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The genome has presented biologists with 
an opportunity to study genetic processes 
on a genomic scale, and to achieve quantita-
tive understanding, not just of individual 
molecular mechanisms but also of their 
interactions and regulation at the systems 
level. The transformation of biology into 
a fully quantitative, theory-rich science 
now seems inevitable, if not yet quite 
within reach.

These developments have produced a 
challenge to the educational system. It is 
clear that the future of biology will require 
combinations of skills that are rarely found 
in individual scientists today. The existing 
educational system teaches biologists very 
few mathematical or computational skills, 
and gives scientists with backgrounds in 
physics and informatics comparably limited 
exposure to even the most basic biological 
phenomena and principles. The problem 
begins early in undergraduate education, 
and by the doctoral level there are severe 
interdisciplinary communication difficul-
ties that are encountered by even the most 
motivated of collaborators1.

An integrated science curriculum
At Princeton, we have begun to address 
the educational challenges at both the 
undergraduate and the graduate levels. 
Our goal, at each level, is to equip students 
to succeed across scientific disciplines using 
the language and mathematics appropriate 
to each. To this end, we are teaching courses 

that integrate subjects that were tradition-
ally taught separately, such as mathematics, 
physics, chemistry and biology. We are 
finding that, at the undergraduate level, 
integration works best when it is initiated 
in the first year of college. An integrated 
science curriculum, taught at the level of 
the most challenging physics, computation, 
chemistry, and biology courses, serves to 
bring the students to a level of sophistica-
tion that allows them to major in any of the 
sciences.

At the graduate level the problem is more 
difficult as the students have already differ-
entiated to some extent and view themselves 
as, for example, physicists, chemists or 
biologists. We find that first-year graduate 
students already have some lacunae in 
their education: the biologists have had 
limited education in physics, computation 
and mathematics, and the physical and 
compu tational scientists have little or no 
biology at their command. The temptation 
is to prescribe remedial undergraduate 
courses; however, this approach does not 
appeal to graduate students. Our alter native 
is to begin with an integrated graduate 
course in quantitative biology.

We teach a single course to a popula-
tion that consists of approximately equal 
numbers of graduate students in biology 
and physics, mostly in their first or second 
years. These students are interested in the 
interface between biology and quantitative 
science (FIG. 1). We meet with the students 
together, in a seminar format, having 
assigned two papers — often classics — that 
use sophisticated quantitative methods and 
concepts to study biological problems. 
We discuss the papers in detail, but not nec-
essarily in the original order of presentation, 
for almost three hours. We use, with some 
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Back to the future: education 
for systems-level biologists
Ned Wingreen and David Botstein

Abstract | We describe a graduate course in quantitative biology that is based on 
original path-breaking papers in diverse areas of biology; each of these papers 
depends on quantitative reasoning and theory as well as experiment. Close reading 
and discussion of these papers allows students with backgrounds in physics, 
computational sciences or biology to learn essential ideas and to communicate in 
the languages of disciplines other than their own.

Figure 1 | Taking integrated systems biology a step too far.
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Things one hears...

“Life science students need to study physical 
science so that they can learn to model their data.”

“And physical science students will need a job 
some day, so they need to study life science.”

 “Students don’t need extensive discussion of 
historical examples of discovery.  After all, they’re 
really not likely to go breaking any big paradigms. 
They’re more likely to become grunts.”

 “As such they need training in how to be good 
grunts who work effectively in teams … know the 
ins and outs of grant writing… ethics… animal 
treatment…”

... explicitly or not. 
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Some goals

 I do think an interdisciplinary lecture course can be useful if a 
practitioner of one discipline shows students pursuing a different 
discipline how his methods have been useful in solving problems of 
independent interest in the other field.

There are some good reasons to make this an intermediate-level 
(sophomore+) course, not a tweak of freshman physics-for-
premeds.

It’s good to frame topics around “how could anything like that 
possibly happen” puzzles.

Here are some details.

So much for what I don’t think are the right goals.
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What do we really want 
our undergrads to get, as 
early as possible?

