

Again:
Each pixel has shot noise independent of other pixels.
Each image has been rigidly translated (and in 2D also rotated) relative to every other 
image, but otherwise represents the same PDF for electron arrivals.

Why is this information so helpful? In 1D, the right shift to align each instance with the others 
is a single number, determined globally by the entire image, which means we have a lot of data to 
determine it to good accuracy.
In a succinct formula, our generative data model is: 

and we wish to infer the true image  from a collection of experimental images masked by 
noise . It's another Bayesian inference problem.

exp. image = Shiftq( ⃗A ) + ⃗Ξ
⃗A

⃗Ξ

We saw how to pluck information out of a sea of noise with the help of alignment by cross-
correlation. That's great, but:
Why did it work as well as it did? Is there some principled foundation?
Why didn't it work better than that, and what alternative might outperform it?
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Sigworth's insight
was to realize that:

The alignment of each image ( ) is itself a random variable (i.e. unknown).q
So actually we should be asking about its probability distribution, which is not 
fully represented by any single "best" choice. 

Not surprisingly, that posterior involves the cross-correlation.

But we don't really care about the alignment; all we want for our science is the 
best possible estimate of the true image, given the data.

In jargon: We want the posterior distribution of images given the data, 
"marginalized" over the alignment.

exp. image = Shiftq( ⃗A ) + ⃗Ξ

FJ Sigworth (1998). Journal of Structural Biology, 122(3), 328–339.
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What to optimize

qi, φi = unknown shift and rotation of experimental image i, both uninteresting  
"nuisance variables" so we marginalized them. 

don't need this constant

likelihood factorizes prior factorizes

So the whole integral factorizes! Not hard to estimate these integrals one by one, then optimize over A.

A = unknown image pixel values

A lot of gaussians building up a cross-correlation



1D image reconstructions obtained by 
maximizing posterior probability 

PCN, https://repository.upenn.edu/physics_papers/656/ ;
https://www.physics.upenn.edu/biophys/PMLS2e/

Applying the method the same 1500 simulated data instances as before gives much more 
successful reconstruction of the underlying "image" then the cross-correlation 
method at low SNR:
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1D image reconstructions obtained by 
maximizing posterior probability 

It's incredible when you recall how terrible the individual "images" looked!
PCN, https://repository.upenn.edu/physics_papers/656/ ;
https://www.physics.upenn.edu/biophys/PMLS2e/

Applying the method the same 1500 simulated data instances as before gives much more 
successful reconstruction of the underlying "image" then the cross-correlation 
method at low SNR:

https://repository.upenn.edu/physics_papers/656/


2D image reconstructions obtained by 
maximizing posterior probability

Much better than cross-correlation at low SNR. In particular, even at the lowest SNR the artifact 
found earlier is absent, even though the algorithm used the same data and started with the same 
initial guess (template). Later refinements grew into the RELION algorithm and successors 
cryoSPARC, cisTEM, et al.

PCN, Physical models of living systems (2/e, 2022); Implementing an algorithm due to FJ Sigworth (1998). Journal of 
Structural Biology, 122(3), 328–339.

Applying the method to the same 1500 simulated data instances as before:



2D image reconstructions obtained by 
maximizing posterior probability

Much better than cross-correlation at low SNR. In particular, even at the lowest SNR the artifact 
found earlier is absent, even though the algorithm used the same data and started with the same 
initial guess (template). Later refinements grew into the RELION algorithm and successors 
cryoSPARC, cisTEM, et al.

PCN, Physical models of living systems (2/e, 2022); Implementing an algorithm due to FJ Sigworth (1998). Journal of 
Structural Biology, 122(3), 328–339.

Applying the method to the same 1500 simulated data instances as before:
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Summary part 5

Bad: Naively average many noisy images.

Better: For each noisy experimental image, select 
the one rigid motion that best aligns it to a guess; 
then average over all experimental images.

Much better: For each experimental image, instead 
of one winner make a probability distribution over 
all rigid motions and find the weighted average; 
then also average over experimental images.

[To deal with sample heterogeneity, add another discrete variable allowing each 
image to be probabilistically assigned to one of several conformational classes.]
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Medical test

Enzyme 
kinetics

  Bayes 
formula

Theory can cut across apparently different kinds of experiment, offering useful methods to 
one domain from another without having to reinvent everything. Physicists are pretty 
good at this – when we're part of a team involving life scientists.

