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S1. Notation

Here we summarize

the symbols used in this paper, roughlydarmf appearance. Most

symbols whose use is confined to one section are not listed her

“basepair”
kgT

P PrMS; PrMS,t

fhelix

£

“segment,” orfy
L, Lloop; Rbcad

a, 3, P1,P2,A1,A2
P(looped)

J, J, J

AC;loop

ot

Nsamp; Noﬁ

Tdiff

M, M*, N, N¥, Mt
Kq

Oiq, O1

\%4

[Lacl]

ov, ow

Ngen

N, M, K, K’

when used as a length ugit).34 nm

thermal energy= 4.07 - 10~2! J at room temperature

projected distance from bead center to surface attachnoamt(Fig. 1a), and its

averages (Sect. S3)

helical repeat lengths (10.4 basepair

persistence length of DNA (Sect. 3.3)

finite-element segment length, in this papefycix/5 ~ 0.71 nm

tether length, loop length and bead radius

elastic free energy cost per unit length (Sect. 3.1)

rotation angles from one segment to the next, radians ($4gt.

angular strain rates, radians per length (Sect. 3.1)

continuum elasticity matrix (Sect. 3.1)

overall normalization constant in Sect. 3.2

body-fixed frame vectors attached to a basepair (Fig. 2; Set

diagonalized form ofy, and its diagonalizing matrix (Sect. 3.3)

rotation generator matrices= 1, 2, 3 (Sect. 3.3)

rotation taking segmerit to segment: + 1 (Sect. 3.3)

orientation of segmerit relative to space-fixed axes (Sect. 3.3)
labels specifying the four looping topolagy{8ect. 5.1.2 and Fig. 5)

fraction of chains that are looped (Sect. 5.2, Sect. S5)

J factor, differential.J factor, averaged factor (Eqgns. (6, 5, 7))

free energy change of looping (Fig. 9, Sect. S5.5)

shutter time= 30.8 ms in Refs.[1, 2] (Sect. S2.1)

naive and effective number of independent samples in onelgagriime (Sect. S3

diffusion time scale (Sect. S3)

rigid Euclidean motions characterizing Lacl (Sect. S4)

equilibrium dissociation constant for operator—proteimding (Sect. S5)

ideal and wild-type operators, respectively (Sect. Sb)

volume of an imagined container (Sect. S5.1)

concentration of Lacl repressor tetramers (Sect. S5)

spatial and angular tolerances for binding (Sect. S5.1)

number of half-chains generated at a time (Sect. S6)

counter variables (Sect. S7)

S2. Blur correction

.1. No-looping case

Ref. [3] used the Gaussian sampling Monte Carlo calculatigtined in Sect. 4.1 (but with
a simpler elastic model for DNA) to predict successfullydeacursion for TPM data taken
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with a fast ( ms) shutter speed. Other experiments, however, use a longesese in each
video frame, for example Refs. [1, 2], where the shutter Bnojor30.8 ms (almost the entire
video frame). To describe these experiments, the theoryt brisorrected to account for
the blurring of the image due to Brownian motion of the beadridpeach exposure. As an
extreme example, suppose the shutter were open for a time ioiger than the bead’s time
to diffuse through its range of motion; then we would obsexudurred image centered on
p = 0, but larger than the static image of the bead. In fact, somd ifRplementations do
study this enlarged apparent bead image [4]. In contrasthélad-tracking methaodi scards
the apparent image size and instead studies the apparehtéeter position as a function
of time. We must now ask, how is this apparent bead centeeckta the true instantaneous
bead position? For clarity, we will first outline a simplifiégerm of the correction, then an
improved version which we will use in Sect. 4.2 and the reshefpaper.

.1.1. Smple correction The image of a static bead locatedrgtis a 2D distribution
of intensity, /,(r — ry), wherer is projected position in the microscope focal plane.
This distribution reflects the “actual’” bead image, the wscope pointspread function,
uncertainties from finite pixel size, etc. Suppose we knest #t some time the bead’s
true position isry. This is the quantity we want but cannot observe directlyaAdter time
t+7, we only know the probability distribution function (pdf) the bead’s possible positions:
It's centered on a new point.. For tethered 2D Brownian motion, and infinitesimalthe
new distributionP(r; 7) is a Gaussian of widt/2D centered om, = r, + (f/¢)7 wheref

is the restoring force of the tether,= kg7 /D = 671 Ryeaq IS the Stokes drag constant, and
7 is the viscosity of water. We can estimate the force by thesGan-chain approximation,
f ~ —kgTry/(LE) where¢ is the persistence length. The average expected image @t tim
t + 7 is then the convolution of the instantaneous imageith P. This intensity distribution

is centered at,.

We can find the average blurred image by dividing the finitegeoo) shutter timét into
small slicesdr, finding the expected average image at eacand adding them all together.
The average blurred image will be radially stretched reéeiid the static image, and its center
will be the average of the various. This center will be shifted radially inward relative to
the initialry, so call itS(py)ro, wherepy = |rg|. S(po) < 1is a scale factor function that we
wish to find.

