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S1. Notation

Here we summarize the symbols used in this paper, roughly in order of appearance. Most
symbols whose use is confined to one section are not listed here.
“basepair” when used as a length unit,= 0.34 nm

kBT thermal energy,= 4.07 · 10−21 J at room temperature

ρ, ρRMS, ρRMS,t projected distance from bead center to surface attachment point (Fig. 1a), and its

averages (Sect. S3)

ℓhelix helical repeat length,= (10.4 basepair)

ξ persistence length of DNA (Sect. 3.3)

“segment,” orℓ0 finite-element segment length, in this paper= ℓhelix/5 ≈ 0.71 nm

L, Lloop, Rbead tether length, loop length and bead radius

E elastic free energy cost per unit length (Sect. 3.1)

∆θi rotation angles from one segment to the next, radians (Sect.3.1)

Ωi angular strain rates, radians per length (Sect. 3.1)

Q continuum elasticity matrix (Sect. 3.1)

γ overall normalization constant in Sect. 3.2

Ê1, Ê2, Ê3 body-fixed frame vectors attached to a basepair (Fig. 2; Sect. 3.2)

D, T diagonalized form ofQ, and its diagonalizing matrix (Sect. 3.3)

Ji rotation generator matrices,i = 1, 2, 3 (Sect. 3.3)

R(k) rotation taking segmentk to segmentk + 1 (Sect. 3.3)

h(k) orientation of segmentk relative to space-fixed axes (Sect. 3.3)

α, β; P1,P2,A1,A2 labels specifying the four looping topologies (Sect. 5.1.2 and Fig. 5)

P (looped) fraction of chains that are looped (Sect. 5.2, Sect. S5)

J, J̃ , J̄ J factor, differentialJ factor, averagedJ factor (Eqns. (6, 5, 7))

∆Gloop free energy change of looping (Fig. 9, Sect. S5.5)

δt shutter time,= 30.8ms in Refs. [1,2] (Sect. S2.1)

Nsamp, Neff naive and effective number of independent samples in one sampling time (Sect. S3)

τdiff diffusion time scale (Sect. S3)

M, M∗, N, N∗, Mtot rigid Euclidean motions characterizing LacI (Sect. S4)

Kd equilibrium dissociation constant for operator–protein binding (Sect. S5)

Oid, O1 ideal and wild-type operators, respectively (Sect. S5)

V volume of an imagined container (Sect. S5.1)

[LacI] concentration of LacI repressor tetramers (Sect. S5)

δv, δω spatial and angular tolerances for binding (Sect. S5.1)

Ngen number of half-chains generated at a time (Sect. S6)

N, M, K, K ′ counter variables (Sect. S7)

S2. Blur correction

S2.1. No-looping case

Ref. [3] used the Gaussian sampling Monte Carlo calculationoutlined in Sect. 4.1 (but with
a simpler elastic model for DNA) to predict successfully bead excursion for TPM data taken
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with a fast (1 ms) shutter speed. Other experiments, however, use a longer exposure in each
video frame, for example Refs. [1,2], where the shutter is open for30.8 ms (almost the entire
video frame). To describe these experiments, the theory must be corrected to account for
the blurring of the image due to Brownian motion of the bead during each exposure. As an
extreme example, suppose the shutter were open for a time much longer than the bead’s time
to diffuse through its range of motion; then we would observea blurred image centered on
ρ = 0, but larger than the static image of the bead. In fact, some TPM implementations do
study this enlarged apparent bead image [4]. In contrast, the bead-tracking methoddiscards
the apparent image size and instead studies the apparent bead center position as a function
of time. We must now ask, how is this apparent bead center related to the true instantaneous
bead position? For clarity, we will first outline a simplifiedform of the correction, then an
improved version which we will use in Sect. 4.2 and the rest ofthe paper.

S2.1.1. Simple correction The image of a static bead located atr0 is a 2D distribution
of intensity, Is(r − r0), where r is projected position in the microscope focal plane.
This distribution reflects the “actual” bead image, the microscope pointspread function,
uncertainties from finite pixel size, etc. Suppose we knew that at some timet the bead’s
true position isr0. This is the quantity we want but cannot observe directly. Ata later time
t+τ , we only know the probability distribution function (pdf) of the bead’s possible positions:
It’s centered on a new pointrτ . For tethered 2D Brownian motion, and infinitesimalτ , the
new distributionP (r; τ) is a Gaussian of width

√
2Dτ centered onrτ = r0 + (f/ζ)τ wheref

is the restoring force of the tether,ζ = kBT/D = 6πηRbead is the Stokes drag constant, and
η is the viscosity of water. We can estimate the force by the Gaussian-chain approximation,
f ≈ −kBT r0/(Lξ) whereξ is the persistence length. The average expected image at time
t+ τ is then the convolution of the instantaneous imageIs with P . This intensity distribution
is centered atrτ .

We can find the average blurred image by dividing the finite (nonzero) shutter timeδt into
small slicesdτ , finding the expected average image at eachτ , and adding them all together.
The average blurred image will be radially stretched relative to the static image, and its center
will be the average of the variousrτ . This center will be shifted radially inward relative to
the initialr0, so call itS(ρ0)r0, whereρ0 = |r0|. S(ρ0) < 1 is a scale factor function that we
wish to find.