“Nature uses only the longest threads to weave her 
patterns, so each small piece of her fabric reveals the 
organization of the entire tapestry.” --- Richard Feynman

Science needs 
imagination:

“We all know that Art is not truth. Art is a lie that makes us 
realize the truth.”  ---  Pablo Picasso

Science involves 
modeling:

“Seek simplicity, and distrust it.” --- Alfred North WhiteheadImagination must be 
coupled to discipline:

“A single number has more genuine and permanent value 
than an expansive library full of hypotheses.” --- Robert 
Mayer, 1814--1878

Quantitative models are 
the most falsifiable:

Tuesday, February 5, 2008
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Specific goals
In the course we study some classic case studies of successful reductionistic models of complex 
phenomena, emphasizing the key steps of (1) making estimates, often based on dimensional 
analysis, (2) using them to figure out which physical variables and phenomena will be most 
relevant to a given system, and which may be disregarded, and (3) finding analogies to purely 
physical systems whose behavior is already known. By the way, these are the skills most valued in 
students who go on to careers outside pure science.

A model is a distillation of the known relevant behavior of a system into just a few rules. A good 
model can help us see the forest for the trees; in Picasso's phrase, it is ``the lie that makes us realize 
the truth.'' But as scientists, we want to take our existing models and poke them, looking for soft 
spots. We want to look for biologically relevant, incompletely tested aspects of the model. We want 
to find its falsifiable predictions, then devise uncluttered experiments that bear as directly as 
possible on those predictions. Quantitative predictions are often the sharpest tool for poking a model.

The course develops many ideas from probability theory. But it's not a course on descriptive 
statistics, the design of clinical trials, and so on. Rather we'll look at case studies where important 
insights into biological systems emerged from an appreciation of the intrinsically random nature of the 
interactions in complex systems. Along the way we introduce some of the key ideas of biological 
physics, for example the concept of random walks.

Long ago, in a course like this we'd have to be content with me telling students what faraway people 
had done; they couldn't roll up your sleeves and do the actual science themselves, because it was 
too difficult to make computers do anything. Luckily all that has changed. We learned and used 
Matlab. Whatever students may do in science after this course, the skills they get with Matlab will 
be useful to them.
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Bacterial genetics

506 S. E. LUNA AND M. DELBRtfCK 

rate per bacterial generation is independent of the physiological state of the 

bacteria may be too simple. If the mutation rate is higher for actively growing 

bacteria than for bacteria near the saturation limit of the cultures, early muta- 

tions and big clone sizes will be favored, and therefore higher variations of the 

numbers of resistant bacteria can be expected. Second, the assumption of a 

sudden transition from sensitivity to resistance may also be too simple. It is 
conceivable that the character “resistance to virus” may not fully develop in 

the bacterial cell in which the mutation occurs, but only in its offspring, after 

one or more generations. However, if this were the case, cultures with only one 

or two resistant bacteria should be relatively rare. The last experiment listed 

in table 3, in which the entire cultures were plated, shows a rather high propor- 

tion of cultures with only one resistant bacterium. This seems to show that the 
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FIGURE z.-Experimental (Experiment No. 23) and calculated distributions of the numbers 

of resistpt bacteria in a series of similar cultures. Solid columns: experimental. Cross-hatched 

columns: calculated. 

character “resistance to virus” in general does come to expression in the bac- 

terial cell in which the corresponding mutation occurred, as assumed by the 

theory. 
Another way of comparing the experimental results with the theory is to 

compare the experimental distribution of resistant bacteria with the approxi- 

mate distribution calculated by the method outlined a t  the end of the theo- 

retical part. The theoretical distribution has to be calculated from the aver- 

age number of mutations per culture given by equation (5 ) .  Only experi- 

ments wheqe the whole culture is tested can therefore be used for such a 
comparison. This method tests the fitting of the expectations for small numbers 

of resistant bacteria, in contrast to the comparison of the standard deviations, 
which involves predominantly the cultures with high numbers of resistant 
bacteria. 

Figure 2 shows the experimental and calculated distributions for Experi- 

ment No. 23; the cultures with more than nine resistant bacteria are lumped 
together in one class, since the distribution has not been calculated for values 
higher than nine. 

It is seen that the fitting for small values is satisfactory. In  particular, the 

Luria & Delbruck, 1947

•Luria and Delbruck noticed a statistical peculiarity in their data -- a 
huge tail. They came up with a “Mendel, not Lamarck” model for 
resistance, and detailed quantitative predictions for such distributions 
that distinguished their model from the alternative.
•They had to work very, very hard. But now it’s trivial for students to 
simulate in Matlab.
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Vision

Data from S. Hecht et al

•Hecht et al measured the probability of seeing a flash vs intensity. They 
were led from this information to the conclusion that single photons can 
excite rod cells, and that a quorum of >N simultaneous rod-cell firings is 
registered consciously.
•Students can fit their data in Matlab and find N.