In the framework of the above approximations, the cepterbeys

dp 1 ]CBT
ar =" iR L

Let 7, = 671 Rpeaa L /ksT. S0p(T) = poe~7/™. The average of this center position over a
finite shutter timeyt is S(po)po Where

(S1)

S(po) = = [1—e™/7], (S2)
Notice thatS' is independent of,. For very smalbt we getS — 1. For largedt, we have

S — 0.
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Normalized RMS excursion
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Figure S1. RMS bead excursionggys, 45, as a function of camera shutter time in
ms. Dots: Experimental data from Ref.[2]. Each dot represents abgutqs = 20
different observed beads, always with an unlooped tethéngjth L = 901 bp and

a 490nm diameter bead. Each such bead was observed for &00ut yielding
(200s)/(4s) measurements Qfxys, 45, Which were averaged. Each data point is
the average of thes&..qs averages; error bars represent the variation (standard
deviation) among théV,,..qs beads. Each point has been normalized by the first one.
The buffer used to obtain these and other experimental ddtas paper wag0 mm
Tris-acetate, pH 8.0, 130mm KCI, 4mm MgCl,, 0.1mm DTT, 0.1mm EDTA,

20 pg/ml acetylated BSA (Sigma-AldrichR0 pg/ml heparin (Sigma-Aldrich)) and
3mg/ml casein (Sigma).Curve: Expected correction due to finite shutter speed,
calculated by the method in the text (Eqn. (S2)), with= Ryeaq L /(187 nm?ms™1),
Ryead = 245nm, and shutter time given on the horizontal axis.

We conclude that every report ofis systematically too small by a factor 6f which
depends on the shutter timeand the tether length (and other fixed quantities). If we want
to predict the experimental data we should take the thealgtrediction, e.g., fopr.s, and
correct it by a factor of5. This correction is trivial to apply (it comes out of the saging
sign), becausg is independent ofy.

.1.2. Improved correction The preceding simplified discussion made some poor
approximations. For example the drag constant is bigger tihe naive Stokes-law formula
used above, due to wall effects; also there is hydrodynaraigon the DNA tether. Moreover,
the tether end—end distance is not equal {there is also the distance from bead attachment
to bead center, and foreshortening due to projectiorytplane). Nor is the tether’s entropic
elasticity well represented by the Gaussian-chain fornieda all these reasons, we modified
Eqn. (S1), replacingg1/(67n¢) by a phenomenological parametéf,, to be determined
from experimental data (Fig. S1).

To choose an appropriate valueldt, we simply plotted the RMS excursions for a fixed
L and Ry,.,q and various shutter times, normalized the values to thavdoy short shutter
time, and fit to Eqn. (S2). Fig. S1 shows that the vdlide= 187 nm?ms~! fit the data well.
We then corrected all Monte Carlo simulation results by theniula with the appropriate
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L, Ryeaa, anddt = 30.8 ms. Although strictly speakindV, is a fit parameter, its use could
readily have been avoided by taking experimental data wiist@r shutter speed, as was done
in Ref. [3].

.2. Effective tether length for looped case

The blur correction described in Sect. S2.1 accounts fofitiite shutter time for a tether of
a length, L, assuming unbound, unlooped DNA chains. The fact that Iddp§A tethers
behave like much shorter, unlooped tethers, necessitatesldication to the blur correction.
One could naively assume that the effective length of theetef..;, containing a loop is
just the total length of the tether minus the length of thepld,,, (i.€., Ly = L — Ligop);
however, this assumption would treat each looping topo&sggentical, despite their obvious
differences in geometry.

We constructed a method for approximating the effectiveetieiength based on the RMS
excursion,prys, Of any tether type (Al, A2, P1, P2, or unlooped). Singgs contains
information about the geometry of the different looped togees, it can be used to identify
an effective tether length for each of the four looped togme and the unlooped, singly-
bound tether. In other words, we interpret each tether,ddag not, as behaving similarly
to an unlooped, unkinked tether of length;. The calibration curves plotted in Fig. 3 offer
a convenient method for estimating valuesiQf; for tethers of a knowrpg,s. A single
interpolation function of the formp,,,s = aL’ nicely summarizes the calibration curve for
any particular persistence length; therefore, for a knowtSRexcursion, the effective tether
length can be simply estimated Ag; = (pRMS/a)l/b. Obviously, we need appropriate values
of prus for each tether type in order to estimate the corresponding Each full tether
(created as described in Sect. 6.1) is checked with muligdel and wall boundary conditions.
Tens of representative loops of each topology were useawhicking tens of thousands of
full tethers. For each tether type, we estimate the valyg,@f, obtainp of each and calculate
the root-mean-square of the entire sample. The correspgmdiective tether length is then
substituted into the blur correction presented in Sectl. 82place of the total tether length.
All results presented in Sect. 6.2 and Figs. 12 and 13 makefubes effective tether length
blur correction.