In the framework of the above approximations, the centerρτ obeys

dρ

dτ
= v(ρ) = − 1

6πηRbead

kBT

Lξ
ρ. (S1)

Let τ∗ = 6πηRbeadLξ/kBT . Soρ(τ) = ρ0e
−τ/τ∗ . The average of this center position over a

finite shutter timeδt is S(ρ0)ρ0 where

S(ρ0) =
τ∗
δt

[1 − e−δt/τ∗ ]. (S2)

Notice thatS is independent ofρ0. For very smallδt we getS → 1. For largeδt, we have
S → 0.
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Figure S1. RMS bead excursion,ρRMS, 4 s, as a function of camera shutter time in
ms. Dots: Experimental data from Ref. [2]. Each dot represents aboutNbeads = 20

different observed beads, always with an unlooped tether oflengthL = 901 bp and
a 490nm diameter bead. Each such bead was observed for about200 s, yielding
(200 s)/(4 s) measurements ofρRMS, 4 s, which were averaged. Each data point is
the average of theseNbeads averages; error bars represent the variation (standard
deviation) among theNbeads beads. Each point has been normalized by the first one.
The buffer used to obtain these and other experimental data in this paper was20 mM

Tris-acetate, pH= 8.0, 130 mM KCl, 4 mM MgCl2, 0.1 mM DTT, 0.1 mM EDTA,
20µg/ml acetylated BSA (Sigma-Aldrich),80µg/ml heparin (Sigma-Aldrich)) and
3mg/ml casein (Sigma).Curve: Expected correction due to finite shutter speed,
calculated by the method in the text (Eqn. (S2)), withτ∗ = RbeadL/(187 nm2ms−1),
Rbead = 245nm, and shutter time given on the horizontal axis.

We conclude that every report ofr is systematically too small by a factor ofS, which
depends on the shutter timeδt and the tether lengthL (and other fixed quantities). If we want
to predict the experimental data we should take the theoretical prediction, e.g., forρRMS, and
correct it by a factor ofS. This correction is trivial to apply (it comes out of the averaging
sign), becauseS is independent ofρ0.

S2.1.2. Improved correction The preceding simplified discussion made some poor
approximations. For example the drag constant is bigger than the naive Stokes-law formula
used above, due to wall effects; also there is hydrodynamic drag on the DNA tether. Moreover,
the tether end–end distance is not equal toρ (there is also the distance from bead attachment
to bead center, and foreshortening due to projection toxy plane). Nor is the tether’s entropic
elasticity well represented by the Gaussian-chain formula. For all these reasons, we modified
Eqn. (S1), replacingkBT/(6πηξ) by a phenomenological parameterW∗, to be determined
from experimental data (Fig. S1).

To choose an appropriate value ofW∗, we simply plotted the RMS excursions for a fixed
L andRbead and various shutter times, normalized the values to that forvery short shutter
time, and fit to Eqn. (S2). Fig. S1 shows that the valueW∗ = 187 nm2ms−1 fit the data well.
We then corrected all Monte Carlo simulation results by the formula with the appropriate
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L, Rbead, andδt = 30.8 ms. Although strictly speakingW∗ is a fit parameter, its use could
readily have been avoided by taking experimental data with afaster shutter speed, as was done
in Ref. [3].

S2.2. Effective tether length for looped case

The blur correction described in Sect. S2.1 accounts for thefinite shutter time for a tether of
a length,L, assuming unbound, unlooped DNA chains. The fact that looped DNA tethers
behave like much shorter, unlooped tethers, necessitates amodification to the blur correction.
One could naively assume that the effective length of the tether,Leff , containing a loop is
just the total length of the tether minus the length of the loop, Lloop (i.e.,Leff = L − Lloop);
however, this assumption would treat each looping topologyas identical, despite their obvious
differences in geometry.

We constructed a method for approximating the effective tether length based on the RMS
excursion,ρRMS, of any tether type (A1, A2, P1, P2, or unlooped). SinceρRMS contains
information about the geometry of the different looped topologies, it can be used to identify
an effective tether length for each of the four looped topologies and the unlooped, singly-
bound tether. In other words, we interpret each tether, looped or not, as behaving similarly
to an unlooped, unkinked tether of lengthLeff . The calibration curves plotted in Fig. 3 offer
a convenient method for estimating values ofLeff for tethers of a knownρRMS. A single
interpolation function of the formρRMS = aLb nicely summarizes the calibration curve for
any particular persistence length; therefore, for a known RMS excursion, the effective tether
length can be simply estimated asLeff = (ρRMS/a)

1/b. Obviously, we need appropriate values
of ρRMS for each tether type in order to estimate the correspondingLeff . Each full tether
(created as described in Sect. 6.1) is checked with multiplebead and wall boundary conditions.
Tens of representative loops of each topology were used while checking tens of thousands of
full tethers. For each tether type, we estimate the value ofρRMS, obtainρ of each and calculate
the root-mean-square of the entire sample. The corresponding effective tether length is then
substituted into the blur correction presented in Sect. S2.1 in place of the total tether length.
All results presented in Sect. 6.2 and Figs. 12 and 13 make useof this effective tether length
blur correction.