A complex system, impossibly 
difficult to understand.
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Genetic switching

Monod 1949

Monod found something funny 
in the growth of bacteria in 
mixed medium.
He ended up with the operon 
model.

Could bacteria somehow be 
implementing a two-state switch 
like the ones that changed human 
civilization in the 20th century?

Tuesday, February 5, 2008



Switching, II
Students can write a model of 
two mutually repressing 
genes, make the phase-plane 
analysis, and find the region of 
bistability in Matlab.

Gene Regulation at the
Single-Cell Level

Nitzan Rosenfeld,1* Jonathan W. Young,3 Uri Alon,1

Peter S. Swain,2* Michael B. Elowitz3.

The quantitative relation between transcription factor concentrations and the
rate of protein production from downstream genes is central to the function
of genetic networks. Here we show that this relation, which we call the gene
regulation function (GRF), fluctuates dynamically in individual living cells,
thereby limiting the accuracy with which transcriptional genetic circuits can
transfer signals. Using fluorescent reporter genes and fusion proteins, we
characterized the bacteriophage lambda promoter PR in Escherichia coli. A
novel technique based on binomial errors in protein partitioning enabled
calibration of in vivo biochemical parameters in molecular units. We found
that protein production rates fluctuate over a time scale of about one cell
cycle, while intrinsic noise decays rapidly. Thus, biochemical parameters,
noise, and slowly varying cellular states together determine the effective
single-cell GRF. These results can form a basis for quantitative modeling of
natural gene circuits and for design of synthetic ones.

The operation of transcriptional genetic cir-
cuits (1–5) is based on the control of pro-
moters by transcription factors. The GRF is
the relation between the concentration of
active transcription factors in a cell and the

rate at which their downstream gene products
are produced (expressed) through transcrip-
tion and translation. The GRF is typically
represented as a continuous graph, with the
active transcription factor concentration on
the x axis and the rate of production of its
target gene on the y axis (Fig. 1A). The shape
of this function, e.g., the characteristic level of
repressor that induces a given response, and
the sharpness, or nonlinearity, of this response
(1) determine key features of cellular behavior
such as lysogeny switching (2), developmen-
tal cell-fate decisions (6), and oscillation (7).
Its properties are also crucial for the design
of synthetic genetic networks (7–11). Cur-
rent models estimate GRFs from in vitro

data (12, 13). However, biochemical parame-
ters are generally unknown in vivo and could
depend on the environment (12) or cell history
(14, 15). Moreover, gene regulation may vary
from cell to cell or over time. Three funda-
mental aspects of the GRF specify the behav-
ior of transcriptional circuits at the single-cell
level: its mean shape (averaged over many
cells), the typical deviation from this mean,
and the time scale over which such fluctua-
tions persist. Although fast fluctuations should
average out quickly, slow ones may introduce
errors in the operation of genetic circuits and
may pose a fundamental limit on their ac-
curacy. In order to address all three aspects, it
is necessary to observe gene regulation in in-
dividual cells over time.

Therefore, we built Bl-cascade[ strains of
Escherichia coli, containing the l repressor
and a downstream gene, such that both the
amount of the repressor protein and the rate
of expression of its target gene could be
monitored simultaneously in individual cells
(Fig. 1B). These strains incorporate a yellow
fluorescent repressor fusion protein (cI-yfp)
and a chromosomally integrated target pro-
moter (PR) controlling cyan fluorescent pro-
tein (cfp). In order to systematically vary
repressor concentration over its functional
range (in logarithmic steps), we devised a
Bregulator dilution[ method. Repressor pro-
duction is switched off in a growing cell, so
that its concentration subsequently decreases
by dilution as the cell divides and grows into
a microcolony (Fig. 1C). We used fluores-
cence time-lapse microscopy (Fig. 1D; fig.
S1 and movies S1 and S2) and computational
image analysis to reconstruct the lineage tree
(family tree) of descent and sibling relations
among the cells in each microcolony (fig.

1Departments of Molecular Cell Biology and Physics
of Complex Systems, Weizmann Institute of Science,
Rehovot, 76100, Israel. 2Centre for Non-linear Dy-
namics, Department of Physiology, McGill University,
3655 Promenade Sir William Osler, Montréal, Québec,
Canada, H3G 1Y6. 3Division of Biology and Depart-
ment of Applied Physics, Caltech, Pasadena, CA 91125,
USA.