S3. Simulation of sampling effects

We can see trends in the data more clearly if we reduce thebdison of bead excursions
to its root-mean-square value. The question then ariseshaf time interval to use in the
average. For a homogeneous process, like tethered mottbowvilooping, one could in
principle take a very long average, obtaining the infindeaple RMS excursiomg,s =
\/{p?) - If looping transitions are present but infrequent, thematkes sense to take a finite
but rather long time; for example, the experiments of R&2] generally reported the 4-
second RMS motiongys 45 = 1/(p?)4s, OF more generallyy,s,. Here the expectation
value is limited to a sample consistinggf33 ms) consecutive video frames at a frame rate
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of 30 frames per second. Note that whergass is a single number for each bead-tether
combination, in contrasi. s : has a probability distribution function. One may chardeter
this PDF by its mean(prus.:)~, but we must keep in mind that this quantity may not be
exactly equal te.s, if ¢ is not very large.

One of our goals in this paper is to predict the distributibrp@,s., as a function of
bead size, tether length, and tether looping state, andnoplgzg timet, and to compare to
experiments. To do this, we first took chains generated byMmmte Carlo algorithm and
corrected each value as in Sect. S2, to account for blurring. We took thelteguvalues in
batches, found the RMS in each batch, and reported eithé&ultipeobability density function
of the resulting simulateg,,s ; values (Sect. 6.2) or its mean (Sect. 4.2). We next explain th
choice of “batches” used in this procedure.

Naively one might suppose thaV.., = t¢/(33ms) consecutive video frames
contain Ng.mp independent measurements of bead position; to simulat&®km@ of those
measurements, we would average tRevalues fromN,,,, simulated chains. But tethered
particle motion is correlated; certainly, even if we couthd? — 0 we should not expect
to have an infinite number of independent position measumisheln fact, the diffusive
autocorrelation timey;; of tethered particle motion can be measured experimeri&aHy],
and typically it is longer than a video frame, particularr fong tethers and large beads.
Thus the effective number of independent samplgs will be smaller thanVg,,,,.

To model this effect, we repeat a strategy used in Sect. 2slimatery;z’s scaling
behavior analytically, then fix the overall normalizatiowrh one experiment. A bead in
thermal motion, in a harmonic trap with stiffness has a diffusive time scale given by
Tair ~ kT /(Dk), whereD is the bead’s diffusion constant. Using the Stokes—Einstei
formula for D, and the scaling relation ~ kpT'/L¢ for the spring constant of a polymer
chain, givesrgir ~ 67 RpeaalLE/ksT. As in Sect. S2.1, however, we expect wall effect,
tether friction, etc. to make the actual drift time longearhthis estimate; indeed Ref. [7]
found 745 = 140 ms for L = 1000 nm and R..q = 245 nm. After normalizing the scaling
estimate to accommodate this point, we finally took the nunabeffectively independent
samples in a batch, to be the sampling tihfeypically 4 s), divided by the larger 083 ms or
our estimatedy;g.

SA. Characterization of the looping synapse

In this Appendix we first discuss our mathematical treatnoérnd;, binding, then proceed
to O;. We obtained approximate geometric information about tael-DNA complex by
applying Olson and LUu'SDNA program [8] to Protein Data Bank entty.BG. pdb. Briefly,
3DNA takes information from a PDB file, fits each DNA base to a rigi€lal, and reports the
pose (position and orientation) that best represents esicfdases.

O;q binding As discussed in Sect. 5.1.2, operafyy can bind to a Lacl dimer in either of
two ways, related by a symmetry of the Lacl dimer and distisiged by the labeb = 1, 2.
OperatorO;4 develops a large (approximately°3kink, localized between two of its central
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basepairs, when it is bound to Lacl (see Fig.4 and Ref.[9])e dfine theentry and

exit basepairs as the ones located eight basepairs away froomésestraddling the kink.
All basepairs between these are regarded as immobilizedrioynly. We found the rigid
Euclidean motiorM that carries thentry to theexit in the PDB structure, and also the rigid
Euclidean motiorM™ relating theentry pose to a reference frame representing the overall
position and orientation of the Lacl tetramer. These tramsétions correspond to one value
for the label5. We generated a second set by exchangingetttiey and exit poses, and
subjecting each td80° rotation about thd:,-axis.

For each choice of binding orientatigh the simulation then usdd; to join randomly
generated chain segments representing the (w&}q entry) and Q;q exit)—(O; center)
DNA segments. Then the simulation examined the pose at thekthe second of these
segments, as described below.

O, binding: J-factor calculations Eqgn. (5) expresses how we evaluate the loopirigctor,

by generating many chains and finding what fraction of themehheO; operator close to
its “target” pose for binding. Here we specify the target pose. The target pose is completel
determined by the pose of the DNA chain as it enters the alrbadndO,,, because we
assume that the repressor tetramer is rigid.

The question is again complicated by the fact that binditgysithe DNA, generating a
kink. What, then, should we take for the optimal pos®©gin anunbound, unkinked chain—
the one that bestllows binding? Our approach was to identify two central basepaamely
the ones that straddle the kink in the PDB structure of a bayedator, find their two poses
using3DNA, find the rigid Euclidean motion that transforms one into oleer, and apply
one-half of that motion to obtain the target pose relativhlLacl tetramer, which we will
call N*. This procedure yielded theenter frames shown in Fig. 4; as a reasonableness check,
each of these frames indeed hasHtsaxis directed away from the dimer, roughly along its
symmetry axis. Then we generated a second target pose lingothe first one byl80°
aboutE;; the two targets are distinguished by the value of the label 1, 2 introduced in
Sect.5.1.2.