S3. Simulation of sampling effects

We can see trends in the data more clearly if we reduce the distribution of bead excursions
to its root-mean-square value. The question then arises of what time interval to use in the
average. For a homogeneous process, like tethered motion without looping, one could in
principle take a very long average, obtaining the infinite-sample RMS excursionρRMS ≡√
〈ρ2〉∞. If looping transitions are present but infrequent, then itmakes sense to take a finite

but rather long time; for example, the experiments of Refs. [1, 2] generally reported the 4-
second RMS motionρRMS, 4 s ≡

√
〈ρ2〉4 s, or more generallyρRMS,t. Here the expectation

value is limited to a sample consisting oft/(33 ms) consecutive video frames at a frame rate
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of 30 frames per second. Note that whereasρRMS is a single number for each bead-tether
combination, in contrastρRMS,t has a probability distribution function. One may characterize
this PDF by its mean,〈ρRMS,t〉∞, but we must keep in mind that this quantity may not be
exactly equal toρRMS, if t is not very large.

One of our goals in this paper is to predict the distribution of ρRMS,t, as a function of
bead size, tether length, and tether looping state, and of sampling timet, and to compare to
experiments. To do this, we first took chains generated by ourMonte Carlo algorithm and
corrected eachρ value as in Sect. S2, to account for blurring. We took the resulting values in
batches, found the RMS in each batch, and reported either thefull probability density function
of the resulting simulatedρRMS,t values (Sect. 6.2) or its mean (Sect. 4.2). We next explain the
choice of “batches” used in this procedure.

Naively one might suppose thatNsamp = t/(33 ms) consecutive video frames
containNsamp independent measurements of bead position; to simulate theRMS of those
measurements, we would average theρ2 values fromNsamp simulated chains. But tethered
particle motion is correlated; certainly, even if we could sendt → 0 we should not expect
to have an infinite number of independent position measurements! In fact, the diffusive
autocorrelation timeτdiff of tethered particle motion can be measured experimentally[5–7],
and typically it is longer than a video frame, particularly for long tethers and large beads.
Thus the effective number of independent samplesNeff , will be smaller thanNsamp.

To model this effect, we repeat a strategy used in Sect. S2.1:Estimateτdiff ’s scaling
behavior analytically, then fix the overall normalization from one experiment. A bead in
thermal motion, in a harmonic trap with stiffnessκ, has a diffusive time scale given by
τdiff ≈ kBT/(Dκ), whereD is the bead’s diffusion constant. Using the Stokes–Einstein
formula forD, and the scaling relationκ ≈ kBT/Lξ for the spring constant of a polymer
chain, givesτdiff ≈ 6πηRbeadLξ/kBT . As in Sect. S2.1, however, we expect wall effect,
tether friction, etc. to make the actual drift time longer than this estimate; indeed Ref. [7]
foundτdiff = 140 ms for L = 1000 nm andRbead = 245 nm. After normalizing the scaling
estimate to accommodate this point, we finally took the number of effectively independent
samples in a batch, to be the sampling timet (typically 4 s), divided by the larger of33 ms or
our estimatedτdiff .

S4. Characterization of the looping synapse

In this Appendix we first discuss our mathematical treatmentof Oid binding, then proceed
to O1. We obtained approximate geometric information about the LacI–DNA complex by
applying Olson and Lu’s3DNA program [8] to Protein Data Bank entry1LBG.pdb. Briefly,
3DNA takes information from a PDB file, fits each DNA base to a rigid ideal, and reports the
pose (position and orientation) that best represents each pair of bases.

Oid binding As discussed in Sect. 5.1.2, operatorOid can bind to a LacI dimer in either of
two ways, related by a symmetry of the LacI dimer and distinguished by the labelβ = 1, 2.
OperatorOid develops a large (approximately 45◦) kink, localized between two of its central
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basepairs, when it is bound to LacI (see Fig. 4 and Ref. [9]). We define theentry and
exit basepairs as the ones located eight basepairs away from the ones straddling the kink.
All basepairs between these are regarded as immobilized by binding. We found the rigid
Euclidean motionM that carries theentry to theexit in the PDB structure, and also the rigid
Euclidean motionM∗ relating theentry pose to a reference frame representing the overall
position and orientation of the LacI tetramer. These transformations correspond to one value
for the labelβ. We generated a second set by exchanging theentry and exit poses, and
subjecting each to180◦ rotation about thêE1-axis.

For each choice of binding orientationβ, the simulation then usedMβ to join randomly
generated chain segments representing the (wall)→(Oid entry) and (Oid exit)→(O1 center)
DNA segments. Then the simulation examined the pose at the end of the second of these
segments, as described below.

O1 binding: J-factor calculations Eqn. (5) expresses how we evaluate the loopingJ factor,
by generating many chains and finding what fraction of them have theO1 operator close to
its “target” pose for binding.‡ Here we specify the target pose. The target pose is completely
determined by the pose of the DNA chain as it enters the already-boundOid, because we
assume that the repressor tetramer is rigid.