Full circle

Superresolution
Changepoint

Analysis

cryoEM

A physical idea – photon 
theory – helped us to extract 
what was going on.

A physical idea – 
first-passage time – 
helped us to extract 
what was going on.

A physical idea – 
additive shot noise 
plus rigid motion of a 
well-defined object – 
helped us to extract 
the structure.

**
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Go long

Some of the ideas we have encountered are things that 
many scientists describe as “beautiful.” What does 
that mean? 

There are as many definitions as there are scientists, 
but I think many would agree that part of the answer 
is that a beautiful physical idea is surprising yet 
inevitable; it may also be simple yet unexpectedly 
general. 

For example, maximizing posterior probability has those 
qualities. We've seen how it is a general framework for 
many kinds of scientific inference, replacing and 
extending a grab-bag of seemingly unrelated methods.

P(X|observed data) = P(data|X)
P(X)

P(data)



Thanks and further reading

University of Pennsylvania

For these slides see: 
www.physics.upenn.edu/~pcn

NSF CMMI

For posterior-maximization applied to 
optical superresolution: 
P. Nelson, From Photon to Neuron
Princeton Univ. Press.

For posterior-maximization applied to 
cryo-EM: 
P. Nelson, Physical models of living systems: 
Probability, simulation, dynamics. Second Ed.
https://www.physics.upenn.edu/biophys/PMLS2e/

Also
Jesse Kinder and P. Nelson, Student’s guide 
to Python for physical modeling. Second Ed.
Princeton Univ Press, August 2021.

John Beausang, Clark 
Fritsch; Yale Goldman.
Sophie Lohmann, Monika 
Makurath, Fereshteh 
Memarian; Fred Sigworth.

http://www.physics.upenn.edu/~pcn




Details

150x180µm recording spot 
= 5x6 array of electrodes spaced 30µm (similar to RGC spacing).

[Data taken at 10kHz. Noise ~30µV. Big spikes ~400µV. Others go all the 
way down to the noise floor. Prior to analysis, filter out slow baseline drift. 
Also apply a spatial decorrelating filter, deduced from statistics of noise, to 
sharpen the “image” spatially.] 

Back

back



Adaptive decorrelation, (temporal)

The retina dynamically adjusts its signal 
processing in response to statistical 
properties of recently-viewed scenes, as 
predicted on information-theoretic 
grounds.

Here a particular OFF ganglion cell maintains a 
constant amount of temporal correlation in its 
output, regardless of the amount of correlation 
in its visual stimulus.
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Also at the multi-cell level, after 
adaptation the degree of 
correlation between any two 
ganglion cells is nearly unchanged 
when we change the correlation 
strength in the stimulus.

Adaptive decorrelation, (spatial)
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VI.C.2. Optimizing over amplitude

Suppose that we can also approximate the prior P ampl(A;µ) as a Gaussian.19 The advantage

of this assumption, combined with assumption (1), is that we can now optimize over amplitude

analytically (i.e. fast).

Thus

log P ampl(A;µ) = −1
2 log(2πσ2

µ) − (A−γµ)2

2σ2
µ

We estimate γµ and σµ from data by computing the mean and variance of the amplitudes of

each of the exemplars contributing to cluster µ.

Let’s use a uniform prior20 for P time and see how the 1-spike log-probability function depends

on amplitude, for fixed time shift t1 and cell type µ. Let V⃗ (t) be the observed waveform and

F⃗µ(t) a template.21 Recall that the boldface vectors above combine channel and time indices.

Thus

[δV]αt = Vα(t) − AFµα(t − t1)

Eqn. 2 now becomes22

logP1(µ,A, t1) = log Kµ − (A−γµ)2

2σ2
µ

− 1
2(δV)tC−1(δV) (7)

Here Kµ = P cell(µ)P time(t1)
(

2πσ2
µ

)

−1/2
. (We dropped some factors independent of µ.)

This quantity is maximal at A∗, where

0 = −A∗−γµ

σ2
µ

+
∑

α,t,β,t′

Fµα(t − t1)C
−1
α,t;β,t′(Vβ(t′) − A∗Fµβ(t′ − t1)) (8)

This equation is linear in A and hence trivial to solve. Define the adjoint

Gµβ(τ) =
∑

α,t̂

Fµα(t̂ )Sα,β(τ − t̂ )

Then let

∥Fµ∥
2 =

∑

β,t′′

Gµβ(t′′)Fµβ(t′′)

19 cmultifit.m checks post hoc if this is true, and updates the means and variances based on the fit it found. I’ll
also assume that these are all independent Gaussians for each µ; this too could be checked by cmultifit.m,
but hasn’t been yet. Gaussianity is thought by some to be a bad approximation [Shoham03], but on closer
inspection I see they’re just referring to amplitude changes during a burst [Fee et al].

