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Neural Spikes, Identification froma
MultielectrodeArray
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MathematicsSubject Classification8

92C20 Neural biology, 92C05 Biophysics, 92C429

Systems biology, networks10

SynonymsandAbbreviations11

Action potential (Spike); Multi-electrode array (MEA);12

Ordering points to identify the clustering structure13

(OPTICS algorithm); Retinal ganglion cell (RGC);14

Spacetime pixel (Stixel); Spike identification (Spike15

sorting)16

Definitions17

The brain and other neural tissue contain many types of18

cells, notably including neurons, cells that are special-19

ized for information processing and communication.20

The output of most neuron types consists of spikes,21

that is, rapid changes in the electrical potential across22

their outer membrane. Each spike creates a detectable23

disturbance in electric potential in the medium sur- 24

rounding the neuron. Extracellular recording of spikes 25

attempts to detect and analyze those disturbances, a 26

task that is complicated by the fact that an extracellular 27

electrode typically picks up signals from many differ- 28

ent neurons. Such signals must therefore be decom- 29

posed into contributions from each of the underlying 30

neurons, a procedure called spike sorting. Unambigu- 31

ous spike sorting is made easier by the recent avail- 32

ability of large, high-density multi-electrode arrays 33

(MEAs) that simultaneously monitor dozens or even 34

thousands of electrodes. This entry describes a class 35

of methods for sorting MEA data based on Bayes’s 36

formula (“Bayesian” spike sorting methods). 37

Overview 38

The vertebrate retina is a popular model system for 39

neuroscience, in part because it is so amenable to 40

detailed study. Similar recordings can now also be 41

made in other brain areas [2]. However, recordings 42

obtained in this way are useful only if every spike can 43

be correctly assigned to the neuron that generated it 44

(the “spike sorting problem”). Reviews of early work 45

on spike sorting can be found in Lewicki [5] and Quian 46

Quiroga [10]. 47

Spike sorting is possible in principle because each 48

neuron is located at a fixed position relative to each 49

electrode, generating a distinctive pattern of excitation 50

amplitudes on the array of electrodes; also, the ampli- 51

tude and time course of each neuron’s spikes are at 52

least partly similar to each other, and different from 53

those of neighboring neurons. Nevertheless, it is a non- 54

trivial task to determine each of the ideal waveforms 55
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N 2 Neural Spikes, Identification from a Multielectrode Array

