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Discover the Boltzmann Distribution and Einstein relation
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Left: Students discover empirically the full distribution of posi-
tions for the harmonically-trapped particle after equilibration.
It looks familiar—is it a Gaussian?

A semilog plot of the estimated probability density func-
tion (blue) indeed superimposes on a parabola (red). More-
over, students find empirically a universal relation between
the particle’s mobility (an input parameter for the simula-
tion) and the trap stiffness—the Einstein relation.

Warm up: Random Walks on an Energy Landscape
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Discover Catch-Bonding in the Model of Random Walks on a Landscape

A Mechanical Model with Catch-Bonding Behavior

The bridge from the mechanical model to molecular catch-
bonding is to understand the “strength” of a bond as its
mean lifetime. When students simulate a random walk on
each of the landscapes in the preceding panel, they find—
unsurprisingly—a shortening of mean waiting time for es-
cape with either positive or negative applied force.

But a real system won’t in general be symmetrical. Zero
applied force may favor one escape route as shown here. In
that case, external applied force can suppress the favored
exit before it begins so enhance the disfavored one, lead-
ing to an initial increase in bond lifetime—the catch-bond
phenomenon.

Overview

Autocorrelation and Optical Trap Calibration

Discover Exponential Waiting Time Distribution and Arrhenius Law
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T cells must exercise exquisite judgement.
Every cell displays tens of thousands of
normal (“self”) peptides; even a sick cell
displays only a few abnormal (“non-self”)
ones. So even a tiny false-positive recog-
nition rate would cause the immune sys-
tem to attack our cells indiscriminately.
(Indeed, autoimmune disorders do involve
such errors, but they are rare.) How can
immune recognition be so very accurate?

One aspect of the problem concerns
binding between a T cell receptor (indi-
cated by TCR) and the peptide-major his-
tocompatibility complex that it recognizes
(pMHC ). Surprisingly, for a cognate pep-
tide the bond lifetime increases with ap-
plied mechanical pulling force (data from
[2]); the T cell measures this lifetime to
determine if a match has been found.

We begin by simulating a random walk with drift (as in elec-
trophoresis). Students are impressed to find that an extremely
short code generates physically interesting behavior: Everything
flows from simulating a Bernoulli trial with probability P via
if random( ) < P:

Next, we interpret the constant force in electrophoresis as minus
the gradient of a potential energy, and generalize to nonlinear en-
ergy profiles, for example, a harmonic trap (right). Although the
walker generally stays close to the minimum-energy position, it can
eventually wander arbitrarily far (top).

Left: Real time-series data on tethered particle
motion may look like unstructured noise, but
(right) its autocorrelation function has a defi-
nite structure. (Data kindly supplied by J. van
Mameren and C. Schmidt.)

Students find the autocorrelation empirically from their
own simulation, and observe its qualitative connection
to data. Then they see how to extract the physical
parameters (trap stiffness and mobility) by fitting such
data to the model.

Left: Five energy profiles, each
with a hard wall on left and a bar-
rier to escape on right. Right: Stu-
dents empirically find the PDF of
escape times is always exponential
in form, with mean time depending
on the energy profile.

In fact, the mean escape time found by simulation has a
very simple relation to the barrier height.

Education research shows that students engage better when an instructional sto-
ryline begins with a surprising claim about a topic important in their own lives.
Today, everyone understands the importance of immune response to health. Also,
most students find it paradoxical to be told that some bonds strengthen under
applied pulling force. So the recent discovery of catch-bond behavior in T-cell ac-
tivation is a very good starting point to motivate study of many biophysics ideas.

To understand the claim, we must introduce the notion of random walks on en-
ergy landscapes. Rather than the elaborate and technical Kramers theory, however,
students can readily perform simple simulations. The results include memorable
animated graphics that yield conceptual insight into bond formation and break-
age, isomerization, and so on. Abstractions such as Boltzmann distribution and
exponentially distributed lifetime emerge as concrete consequences of simple rules,
and the origin of catch bonding behavior is clear when multiple unbinding routes
are available.

Here I sketch a module suitable for installation into an advanced undergrad-
level general Biophysics course [1]. Students wrote their own simulation codes from
scratch to reproduce and extend figures in this poster.
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Two interlocking hooks. . .

A simple modification to the preceding model interprets
“particle” position as relative displacement of the two
hooks, and replaces the hard wall at the left by an al-
ternative exit.

Can disengage either by pushing. . .

Or by pulling hard enough to de-
form them. Nature has already
invented this system, for exam-
ple, in burdock seeds.