The question is again complicated by the fact that binding alters the DNA, generating a
kink. What, then, should we take for the optimal pose ofO1 in anunbound, unkinked chain—
the one that bestallows binding? Our approach was to identify two central basepairs, namely
the ones that straddle the kink in the PDB structure of a boundoperator, find their two poses
using3DNA, find the rigid Euclidean motion that transforms one into theother, and apply
one-half of that motion to obtain the target pose relative tothe LacI tetramer, which we will
call N∗. This procedure yielded thecenter frames shown in Fig. 4; as a reasonableness check,
each of these frames indeed has itsÊ1-axis directed away from the dimer, roughly along its
symmetry axis. Then we generated a second target pose by rotating the first one by180◦

aboutÊ1; the two targets are distinguished by the value of the labelα = 1, 2 introduced in
Sect. 5.1.2.

Thus our criterion for looping in configurationαβ is that the central segment ofO1

must match the entry pose ofOid transformed byMtot
αβ = (N∗

α)−1M∗

β, to within some specified
tolerance. A chain conformation meeting this criterion will be called “looped” when we apply
Eqn. (5) to evaluatẽJ (β)

α .

O1 binding: excursion calculations Sect. 6 discusses a different calculation: Instead of just
finding the probability for a loop to form, this calculation proceeds to find the probability
density functions for bead location, accounting for the variety of different allowed loop states.
Here it is essential to account for the kinks atboth bound operators, because they both affect
the expected bead excursion. Accordingly, whenever a chainconfiguration qualified as looped

‡ The loss of chain entropy as basepairs inO1 become immobilized is accounted for as a contribution to the
binding constantKd.
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by the above criterion, we continued it beyondO1 starting from an exit segment whose pose
was related to theOid entry by a rigid Euclidean motion defined analogously toMtot

αβ above.
Once the full chain was generated in this way, and checked forsteric clashes, we used its total
bead displacement to build up a histogram; see Sect. 6.2.

S5. Experimental determination of looping J factor

This appendix explains how the loopingJ factor, defined mathematically in Eqns. (5–6), can
be disentangled from the binding equilibrium constant and extracted from TPM measurements
of the probability of loopingP (looped), following a simplified version of a more general
treatment in Ref. [1]. Our method is similar to others in the literature [10–12], but adapted to
TPM.

Our strategy is to use a “titration” method [1]. First we notethatJ depends only on the
DNA construct used (e.g., not on the concentration[LacI] of free repressor protein available).
However,P (looped) depends onboth the construct and on[LacI]. In particular, as we increase
availability of LacI, it becomes thermodynamically more favorable to bindseparate copies of
LacI to each of the two operators than to form a loop; looping is therefore suppressed at
high [LacI] [1, 10, 11, 13]. Thus by measuring the dependence on[LacI], we can in principle
separately determine both the binding constantKd and the desiredJ . In practice, we will
see that the available data are not yet sufficiently detailedto extract precise values for the
parameters. Nevertheless, we will show how to sidestep thislimitation by consideringrelative
J factors.

Throughout this paper, we assume that binding of operator toLacI is equally strong
in each of the two equivalent orientations (Sect. 5.1.2). And we assume that significant
binding only occurs at the specific binding sites. “DNA wrapping,” mediated by nonspecific
electrostatic effects, is most important at very low salt concentrations, in the presence of
supercoiling, and for loops of length 95–100 basepairs [14]. The first two conditions do
not apply for any of the experimental data considered in the present work, and for most of
our considerations neither does the last one. Moreover, others’ TPM experiments apparently
cannot be interpreted in terms of a wrapping-towards model of the looped conformation [15].

S5.1. Binding from solution

We first consider binding of LacI from solution to a single operator. When a molecule (e.g.,
LacI) binds stereospecifically to another (e.g., an operator), it must give up both translational
and rotational entropy. If the first molecule was already partially constrained, both in position
and orientation, then both of these entropy factors are modified. A major goal of this paper is
to calculate such effects precisely. As a start, this subsection will establish some notation for
the unconstrained binding process.

Each of the two constituent dimers of LacI has a binding site.Although DNA binding is
probably a multi-step process, involving sequential contacts between two “heads” on a dimer
with DNA regions straddling the center of the operator [9], nevertheless for our purposes we
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will further idealize binding as a one-step process.§
For illustration, we begin by imagining an isolated operator segment of DNA,

immobilized in a box of volumeV containing solvent and asingle LacI tetramer. Later
we will remove this artificial constraint.

Each of the binding sites defines a “target pose,” that is, a specific position in space
where the center of the operator must lie, and a specific spatial orientation that the operator
must assume, in order for binding to be possible in an encounter between the binding site and
the operator. We divide the states of the LacI–operator system into two classes:
(a) The subset of states for which the LacI tetramer is positioned such that the operator is close to one

of the two target poses for one of the two binding sites (to within a toleranceδvδω; see Sect. 5.2).
(b) All other positions and orientations of LacI.