20 It would not be hard to replace this by a no-refractory-violations prior, if we upgrade the analysis of collisions
to a Lewicki94 approach: Just before the final choice between competing spike train interpretations, clobber
the ones with violations.

21 Units: F⃗ and V⃗ have units µV. A is dimensionless.
22 Paninski’s lecture notes 2007, eqn. 3, is essentially the same but is used in a very different framework.

which is a Gaussian in A. So it’s easy to marginalize over A: just complete the square!   
[Here                                                              doesn’t depend on A.]Kµ = Pcell(µ)Ptime(t1)(2⇡�2

µ)
�1/2

of type    . Define the deviation

Then the probability that one spike, of type     ,  is present is
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Let          be measured voltage, electrode     and             be template waveform V�(t) � Fµ�(t)
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[Nuts and Bolts]

Next, we sweep over a range of t to find the best value of likelihood ratio for this spike 
type. [We only check t values close to the peak of the event.]
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[Nuts and Bolts]

Next, we sweep over a range of t to find the best value of likelihood ratio for this spike 
type. [We only check t values close to the peak of the event.]

Then we choose the winner among spike types.
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but hasn’t been yet. Gaussianity is thought by some to be a bad approximation [Shoham03], but on closer
inspection I see they’re just referring to amplitude changes during a burst [Fee et al].

20 It would not be hard to replace this by a no-refractory-violations prior, if we upgrade the analysis of collisions
to a Lewicki94 approach: Just before the final choice between competing spike train interpretations, clobber
the ones with violations.

21 Units: F⃗ and V⃗ have units µV. A is dimensionless.
22 Paninski’s lecture notes 2007, eqn. 3, is essentially the same but is used in a very different framework.
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[Nuts and Bolts]

Next, we sweep over a range of t to find the best value of likelihood ratio for this spike 
type. [We only check t values close to the peak of the event.]

Then we choose the winner among spike types.

If the winner’s likelihood ratio is good enough (bigger than about 1), we say there’s a 
spike here. That’s an absolute criterion. We know we’re done when this test fails.
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Let’s use a uniform prior20 for P time and see how the 1-spike log-probability function depends

on amplitude, for fixed time shift t1 and cell type µ. Let V⃗ (t) be the observed waveform and
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. (We dropped some factors independent of µ.)
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19 cmultifit.m checks post hoc if this is true, and updates the means and variances based on the fit it found. I’ll
also assume that these are all independent Gaussians for each µ; this too could be checked by cmultifit.m,
but hasn’t been yet. Gaussianity is thought by some to be a bad approximation [Shoham03], but on closer
inspection I see they’re just referring to amplitude changes during a burst [Fee et al].

20 It would not be hard to replace this by a no-refractory-violations prior, if we upgrade the analysis of collisions
to a Lewicki94 approach: Just before the final choice between competing spike train interpretations, clobber
the ones with violations.

21 Units: F⃗ and V⃗ have units µV. A is dimensionless.
22 Paninski’s lecture notes 2007, eqn. 3, is essentially the same but is used in a very different framework.

which is a Gaussian in A. So it’s easy to marginalize over A: just complete the square!   
[Here                                                              doesn’t depend on A.]Kµ = Pcell(µ)Ptime(t1)(2⇡�2

µ)
�1/2

of type    . Define the deviation

Then the probability that one spike, of type     ,  is present is
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Let          be measured voltage, electrode     and             be template waveform V�(t) � Fµ�(t)
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[Nuts and Bolts: Noise covariance]
Vanilla least-squares fitting is not appropriate for time series, because it assumes that 
every sample is independent of all others--whereas actually, successive samples are 
correlated.
Here is the covariance of one channel with nearby channels (after doing an initial 
spatial filter, which we also obtained from data). 

We see that the selected 
channel is correlated only 
with itself, and it has a simple 
covariance matrix that is easy 
to invert. The inverse 
covariance thus obtained 
defines our correlated 
Gaussian model of the noise.

[Again: The covariance is not 
a delta function, contrary to 
what is assumed in naive 
least-squares fitting.]
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