Thus our criterion for looping in configurations is that the central segment 6f;
must match the entry pose 0f, transformed byvlgg = (N;)*lMg, to within some specified
tolerance. A chain conformation meeting this criterion W called “looped” when we apply
Eqn. (5) to evaluatd?).

O binding: excursion calculations Sect. 6 discusses a different calculation: Instead of just
finding the probability for a loop to form, this calculatiomogeeds to find the probability
density functions for bead location, accounting for theetsirof different allowed loop states.
Here it is essential to account for the kinksbath bound operators, because they both affect
the expected bead excursion. Accordingly, whenever a cduaifiguration qualified as looped

1 The loss of chain entropy as basepair©inbecome immobilized is accounted for as a contribution to the
binding constanf,.
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by the above criterion, we continued it beyod starting from an exit segment whose pose
was related to th@®;4 entry by a rigid Euclidean motion defined analogoulelbg above.
Once the full chain was generated in this way, and checkestéoic clashes, we used its total
bead displacement to build up a histogram; see Sect. 6.2.

S5. Experimental determination of looping J factor

This appendix explains how the loopidgfactor, defined mathematically in Egns. (5-6), can
be disentangled from the binding equilibrium constant aticheted from TPM measurements
of the probability of loopingP(looped), following a simplified version of a more general
treatment in Ref. [1]. Our method is similar to others in titerature [10—12], but adapted to
TPM.

Our strategy is to use a “titration” method [1]. First we ntitat.J depends only on the
DNA construct used (e.g., not on the concentraflarcI| of free repressor protein available).
However,P(looped) depends oboth the construct and d.acl]. In particular, as we increase
availability of Lacl, it becomes thermodynamically moredeable to bindseparate copies of
Lacl to each of the two operators than to form a loop; loopmghierefore suppressed at
high [LacI] [1, 10, 11, 13]. Thus by measuring the dependencg.ael|, we can in principle
separately determine both the binding constaptand the desired. In practice, we will
see that the available data are not yet sufficiently detddeetract precise values for the
parameters. Nevertheless, we will show how to sidesteithitgtion by consideringelative
J factors.

Throughout this paper, we assume that binding of operatdvatd is equally strong
in each of the two equivalent orientations (Sect.5.1.2).d Ave assume that significant
binding only occurs at the specific binding sites. “DNA wraygp’ mediated by nonspecific
electrostatic effects, is most important at very low salhaantrations, in the presence of
supercoiling, and for loops of length 95-100 basepairs.[1Bhe first two conditions do
not apply for any of the experimental data considered in tlesgnt work, and for most of
our considerations neither does the last one. Moreovegr&tiiPM experiments apparently
cannot be interpreted in terms of a wrapping-towards mofbleolooped conformation [15].

$5.1. Binding from solution

We first consider binding of Lacl from solution to a single ogger. When a molecule (e.g.,
Lacl) binds stereospecifically to another (e.g., an opeyatanust give up both translational
and rotational entropy. If the first molecule was alreadyiply constrained, both in position
and orientation, then both of these entropy factors are fieodiA major goal of this paper is
to calculate such effects precisely. As a start, this sulmsewill establish some notation for
the unconstrained binding process.
Each of the two constituent dimers of Lacl has a binding gitthough DNA binding is

probably a multi-step process, involving sequential cotstaetween two “heads” on a dimer
with DNA regions straddling the center of the operator [$yertheless for our purposes we
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will further idealize binding as a one-step procéss.

For illustration, we begin by imagining an isolated operasggment of DNA,
immobilized in a box of volumé/ containing solvent and angle Lacl tetramer. Later
we will remove this artificial constraint.

Each of the binding sites defines a “target pose,” that is,exifip position in space
where the center of the operator must lie, and a specificadpatentation that the operator
must assume, in order for binding to be possible in an eneoletween the binding site and

the operator. We divide the states of the Lacl—-operatoesy#tto two classes:

(a) The subset of states for which the Lacl tetramer is positi@ueh that the operator is close to one
of the two target poses for one of the two binding sites (ttwwit tolerancéwviw; see Sect. 5.2).

(b) All other positions and orientations of Lacl.