We implement “binding” in the partition sum by rewarding states in classa with an extra
statistical weight factorW = 8π2(4Kdδvδω)−1. HereKd is a constant with dimensions of
volume−1, that is, concentration. The peculiar and arbitrary-looking form of this factor will
prove convenient later; in any case it introduces an unknownconstantKd that describes the
strength of binding.‖

The prescription in the preceding paragraph seems to dependon three parameters:
Kd, δv, andδω. In practice, simple binding is described by a single equilibrium constant;
we cannot experimentally determine independent values forall three parameters. But the
prescription has been arranged so that the limitδv → 0, δω → 0 exists; in this limit a single
constantKd indeed describes the model. We will proceed using this limit. In our numerical
work δv andδω will take finite values, but we checked that they are small enough to give
reasonable estimates of the limiting behavior (Sect. 5.3.2). As mentioned in Sect. 5.2, the
normalization ofδω is defined such that the total volume of the rotation group is8π2.

The partition sumZ involves an integral over all positionsr and orientationsω of the
repressor tetramer (recall that we assumed that the operator was immobilized). There are four
different possibilities for binding: Either of the two binding sites may bind to the operator in
either of its two equivalent target orientations. Thus we have

Z =
[
W
∫

a states
d3

rd3ω
]

+
[∫

b states
d3

rd3ω
]
. (S3)

The first integral equals the volume of the target, orδvδω, times 4 (the number of different
allowed binding configurations). The second integral covers essentially all of space and all
orientations, soZ ≈ (4 × 8π2/4Kd) + 8π2V .

Let ψ be the indicator function for binding, i.e.ψ = 1 on a states and 0 otherwise. The
probability of being bound is thus〈ψ〉 = 4×8π2/(4KdZ) = V −1/(V −1 + Kd). (The initial
definition of the weighting factorW was arranged to make this formula simple.)

We assumed that there was just one LacI in the box, soV −1 = [LacI]. So

P (bound)

P (unbound)
=

[LacI]

[LacI] +Kd

[LacI] +Kd

Kd
=

[LacI]

Kd
(binding from solution).(S4)

§ Because we treat binding in exactly the same way in this subsection and the next, any error we make from this
idealization should cancel in our determination of theJ factor.
‖ Equivalently, one can regard the quantity−kBT lnW as a “binding free energy change,” which however
depends on a choice of “lattice cell size”δvδω.
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Thus our prescription agrees with the usual definition of thedissociation constant [16]. The
virtue of formulating the standard result in this somewhat elaborate way will become apparent
in the following subsection, where we incorporate looping effects.

If the operator is not isolated and immobilized, but insteadis part of a long DNA and
free in solution, everything above is unchanged. The many conformations of the long DNA
are irrelevant. Similarly, if there are many copies of LacI,in a container of infinite volume,
again nothing changes: Only the concentration[LacI] enters Eqn. (S4).

S5.2. The looping J factor

Next we suppose that the operator of interest is part of a longDNA, and that there is a second
operator, located elsewhere on the same long DNA.

As discussed in Sect. 5.1.1, we will simplify the analysis byassuming that a LacI tetramer
is always bound to the second operator; then loop formation involves binding that same
tetramer to the first one. In the system we study, the second operator isOid, which binds
more strongly than the first (O1).¶ This simplifying assumption can be removed; see the
more detailed discussion in Ref. [1]. Sect. 5.1.2 introduced the labelβ to indicate the binding
orientation of LacI on the second operator (see also Fig. 5).

The J factor defined in Eqn. (5) quantifies how much binding toO1 is affected by its
physical attachment toOid via the intervening DNA. For example, this tethering maintains an
effective concentration of LacI binding site in the neighborhood ofO1, regardless how low
the general LacI concentration may be. More subtly, the tethering may imply that, if a chance
fluctuation brings theO1 close to the bound LacI’s target position, it is likely to have one
particular orientation. Then the probability of binding will depend on whether that preferred
orientation coincides with the target orientation imposedby the geometry of LacI (see Fig. 6).
Our simulations account for this effect, and quantify it (Sect. 5.3.1).

As in Sect. S5.1, we again begin by assuming that there isexactly one other LacI tetramer
(besides the one permanently bound toOid), then later remove this assumption. The second
tetramer may either be free in solution or bound toO1. Hence we have a competition:O1 can
bind nothing, the second LacI previously in solution, or theLacI already bound toOid (thus
forming a loop). So the division of states in Sect. S5.1 becomes slightly more complicated,
including now [4,12,13,15]:
(a1) O1 is in the target for binding to the already-bound LacI, forming a loop; the second LacI is free

in solution;
(a2) O1 is in the target for binding to the second LacI (no loop);
(b) O1 is unoccupied and the second LacI is free (no loop).

For a given orientationβ atOid, the looped statesa1 divide into two distinct topologies labeled
by α (see Fig. 5). The unlooped statea2 has four possible realizations, as in Sect. S5.1.