(the “templates”), separating them from each other and56

from noise. Moreover, in practice there can be signif-57

icant variation in the spike waveforms from a given58

neuron (for instance in amplitude), complicating the59

task of determining from data which templates are60

present in a sample. That is, spike sorting is a problem61

in probabilistic inference.62

This entry outlines an algorithm that carries out63

this program [9], combining elements from several key64

articles (e.g., [3, 6–8, 11]). Other relevant approaches65

include [4, 12, 13].66

Typical Experiment andData67

All illustrative data were recorded at 10 kHz from68

albino guinea pig retina, presented with a stan-69

dard random visual stimulus. Data were taken with70

a 30-electrode MEA from MultiChannel Systems71

(MCS GmbH, Reutlingen, Germany), covering about72

0:018 mm2 of retina.73

The black curves in Fig. Fig. 1a,b show some repre-74

sentative data, as arrays of graphs each representing a75

time series of recorded potentials on a particular elec-76

trode (or “channel”). In addition to identifiable spikes,77

each electrode has activity that we will collectively78

refer to as “noise.”79

Spike IdentificationMethod80

Figure 2 summarizes the steps described below. After81

data acquisition and high-pass filtering, the data are82

packaged into two types of 3:2 ms clips: (a) “noise83

clips,” in which the potential never crosses a threshold,84

and (b) “spike events,” each surrounding a moment at85

which the potential crosses (falls below) !4 times the86

standard deviation of the potential in the noise clips87

[11]. A small subset of the spike events was extracted88

to speed up the analysis steps shown in dashed lines in89

Fig. Fig. 2.90

Clustering and TemplateBuilding91

Each spike event consists of N D 3:2 ms " 10 kHz "92

5 "6 D 960 numbers, the potentials on a 32"5"6 grid93

of spacetime pixels (“stixels”). Each event involves94

a superposition of spikes drawn from an unknown95

number of classes corresponding to distinct neurons.96

The first step is to find those classes, including charac- 97

terizing each class’s mean waveform and its variability. 98

That is, we must cluster the spike events. 99

A powerful algorithm well suited to this task is 100

OPTICS [1]. Strictly speaking, OPTICS does not clus- 101

ter data; instead, it reorders a given set of points into 102

a single linear sequence in which similar elements are 103

placed close to each other. If a feature such as overall 104

amplitude varies continuously among exemplars, they 105

are grouped together; if that feature is bunched into 106

two or more clusters, they will be visibly separated in 107

the sequence. A human operator can then rapidly scan 108

the ordered list of exemplars and cut it into batches 109

corresponding to distinct clusters [9]. 110

The steps described above produce clusters, that is, 111

collections of similar events (“exemplars” of the clus- 112

ter). The next step is to create a consensus waveform 113

(“template”) summarizing each cluster, and character- 114

ize the deviations from that consensus. Figure Fig. 3 115

shows the result of taking the template to be the point- 116

wise median of the aligned exemplars in a cluster. A 117

particular exemplar may contain other activity besides 118

the spike of interest. Choosing the median prevents 119

such chance collisions from influencing the template, 120

because at any particular stixel most exemplars do not 121

display any additional spike. 122

Individual instances of a particular spike type will 123

deviate from the template. However, at least in guinea 124

pig retina, the most significant sources of variation are 125

(a) additive noise and (b) overall multiplicative rescal- 126

ing of the spike’s amplitude. To quantify (b), for each 127

exemplar the method finds the overall rescaling factor 128

A that optimizes the overlap of that exemplar and the 129

template, then stores the mean and variance of those 130

factors in a lookup table for later use as a prior prob- 131

ability (2). Finally, it logs the number of exemplars in 132

each template, converts to an approximate firing rate, 133

and saves those rates, again for later use as a prior. 134

In the discussion below, the index ! represents tem- 135

plate type; the symbol F!Ix;y;t refers to the potential 136

of template !, on the electrode with address x; y, at 137

time t . 138

SpikeFitting 139

The preceding steps yield templates of various discrete 140

types, indexed by !. Within each type, there are also 141

continuous variations in amplitude, which we express 142

as an overall multiplicative factor A relative to the 143
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Neural Spikes, Identification from a Multielectrode Array 3 N
template; there is also a choice of firing time t1. A144