We implement “binding” in the partition sum by rewardingts&in classa with an extra
statistical weight factoV = 872(4K4dvéw)!. Here K, is a constant with dimensions of
volume™, that is, concentration. The peculiar and arbitrary-lagkiorm of this factor will
prove convenient later; in any case it introduces an unknoonistant/’y that describes the
strength of binding|

The prescription in the preceding paragraph seems to depentthiree parameters:
Kq4, ov, anddw. In practice, simple binding is described by a single efjtilim constant;
we cannot experimentally determine independent valueslfahree parameters. But the
prescription has been arranged so that the limit— 0, )w — 0 exists; in this limit a single
constant/iy indeed describes the model. We will proceed using this litnitour numerical
work dv and éw will take finite values, but we checked that they are smallugihoto give
reasonable estimates of the limiting behavior (Sect. 5.3 mentioned in Sect. 5.2, the
normalization ofdw is defined such that the total volume of the rotation grougpris

The partition sum? involves an integral over all positionsand orientations, of the
repressor tetramer (recall that we assumed that the opgrasammobilized). There are four
different possibilities for binding: Either of the two bimg) sites may bind to the operator in
either of its two equivalent target orientations. Thus weeha

_ 3..13 3..13
Z= {W/astatesd rd w} - [/b statesd rd w] ' (S3)
The first integral equals the volume of the targetjodw, times 4 (the number of different

allowed binding configurations). The second integral ceessentially all of space and all
orientations, s& ~ (4 x 872/4K4) + 872V
Let ¢) be the indicator function for binding, i.¢. = 1 on a states and 0 otherwise. The
probability of being bound is thug)) = 4x87%/(4K4Z) = V1/(V ! + Ky). (The initial
definition of the weighting factorV was arranged to make this formula simple.)
We assumed that there was just one Lacl in the bo¥; So= [LacI]. So
P(bound) [Lacl]  [Lacl] + Kq  [Lacl]

P(unbound) - [Lacl] + Kq 7, = K (binding from solution)(S4)

§ Because we treat binding in exactly the same way in this stibseand the next, any error we make from this
idealization should cancel in our determination of thiactor.

|| Equivalently, one can regard the quantity;g7 In )}V as a “binding free energy change,” which however
depends on a choice of “lattice cell siz&/dw.



Supplement: DNA looping in TPM 10

Thus our prescription agrees with the usual definition ofdissociation constant [16]. The
virtue of formulating the standard result in this somewliaberate way will become apparent
in the following subsection, where we incorporate loopiffgas.

If the operator is not isolated and immobilized, but instesagart of a long DNA and
free in solution, everything above is unchanged. The manyocmations of the long DNA
are irrelevant. Similarly, if there are many copies of Lacla container of infinite volume,
again nothing changes: Only the concentrafiaicI] enters Eqn. (S4).

$5.2. Thelooping J factor

Next we suppose that the operator of interest is part of alxg, and that there is a second
operator, located elsewhere on the same long DNA.

As discussed in Sect. 5.1.1, we will simplify the analysisibguming that a Lacl tetramer
is always bound to the second operator; then loop formatiwolves binding that same
tetramer to the first one. In the system we study, the secoatatiy isO;q, which binds
more strongly than the firs);).q This simplifying assumption can be removed; see the
more detailed discussion in Ref. [1]. Sect.5.1.2 introdube labels to indicate the binding
orientation of Lacl on the second operator (see also Fig. 5).

The J factor defined in Egn. (5) quantifies how much bindingpis affected by its
physical attachment t0,4 via the intervening DNA. For example, this tethering maimaan
effective concentration of Lacl binding site in the neighimod of O,, regardless how low
the general Lacl concentration may be. More subtly, thestatly may imply that, if a chance
fluctuation brings thé&); close to the bound Lacl’s target position, it is likely to basne
particular orientation. Then the probability of bindinglvdepend on whether that preferred
orientation coincides with the target orientation impolgdhe geometry of Lacl (see Fig. 6).
Our simulations account for this effect, and quantify it¢S8.3.1).

As in Sect. S5.1, we again begin by assuming that thezactly one other Lacl tetramer
(besides the one permanently boundXg), then later remove this assumption. The second
tetramer may either be free in solution or boun@®to Hence we have a competitio®; can
bind nothing, the second Lacl previously in solution, or tlael already bound t®;4 (thus
forming a loop). So the division of states in Sect. S5.1 bexpsilightly more complicated,
including now [4,12,13,15]:

(a1) Oy is in the target for binding to the already-bound Lacl, farga loop; the second Lacl is free
in solution;

(a2) Oq is in the target for binding to the second Lacl (no loop);
(b) Oy is unoccupied and the second Lacl is free (no loop).

For a given orientatiof¥ atO,4, the looped states divide into two distinct topologies labeled
by « (see Fig. 5). The unlooped staghas four possible realizations, as in Sect. S5.1.
With the terminology established, we can now symbolicakpress the full partition
sum. As before, let, w be the position and orientation of the second Lacl tetrabedrZ ,..;,,
be the partition sum for chain conformations. Thus the paifg.;, attributable to looped

9 Ref.[12] made a similar approximation to ours. In the caserwlthe two operators are identical, the formulas
are slightly different [13].
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chains in the class, § is J) 606w Ze.im. We implement binding a0, as before, so the
partition sum for a givem is now

2

4x 872 8w
- ZC ain ovd 2 1 _
h ([4Kd51)5w v w] T8V l * 4K 40vw

<j1(6) + L(ﬁ))&)éw)])

= ZonainSTA( K + V 4+ V(872 /4K ) (T + JY). (S5)

[ is usually fixed as the loop forms and breaks, but from timene thanges as Lacl unbinds
and then quickly rebinds t0;3. Summing over the two binding orientations@t, 5 = 1, 2,
gives

Zior = Zonain87° (2K + 2V + V872 (4Ka) ™ (S0 5717)). (S6)
This time we find
P(unlooped) 2Kt +2V B 2‘/71 +Kqa 5 [Lacl] + Kq (s7)
P(looped) (V872 /4Ky)(Sa s J”) 872 S

Above we used the abbreviations introduced in Eqn. (6). oy Yong loops, for which
the distribution of operator orientations is isotropicy @uantity / indeed reduces to the
traditional loopingJ factor. As in Sect.S5.1, Eqn. (S7) is also valid when theesraany
copies of Lacl, in infinite volume.