With the terminology established, we can now symbolically express the full partition
sum. As before, letr, ω be the position and orientation of the second LacI tetramer.LetZchain

be the partition sum for chain conformations. Thus the part of Zchain attributable to looped

¶ Ref. [12] made a similar approximation to ours. In the case where the two operators are identical, the formulas
are slightly different [13].
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chains in the classα, β is J̃ (β)
α δvδωZchain. We implement binding atO1 as before, so the

partition sum for a givenβ is now

Z(β) = Z
(β)
a2

+ Z
(β)

b + Z
(β)
a1

= Zchain

([
4×8π2

4Kdδvδω
δvδω

]
+ 8π2V

[
1 +

8π2

4Kdδvδω
(J̃

(β)
1 + J̃

(β)
2 )δvδω)

])

= Zchain8π
2(K−1

d + V + V (8π2/4Kd)(J̃
(β)
1 + J̃

(β)
2 )). (S5)

β is usually fixed as the loop forms and breaks, but from time to time changes as LacI unbinds
and then quickly rebinds toOid. Summing over the two binding orientations atOid, β = 1, 2,
gives

Ztot = Zchain8π
2
(
2K−1

d + 2V + V 8π2(4Kd)
−1(
∑

α,βJ̃
(β)
α )

)
. (S6)

This time we find
P (unlooped)

P (looped)
=

2K−1
d + 2V

(V 8π2/4Kd)(
∑

α,β J̃
(β)
α )

= 2
V −1 +Kd

8π2J̃tot

= 2
[LacI] +Kd

J
.(S7)

Above we used the abbreviations introduced in Eqn. (6). For very long loops, for which
the distribution of operator orientations is isotropic, our quantityJ indeed reduces to the
traditional loopingJ factor. As in Sect. S5.1, Eqn. (S7) is also valid when there are many
copies of LacI, in infinite volume.

The experiments of Ref. [1] measure the LHS of Eqn. (S7) as a function of[LacI], so for
each DNA construct we can in principle find the slope and intercept to extract bothKd andJ
(see Fig. S2).

S5.3. Alternate LacI conformations

Early structural work noted that the “V-shaped” form of the LacI tetramer might not be its
only conformation [9,17]. Later, electron microscopy [18]and solution studies [19] seemed to
show that indeed an alternate (“open” or “extended”) conformation was prevalent. Recently,
TPM experiments found evidence for multiple looped states [1,15,20], which were sometimes
interpreted as evidence for an open conformation [15,20]. Theoretical analyses have assumed
a two-state character to the equilibrium between these forms, variously estimating the free
energy cost to switch to the extended conformation as about0 kBT [21], 1.8–9.4 kBT [22], or
7kBT [15]. But all-atom simulation of DNA complexed to LacI showsno sign of any opening
of the V-form [23]. Indeed, Villa et al. found flexibility in the head (DNA-binding domains),
but a “locking” mechanism maintaining the overall V-form even in the presence of significant
external stress.

To address this issue, in the present work we have chosen to includeonly the V-form of
the tetramer. Flexibility in the binding heads can be incorporated via the tolerancesδv, δω
introduced in Sect. 5.2. Sect. 6.2 shows that this picture suffices to explain in some detail
much of the TPM data in Ref. [1]. In particular, the presence of three peaks in the distribution
of bead excursions [1, 15, 20] emerges naturally from our analysis, without requiring that we
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Figure S2. Determination of the loopingJ factor by titration. Dots: experimental
values for the ratioP (unlooped)/P (looped), for Lloop = 306 bp (from [1]). The
lines represent the formula Eqn. (S7), with two different sets of parameters. Although
these data do not determine the binding constantKd well, nevertheless the loopingJ
factor roughly lies between92 nM (solid line) and50 nM (dashed line).

postulate any extended conformation. Nevertheless, we cannot rule out such states, and Wong
et al. have argued that they are necessary to explain the direct transitions they see between the
different looped-state peaks. Accordingly, we now briefly indicate how to incorporate them
into the analysis of the previous subsection.

We suppose that there exists an alternate conformation of LacI, with a different “target”
for binding operator DNA, and that it costs free energy∆G to switch into this conformation.
Now we have two additionalJ-factorsJ̃ (β)

3 , J̃
(β)
4 , and

Z (β) = Zchain8π
2(K−1

d + V + (V 8π2/4Kd)(J̃
(β)
1 + J̃

(β)
2 + (J̃

(β)
3 + J̃

(β)
4 )e−∆G/kBT ))

from which we can get a generalization of Eqn. (S7).

S5.4. J factor from TPM data

Han et al. measured the probability of looping,P (looped), for theI = 6 bp, “long” construct,
as a function of[LacI] [1]. This construct hasLloop = 306 bp (see Eqn. (4)). More precisely,
Han et al. made a histogram of RMS bead displacement over 4-second windows, identified
one peak corresponding to unlooped DNA tethers, and compared the area under that peak to
the area under the other peaks, with results shown in Fig. S2.+ The trend roughly resembles
the prediction in Eqn. (S7), withJ factor in the range50–92 nM. We will call this (still rather
imprecisely determined) quantityJ∗. More extensive future measurements of this type could
yield a more precise estimate of the slope, and hence a bettervalue forJ∗ (and alsoJ at other
loop lengths).