“spike descriptor” is a specification of all these vari-145

ables. The next stage of spike sorting is to identify what146

spike(s) are present in each event of the full dataset147

(“spike fitting”). The strategy is to evaluate the pos-148

terior probability of each spike descriptor given that149

event, marginalize over uninteresting variations within150

that type (the value of A), then maximize over the151

remaining variables (! and t1).152

Generative Model153

To obtain the posterior probability, one must find for-154

mulas for the prior probability of a spike descriptor,155

and for the likelihood (probability that a particular156

waveform would occur if that spike were present). That157

is, we must specify an explicit generative model of the158

data [8].159

Before writing formulas, we first summarize in160

words the general assumptions of the generative161

model. The assumptions are: (1) Each neuron gener-162

ates spike waveforms that are all identical, apart from163

overall amplitude scale and additive noise; (2) The sig-164

nal (spikes) and the noise are statistically independent165

of each other; (3) The signal and noise sum linearly;166

(4a) The noise, and (4b) the variability of spike ampli-167

tudes, are well described by Gaussian distributions;168

and (5) The prior probability that each neuron will fire169

is independent of its, and the others’, histories, and of170

the stimulus.171

Assumption (4a) implies that the noise is char-172

acterized by a covariance matrix, C. Evaluating C173

empirically on noise clips shows that: It is approx-174

imately diagonal, and translation-invariant, in space;175

and it is approximately stationary, that is, invari-176

ant under time shifts. Moreover, its dependence on177

time is roughly exponential: C.x; y; t I x0; y0; t 0/ D178

"ıx;x0ıy;y0 e!jt!t 0j=# . That is, C is determined by just179

two empirical quantities, the strength " and correla-180

tion time # of the noise. In this formula, ıx;x0 is the181

Kronecker symbol.182

We can now express the content of assumption183

(4a). We regard x; y; t as a single N -valued index184

and describe a noise clip by an N -component vec-185

tor V of potentials. Then the noise model states that186

the probability density function for noise samples is187

Pnoise.V/dN V D .2$/!N=2.det C/!1=2e!VtC!1V=2dN V.188

Fitting a Single Spike 189

Given an event, we wish to know if it contains any 190

spikes, and if so to identify them. First, temporarily 191

suppose that we know that the event contains exactly 192

one spike. We wish to know the spike’s type ! and time 193

of occurrence t1. Our best estimate of these quantities 194

comes from maximizing the posterior probability den- 195

sity P.!; t1jevent/, where “event” is the recorded time 196

series of potentials on each electrode. This density is in 197

turn obtained by marginalizing P.!; t1; Ajevent/ over 198

A, the amplitude scale factor of the spike relative to the 199

template. 200

Using Bayes’s formula, we can obtain P as a 201

constant times a likelihood times a prior, or 202

P.!; t1; Ajevent/dt1dA 203

D KP.eventj!; t1; A/P.!; t1; A/dt1dA ; (1) 204

where K is independent of !; A; t1. The differen- 205

tial dAdt1 reminds us that P is a probability density 206

function, with units s!1. 207

The likelihood function describes the distribution of 208

actual observations given the ideal spike. The assump- 209

tions outlined earlier amount to supposing that the 210

observed signal will differ from the rescaled ideal by 211

additive noise, so we simply write the likelihood as 212

P.eventj!; t1; A/ D Pnoise.ıV/, where ıV D V ! 213

AF!;t1 . In this formula, the shifted template vector 214

F!;t1 has x; y; t component equal to F!Ix;y;.t!t1/. 215

Turning to the prior, assumptions (4b) and (5) give 216

it as 217

P.!; t1; A/dt1dA 218

D
!
r!dt1

"!
.2$%!

2/!1=2e!.A!&!/2=2%2
! dA

"
; (2) 219

where &! is the mean and %!
2 the variance of the scale 220

factor for cluster !; r! is the estimated overall rate of 221

firing for this cluster. Combining with the likelihood 222

function gives the posterior probability density, which 223

can readily be marginalized (integrated) over all values 224

of the amplitude scale factor A, because it is a Gaus- 225

sian function of A [9]. Maximizing over ! and t1 then 226

identifies the most probable spike and its firing time. 227

Multiple Spikes 228

In principle, one could extend the method of 229

the preceding subsection to compare the probabil- 230

ities of all possible combinations of two or more 231
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spikes. Such an exhaustive approach, however, quickly232

becomes impractical. Instead, note that even if an233

event contains multiple spikes, the steps in outlined234

above still identify that template whose subtraction235

would lead to the largest increase in the probability236

that the remaining waveform is noise. Thus, instead237

of the exhaustive approach, one can use an iterative238

(matching-pursuit or “greedy”) approach [9, 11]: Start-239

ing with a spike event, find the absolute peak, fit it,240

subtract the fit, and then repeat the process.241

Any such iterative process must determine when to242

stop fitting spikes. After marginalizing the expression243

for the posterior probability over A and t1, one can244

simply divide by a similar expression for the prob-245

ability that no additional spike was present (namely246

KPnoise.V/P.no spike/). The unknown constant K247

cancels in this probability ratio, as do the rate factors r!248

for all spikes found up to this point. We can then say249

that fitting an additional spike is justified if the ratio250

exceeds unity for some !" and terminate the fitting251

loop when that significance test fails.252

Cluster Reliability253

The last step in Fig. Fig. 2 is to determine which neu-254

rons’ activities have been reliably captured. No method255

will succeed in identifying spikes from every neu-256

ron; for example, some will generate spikes whose257

amplitude is too low relative to the noise. Also, some258

neurons are gradually dying, or otherwise changing259

character, during an experiment. Various criteria can260

be imposed at this point to determine which of the261

templates’ inferred spike trains should be trusted and262

retained for later analysis [9].263

Value of BayesianApproach264

The preceding discussion may have given the impres-265

sion that the key elements in spike sorting are mathe-266

matical. On the contrary, it is the resolving power of267

the MEA approach itself, combined with the planar268

geometry of the retina, that permit such thorough spike269

identification. The Bayesian method described here270

merely helps to use this resolving power to greatest271

advantage.272
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Neural Spikes, Identification from a Multielectrode
Array, Fig. 1 (a) Example of a single-spike event. Each sub-
panel shows the time course of electrical potential (in !V, black
curves), on a particular electrode in the 5 # 6 array. The elec-
trodes are separated by 30 !m (similar to RGC spacing). Blue
curves show the result of spike sorting, in this case a single

template waveform representing an individual neuron. (b) Detail
of a more complex event and its fit, in which a single neuron
fires a burst of nine spikes of varying amplitudes (upper left
channel), while a different neuron fires five other spikes (upper
right channel)

preprocess cluster and build
templates

fit spikeschoose trusted
templates

Neural Spikes, Identification from a Multielectrode
Array, Fig. 2 Schematic of spike sorting method
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Neural Spikes, Identification from a Multielectrode
Array, Fig. 3 (a) Detail of 40 of the aligned exemplars used
to compute a template, showing the potential on 12 neighboring
electrodes. Some outlier traces reflect events in which this neu-
ron fired together with some other neuron; the unwanted peaks

occur at random times relative to the one of interest, and thus do
not affect the template. (b) Blue, detail of template waveform
generated from (a). Red, for comparison, the pointwise mean of
the 430 waveforms used to find this template. (The red and blue
traces are too close to discriminate visually)
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