The experiments of Ref. [1] measure the LHS of Eqn. (S7) asétiton of [Lacl], so for
each DNA construct we can in principle find the slope and a&et to extract bottk’y and.J
(see Fig. S2).

S5.3. Alternate Lacl conformations

Early structural work noted that the “V-shaped” form of thacl tetramer might not be its
only conformation [9,17]. Later, electron microscopy [&8]d solution studies [19] seemed to
show that indeed an alternate (“open” or “extended”) camfation was prevalent. Recently,
TPM experiments found evidence for multiple looped state$d, 20], which were sometimes
interpreted as evidence for an open conformation [15, 20¢0Fetical analyses have assumed
a two-state character to the equilibrium between thesedpuariously estimating the free
energy cost to switch to the extended conformation as abbgit’ [21], 1.8-9.4 kgT [22], or
7TkgT [15]. But all-atom simulation of DNA complexed to Lacl shoms sign of any opening
of the V-form [23]. Indeed, Villa et al. found flexibility innee head (DNA-binding domains),
but a “locking” mechanism maintaining the overall V-formeemn the presence of significant
external stress.

To address this issue, in the present work we have chosenltm@only the V-form of
the tetramer. Flexibility in the binding heads can be incoaped via the tolerance®, dw
introduced in Sect.5.2. Sect. 6.2 shows that this pictuféces to explain in some detail
much of the TPM data in Ref. [1]. In particular, the preseniciiee peaks in the distribution
of bead excursions [1, 15, 20] emerges naturally from oulyarsa without requiring that we
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8F ; ; ; pes

P(unlooped) / P(looped)

50 100 150 200
[Lacl] (nM)

Figure S2. Determination of the looping/ factor by titration. Dots. experimental
values for the ratiaP(unlooped)/P(looped), for Lj,e, = 306 bp (from [1]). The
lines represent the formula Eqn. (S7), with two differers s parameters. Although
these data do not determine the binding constgntvell, nevertheless the looping
factor roughly lies betwee92 nm (solid line) and50 nm (dashed line).

postulate any extended conformation. Nevertheless, waotanle out such states, and Wong
et al. have argued that they are necessary to explain tha th@esitions they see between the
different looped-state peaks. Accordingly, we now briefigicate how to incorporate them
into the analysis of the previous subsection.

We suppose that there exists an alternate conformationaf wéth a different “target”
for binding operator DNA, and that it costs free enefy§ to switch into this conformation.
Now we have two additional-factorsJ\”, J”), and

2O = ZopainSm* (K" + V 4+ (V8r2 JAK) (T + T + (1P + J[P)e 26 /kyT))

from which we can get a generalization of Eqgn. (S7).

S5.4. J factor from TPM data

Han et al. measured the probability of loopidtflooped), for thel = 6 bp, “long” construct,

as a function ofLacl] [1]. This construct hag..,, = 306 bp (see Eqn. (4)). More precisely,
Han et al. made a histogram of RMS bead displacement ovecahdavindows, identified
one peak corresponding to unlooped DNA tethers, and comhecarea under that peak to
the area under the other peaks, with results shown in Fig. $Be trend roughly resembles
the prediction in Eqn. (S7), withi factor in the rang&0-92 nm. We will call this (still rather
imprecisely determined) quantiti,. More extensive future measurements of this type could
yield a more precise estimate of the slope, and hence a batter forJ, (and alsa/ at other
loop lengths).

* The data shown in the figure correspond to a concentratioimesgvhere the stronger operator, is

essentially always bound to repressor. At loilercI] than shown here, looping is suppressed, and the curve in
Fig. S2 bends upward, as the occupancy of the strong opétatgrdecreases [1].
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Pending the availability of such data, we note another apunesece of Eqn. (S7): The
binding constant, is independent of the details of the DNA construct. Thus, éf vave
measurements aP(looped) at two different loop lengths with the sarfleacl|, then we can
use that information to extract tmelative .J factor:

J(1)  P(unlooped,2) P(looped, 1)

J(2)  P(looped,2) P(unlooped, 1)’
Han et al. only obtained the full titration curve for one partar loop length; at all other loop
lengths they heldLacI] = 100 pM. Nevertheless, by using Egn. (S8) we can fihthctors at
the other loop lengths as

(S8)

P(unlooped, *) P(looped, Liyep, 100 pM)

P(looped, ) P(unlooped, Ljop, 100 pM)
In this expressior refers toL,,,, = 306 bp and[Lacl] = 100 pMm. Sect. 5.4 uses this relation
to compare our predictions to existing experiments.