+ The data shown in the figure correspond to a concentration regime where the stronger operatorOid is
essentially always bound to repressor. At lower[LacI] than shown here, looping is suppressed, and the curve in
Fig. S2 bends upward, as the occupancy of the strong operator(Oid) decreases [1].
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Pending the availability of such data, we note another consequence of Eqn. (S7): The
binding constantKd is independent of the details of the DNA construct. Thus, if we have
measurements ofP (looped) at two different loop lengths with the same[LacI], then we can
use that information to extract therelative J factor:

J(1)

J(2)
=
P (unlooped, 2)

P (looped, 2)

P (looped, 1)

P (unlooped, 1)
. (S8)

Han et al. only obtained the full titration curve for one particular loop length; at all other loop
lengths they held[LacI] = 100 pM. Nevertheless, by using Eqn. (S8) we can findJ factors at
the other loop lengths as

J(Lloop) = J∗
P (unlooped, ∗)
P (looped, ∗)

P (looped, Lloop, 100 pM)

P (unlooped, Lloop, 100 pM)
. (S9)

In this expression∗ refers toLloop = 306 bp and[LacI] = 100 pM. Sect. 5.4 uses this relation
to compare our predictions to existing experiments.

S5.5. J factor from in vivo data

Eqn. (S6) with Eqn. (6) gives the relative contributions of the classes of states asZb :

Za1
: Za2

= 1 : J
2Kd

: [LacI]
Kd

. In the language of Ref. [12], these ratios appear
as 1 : e−(∆GO1

−∆Gloop)/kBT : ([LacI]/1 M)e−∆GO1
/kBT . Comparing shows thatKd =

(1 M)e∆GO1
/kBT and− ln[J/(1 M)] = ∆Gloop − ln 2. Following the discussion and notation

of Ref. [12], we thus have

J = 2[LacI]

(
Rloop −Rnoloop

Rnoloop − 1

)
. (S10)

The dots in our Fig. 10 show this formula, applied to experimental data of Ref. [24] and
assuming that[LacI] = 75 nM [12, 24]. We caution, however, that our simulation results
cannot be directly compared toin vivo data, as the experimental conditions are quite different
in the two cases.

S6. Alexandrowicz chain generation

Chains were generated using a short-cut method proposed by Alexandrowicz [25,26]. Briefly,
instead of generating entire chains, sets ofNgen half-chains of lengthLloop/2 were generated;
pairs of half-chains were then selected and joined end-to-end to produceN2

gen whole chains
of lengthLloop. Although this method sacrifices some independence betweenelements of
the generated chains, steps were taken to minimize this effect while maintaining a significant
computational speed-up. The sample size,Ngen, was kept at or below103, meaning each
time 103 half-chains were generated,106 full chains were tested. Since typical simulations
tested on the order of1010 chains, sample set generation was done on the order of104 times.
The Alexandrowicz method was validated by comparing a subset of the results against those
of chain generation by using a non-Alexandrowicz method (i.e., full-chain generation rather
than half-chain generation) (data not shown).
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S7. Monte Carlo algorithms

In order to increase further the efficiency of our sampling method, all four looping topologies
were tested in parallel for each generated chain; moreover,severalLloop values were tested
for each generated chain. We chose to test loop lengths over three helical repeats of DNA,
equivalent to a range of 15 of our segments. In order to accomplish this without introducing
bias into our half-chain generation method, truncated chains were generated by removing
one segment from alternating ends of the whole generated chain. For example, suppose we
wish to test chains from 35–50 segments per loop. First, we generate a sample ofNgen half-
chains of length 25 segments. We choose two of these and join them to make a whole chain
with segments numbered 1 through 50, and test it for looping,in all four possible binding
configurations(α, β) = (11), (12), (21), (22). Then we remove segment 50 and test again
for looping (49 segment loop length), then remove segment 1 and test again (48 segment loop
length), and so on. In this way, each generated chain actually yielded contributions to 60
different calculated quantities.

Looping, as defined by our method, is a rare event, especiallyfor short loop lengths
(about one in every108 chains meets the looping criteria). Accordingly, we introduced a
method for splitting the problem into two separate parts, which we refer to as theN/K and
M/K ′ algorithms (summarized in Fig. S3).

N/K algorithm First, we generate only the loop (interoperator) section ofthe tether, to avoid
wasted computation time on the wall-to-loop and loop-to-bead segments. As described in
Sect. S6, we use the Alexandrowicz method; thus we first generateNgen half-chains. Creating
one whole chain from two chosen half-chains, we then test thechain against the looping
criteria described in Sect. 5.3.2 and Sect. S4. If it passes,we declare it to be “looped” and
proceed; otherwise we incrementK and choose a new pair of half-chains and repeat. For the
few interoperator chains that do pass, we then generate the remaining wall→(Oid entry), and
O1→bead segments of the chain.

Finally, for every complete chain generated in this way we must also choose random
orientations for the starting end of the chain relative to the wall. Only after choosing a chain–
wall orientation can we rotate every chain segment rigidly into its proper position relative
to the wall and check whether any segment collides with the wall. Similarly, a choice of
chain–bead orientation is needed before we can check whether any chain segment, or the
wall, collides with the bead. For each complete generated chain we drew 1000 different pairs
of end orientations to check for steric clashes.

If the complete chain, wall, and bead satisfy all the steric constraints (no bead–chain,
bead–wall, or wall–chain overlap), we call the conformation “looped and allowed” and
incrementN . In any case, we incrementK. Once we repeat this process for the generated set
of (Ngen)

2 half-chains, we generate a new set and repeat. The resultingratioN/K gives the
number of “looped and allowed” conformations, relative to the total number of tested chains.
But this ratio is not quite the quantitỹJ defined by Eqn. (5), because not all of the chains
tested would have given rise to allowed conformations.
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Figure S3. Summary ofN/K andM/K ′ algorithms. Each dashed box corresponds
to the algorithm for a single set ofNgen half-chains. The chains are combined end-to-
end to formNgen whole chains. Each of these whole chains is tested to assess looping
and/or steric constraints depending on the algorithm beingused. The resulting ratios
produced by each algorithm lead to a value for the differential J factor via Eqn. (5).