J(Lloop) - J* (89)

$6.5. J factor fromin vivo data

Eqn. (S6) with Eqn. (6) gives the relative contributions bé tclasses of states &, :

Za = Za = 1 : ﬁ : % In the language of Ref.[12], these ratios appear
as 1 : e (AGo,=AGww)/keT . ([Lacl]/1 M)e~ACoi/keT  Comparing shows thakly =
(1M)erGor/keT and —In[J /(1 M)] = AGie, — In2. Following the discussion and notation

of Ref.[12], we thus have

(S10)

J _ Q[LacI] (Rloop - Rnoloop) .

Ruoloop — 1

The dots in our Fig. 10 show this formula, applied to expentakdata of Ref.[24] and
assuming thafLacl] = 75nm [12, 24]. We caution, however, that our simulation results
cannot be directly compared iiovivo data, as the experimental conditions are quite different
in the two cases.

S6. Alexandrowicz chain generation

Chains were generated using a short-cut method proposetekgdrowicz [25, 26]. Briefly,
instead of generating entire chains, setd/gf, half-chains of lengtiL,,,, /2 were generated,
pairs of half-chains were then selected and joined endbte produceV;,, whole chains
of length L,,,,. Although this method sacrifices some independence betelesnents of
the generated chains, steps were taken to minimize thisteft@le maintaining a significant
computational speed-up. The sample sixg,,, was kept at or belowt0?, meaning each
time 10° half-chains were generatetl)® full chains were tested. Since typical simulations
tested on the order d0'° chains, sample set generation was done on the order dimes.
The Alexandrowicz method was validated by comparing a dulfgée results against those
of chain generation by using a non-Alexandrowicz methaal,(full-chain generation rather

than half-chain generation) (data not shown).
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S7. Monte Carlo algorithms

In order to increase further the efficiency of our samplinghud, all four looping topologies
were tested in parallel for each generated chain; moreeeegralL,,,, values were tested
for each generated chain. We chose to test loop lengths lorex helical repeats of DNA,
equivalent to a range of 15 of our segments. In order to actismitis without introducing
bias into our half-chain generation method, truncatedrchaiere generated by removing
one segment from alternating ends of the whole generatad.ckar example, suppose we
wish to test chains from 35-50 segments per loop. First, wmerg¢e a sample a¥,., half-
chains of length 25 segments. We choose two of these andhjem to make a whole chain
with segments numbered 1 through 50, and test it for loogm@Jl four possible binding
configurationg«, 3) = (11), (12), (21), (22). Then we remove segment 50 and test again
for looping (49 segment loop length), then remove segmentlest again (48 segment loop
length), and so on. In this way, each generated chain agtyigllded contributions to 60
different calculated quantities.

Looping, as defined by our method, is a rare event, esped@ilghort loop lengths
(about one in every0® chains meets the looping criteria). Accordingly, we introed a
method for splitting the problem into two separate partsictviive refer to as thév/K and
M /K’ algorithms (summarized in Fig. S3).

N/K algorithm First, we generate only the loop (interoperator) sectiathetether, to avoid
wasted computation time on the wall-to-loop and loop-taébesegments. As described in
Sect. S6, we use the Alexandrowicz method; thus we first géa&t,, half-chains. Creating
one whole chain from two chosen half-chains, we then testHhan against the looping
criteria described in Sect.5.3.2 and Sect. S4. If it passegjeclare it to be “looped” and
proceed; otherwise we incremefitand choose a new pair of half-chains and repeat. For the
few interoperator chains that do pass, we then generatethamning wal-(0,q entry), and
0O;—bead segments of the chain.

Finally, for every complete chain generated in this way westralso choose random
orientations for the starting end of the chain relative ®wlall. Only after choosing a chain—
wall orientation can we rotate every chain segment rigidly iits proper position relative
to the wall and check whether any segment collides with thik wgimilarly, a choice of
chain—bead orientation is needed before we can check whatlyechain segment, or the
wall, collides with the bead. For each complete generatathalie drew 1000 different pairs
of end orientations to check for steric clashes.

If the complete chain, wall, and bead satisfy all the stednstraints (no bead—chain,
bead-wall, or wall-chain overlap), we call the conformatitooped and allowed” and
incrementN. In any case, we incremeht. Once we repeat this process for the generated set
of (Ngen)? half-chains, we generate a new set and repeat. The restdtiogV/ K gives the
number of “looped and allowed” conformations, relativetie total number of tested chains.
But this ratio is not quite the quantity defined by Eqn. (5), because not all of the chains
tested would have given rise to allowed conformations.
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N /K Algorithm

Make Half-Chains

Increment N, K Increment K
Pick Two Halves

Build Interoperator

Section Not Looped

Looped

Build Full
Allowed Chain Not Allowed

M/ K’ Algorithm

Make Half-Chains

Increment N, K’ Increment K’
EiCk . Halvej
Build Full

Allowed Chain Not Allowed

Figure S3. Summary ofN/K and M /K' algorithms. Each dashed box corresponds
to the algorithm for a single set o¥,, half-chains. The chains are combined end-to-
end to formN,.,, whole chains. Each of these whole chains is tested to assgsag
and/or steric constraints depending on the algorithm bessgl. The resulting ratios
produced by each algorithm lead to a value for the diffee¢ntifactor via Eqn. (5).