M/K′ algorithm In principle, we could extendevery generated interoperator chain to a full
chain conformation, by always appending wall→Oid andO1→bead segments and wall–chain
and chain–bead orientations. Then we could count the numberM that are allowed, and
computeN/M , the quantity needed in Eqn. (5). In practice, this procedure would wastefully
generate many more complete conformations than are actually needed. Instead, we did a
separate side calculation ofM/K ′. This algorithm is very similar to theN/K algorithm,
except that we do not check for looping. Again we choose two half-chains for the interoperator
region, plus the two flanking chains and orientations at the bead- and wall-ends. This time,
however, we only test whether each built chain is allowed (i.e., it passes all steric constraints).
If it is allowed, we incrementM ; in any case we incrementK ′. The resulting ratio ofM/K ′

gives the number of “allowed” chains relative to the total number of tested chains; it requires
testing many fewer chains than the fullN/K algorithm.

Combining the ratios from the two algorithms,(N/K) × (M/K ′)−1, yields the ratio of
“looped and allowed” chains to total “allowed” chains, corresponding to the fraction in the
looped state; this quantity lets us calculateJ̃ (β)

α in Eqn. (5), and hence theJ factor via Eqn. (6).
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S8. Two alternative elastic models

S8.1. Comparison to isotropic elasticity model

The results of the isotropic elasticity model were remarkably similar to the those of the
anisotropic model (data not shown). To compare the isotropic model properly to the
anisotropic model used in the main text, we again followed the procedure of Sect. 3.3 to
give the former the same persistence length as that used for the latter. This procedure, and
a representative choice for the ratio of twist to bend stiffnesses, yielded the elasticity matrix

Q =
[

44 0 0

0 44 0

0 0 80

]
nm, which we used instead of Eqn. (3). The phasing (location of the minima)

of each looping topology was identical to that of the anisotropic model, again, reinforcing the
idea that geometry, not choice of elasticity model, sets thephasing. On the other hand, the
magnitude of oscillations for the isotropic model were roughly twice those of the anisotropic
model for each topology. The isotropic model also predicts nearly identical contributions of
individual topologies to the overall loopingJ factor; or, more precisely, the values of− log J

at each minimum for the four topologies are nearly identicalto those predicted from the
anisotropic model.

S8.2. Homogeneous elastic model of Czapla et al.

For completeness, we briefly mention another elastic model mentioned in Ref. [26]. Although
that work mainly used an elastic model with sequence-dependence, at one point the authors
also proposed a simplified model similar to ours. This model posits interspersed “X-” and
“Z-”tracts. In our notation, the elastic matrix for “Z-”tracts was taken to be

QCzapla = (0.34 nm)
(

180

π

)2

×




4.84−2 0 0

0 4.84−2 5.41−2

0 5.41−2 4.09−2


 (S11)

The elastic matrix for “X-”tracts is the same without the off-diagonal terms.
Although Eqn. (S11) is similar in structure to our Eqn. (3), we note parenthetically that

when we use it to calculate the persistence length for the Z-tracts, via the method outlined in
Sect. 3.3, we obtain 33nm, which is much too small. We instead used the elasticity theory
defined by Eqn. (3) in the present work.

S9. Cyclization

To check that our Monte Carlo algorithm was working properly, and that our mathematical
definitions ofJ etc. were correct, we also computed the cyclizationJ factor and compared
to the classic analytical result of Shimada and Yamakawa [27]. To do the calculation, we
modified our boundary conditions to require that, for a DNA conformation to be considered
“looped,” its ends must coincide and have identical orientations. There is no binding
degeneracy, and hence only one loop type (although as mentioned in the text, that type consists
of various topoisomers). We used the isotropic elasticity model of Sect. S8.1 because that was
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Figure S4. Red dots: CyclizationJ factor, computed with an isotropic elasticity model.
Blue dashed line: Analytic calculation ofJ from Ref. [27], usingξ = 44 nm and twist
persistence= 80 nm. For comparison, theblack line shows our result for the overall
loopingJ factor (identical to the black line in Fig. 9).

the model used by Shimada and Yamakawa, and we substituted the corresponding values of
bend and twist stiffness into their formula, yielding Fig. S4. The figure shows an absolute
comparison; no arbitrary rescaling or shifting was done to bring the graphs into agreement.
Thus although the mathematical approach and approximations made in [27] are quite different
from ours, the calculations are in rough agreement over range of loop lengths that we study.

Comparing cyclization to LacI-mediated looping, we see that for each value of
interoperator spacing the loopingJ factor is larger, particularly at shortLloop. This difference
reflects the lower elastic strain energy for the looping boundary conditions. We also note that
adding the four looping topologies largely cancels the periodic modulation in the loopingJ
factor; no such cancellation can occur in the cyclization case.
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