M/K’" algorithm In principle, we could extenevery generated interoperator chain to a full
chain conformation, by always appending walD;; andO,—bead segments and wall-chain
and chain—bead orientations. Then we could count the numbehat are allowed, and
computeN/M, the quantity needed in Eqn. (5). In practice, this procedvusuld wastefully
generate many more complete conformations than are actuedided. Instead, we did a
separate side calculation 8f /K’. This algorithm is very similar to théV/ K algorithm,
except that we do not check for looping. Again we choose tWiedieins for the interoperator
region, plus the two flanking chains and orientations at #db and wall-ends. This time,
however, we only test whether each built chain is allowes, (it passes all steric constraints).
If it is allowed, we incremenfl/; in any case we incremet’. The resulting ratio of\// K’
gives the number of “allowed” chains relative to the totaier of tested chains; it requires
testing many fewer chains than the fl) K algorithm.

Combining the ratios from the two algorithmsy/K) x (M/K’)"", yields the ratio of
“looped and allowed” chains to total “allowed” chains, @sponding to the fraction in the
looped state; this quantity lets us calculdté in Eqn. (5), and hence thefactor via Eqn. (6).
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S8. Two alternative elastic models

8.1. Comparison to isotropic elasticity model

The results of the isotropic elasticity model were remalkaimilar to the those of the
anisotropic model (data not shown). To compare the isatropodel properly to the
anisotropic model used in the main text, we again followeal phocedure of Sect. 3.3 to
give the former the same persistence length as that usetddatter. This procedure, and
a representative choice for the ratio of twist to bend s#8es, yielded the elasticity matrix

44 0 0

Q = | © #4o | nm, which we used instead of Eqn. (3). The phasing (locatiomefrhinima)

0 0 80

of each looping topology was identical to that of the anigpit model, again, reinforcing the
idea that geometry, not choice of elasticity model, setsptising. On the other hand, the
magnitude of oscillations for the isotropic model were tolygwice those of the anisotropic
model for each topology. The isotropic model also predieigrly identical contributions of
individual topologies to the overall loopingfactor; or, more precisely, the values-efog .J

at each minimum for the four topologies are nearly identtcathose predicted from the
anisotropic model.

8.2. Homogeneous elastic model of Czapla et al.

For completeness, we briefly mention another elastic moéeationed in Ref. [26]. Although
that work mainly used an elastic model with sequence-deprere] at one point the authors
also proposed a simplified model similar to ours. This modasits interspersed “X-" and
“Z-"tracts. In our notation, the elastic matrix for “Z-"tcés was taken to be

48472 0 0
0  4.8472 54172 (S11)
0 54172 4.0972

The elastic matrix for “X-"tracts is the same without the-dfagonal terms.

Although Eqn. (S11) is similar in structure to our Eqgn. (3¢ note parenthetically that
when we use it to calculate the persistence length for tha&4, via the method outlined in
Sect. 3.3, we obtain 38n, which is much too small. We instead used the elasticityiheo
defined by Eqn. (3) in the present work.

1802
chapla = (034 nm) (—) X

™

$9. Cyclization

To check that our Monte Carlo algorithm was working propealyd that our mathematical
definitions of.J etc. were correct, we also computed the cyclizatiofactor and compared
to the classic analytical result of Shimada and Yamakawd [2@ do the calculation, we
modified our boundary conditions to require that, for a DNAfoomation to be considered
“looped,” its ends must coincide and have identical oritotes. There is no binding
degeneracy, and hence only one loop type (although as medtio the text, that type consists
of various topoisomers). We used the isotropic elasticibglel of Sect. S8.1 because that was



Supplement: DNA looping in TPM 17
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cyclization

J Factor (M)
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Figure 4. Red dots: Cyclization.J factor, computed with an isotropic elasticity model.
Blue dashed line: Analytic calculation of/ from Ref. [27], using = 44 nm and twist
persistence- 80 nm. For comparison, thielack line shows our result for the overall
looping J factor (identical to the black line in Fig. 9).

the model used by Shimada and Yamakawa, and we substitigemtresponding values of
bend and twist stiffness into their formula, yielding Fig.SThe figure shows an absolute
comparison; no arbitrary rescaling or shifting was donertogothe graphs into agreement.
Thus although the mathematical approach and approxinsatiaale in [27] are quite different
from ours, the calculations are in rough agreement overeraf{pop lengths that we study.

Comparing cyclization to Lacl-mediated looping, we seet tfl@ each value of
interoperator spacing the loopindfactor is larger, particularly at shakf,.,. This difference
reflects the lower elastic strain energy for the looping latzaum conditions. We also note that
adding the four looping topologies largely cancels theqaici modulation in the looping
factor; no such cancellation can occur in the cyclizaticseca
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