*These authors contributed equally to this work
.To whom correspondence should be addressed.
E-mail: melowitz@caltech.edu

Fig. 1. Measuring a
gene regulation func-
tion (GRF) in individual
E. coli cell lineages. (A)
The GRF is the depen-
dence of the produc-
tion rate of a target
promoter ( y axis) on
the concentration of
one (or more) tran-
scription factors (x ax-
is). (B) In the l-cascade
strains (16) of E. coli,
CI-YFP is expressed
from a tetracycline
promoter in a TetRþ
background and can
be induced by anhydro-
tetracycline (aTc). CI-
YFP represses produc-
tion of CFP from the PR
promoter. (C) The reg-
ulator dilution experi-
ment (schematic): Cells are transiently induced to express CI-YFP and then
observed in time-lapse microscopy as repressor dilutes out during cell growth
(red line). When CI-YFP levels decrease sufficiently, expression of the cfp target
gene begins (green line). (D) Snapshots of a typical regulator dilution

experiment using the OR2*–l-cascade strain (see fig. S3) (16). CI-YFP protein
is shown in red and CFP is shown in green. Times, in minutes, are indicated on
snapshots. (Insets) Selected cell lineage (outlined in white). Greater time
resolution is provided in fig. S1.
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It’s not speculation -- now the 
transfer functions of each 
element have been measured. The 
era of synthetic biology has 
arrived.

Rosenfeld et al 2005

Tuesday, February 5, 2008



Macromolecules are physical 
objects

Cartoon:  B. Dodson

Allostery can implement a 
control strategy.

Students can use molecular visualization software 
to look at structure and see clues to function for 
themselves.

PDB picture from D Swigon et al. PNAS 2006.
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Random walks

a b

Simple walk: Sampled walk: Real Brownian motion:

Students can simulate a random walk, then run it again and again to grasp 
the generic similarity of these figures despite the fact that they’re always 
different in detail.
Then they can find the mean-square displacement to confirm the diffusive 
law.

P Nelson, Biological Physics, updated ed 2008.
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Diffusion

We can show that the 
diffusive flux of oxygen to a 
bacterium is limited by its 
size. But that derivation is a 
bit abstract.  We don’t see 
the oxygen molecules.

Students can simulate random walks in Matlab and find the diffusive flux to an 
absorbing sphere. They can then find the flux to a reflecting sphere with absorbing 
patches -- a calculation they cannot do analytically, and one with big implications 
(Berg and Purcell).

Tuesday, February 5, 2008



Polymer statistics

Ruth Kavenoff, reprinted in Phillips, 
Kondev, and Theriot, Physical 
Biology of the Cell (2009).

Random walks are ubiquitous in biological 
physics. Once you learn something interesting 
about diffusion, suddenly you’ve got something 
about elastic energy storage in insect wings.

P Nelson Biological Physics (updated ed. 2008).

308 Chapter 9. Cooperative transitions in macromolecules [[Production manuscript April 22, 2007]]
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Figure 9.5: (Experimental data with fits.) Log-log plot of relative extension z/Ltot at low applied stretching

force f for lambda phage DNA in 10 mM phosphate buffer. The points show experimental data corresponding to the

regimes A–B in Figure 9.4. The curves show various theoretical models discussed in the text. For comparison, the

value of Lseg has been adjusted in each model so that all the curves agree at low force. Top curve: One-dimensional

freely jointed chain (Equation 9.10), with L(1d)
seg = 35 nm. Long-dash curve: One-dimensional cooperative chain (see

Your Turn 9H (b)), with L(1d)
seg held fixed at 35 nm and γ very large. Short-dash curve: Three-dimensional FJC (Your

Turn 9O ), with Lseg = 104 nm. Black curve through data points: Three-dimensional elastic rod model (Section 9.4.1′

on page 339), with A = 51 nm. [Data kindly supplied by V. Croquette; see also Bouchiat et al., 1999.]

9.3 Eigenvalues for the impatient

Section 9.4 will make use of some mathematical ideas not always covered in first-year calculus.

Luckily, for our purposes only a few facts will be sufficient. Many more details are available in

Shankar, 1995.

9.3.1 Matrices and eigenvalues

As always, it’s best to approach this abstract subject through a familiar example. Look back at

our force diagram for a thin rod being dragged through a viscous fluid (Figure 5.8 on page 153).

Suppose, as shown in the figure, that the axis of the rod points in the direction t̂ = (x̂ − ẑ)/
√

2;

let n̂ = (x̂ + ẑ)/
√

2 be the perpendicular unit vector. Section 5.3.1 stated that the drag force

will be parallel to the velocity v if v is directed along either t̂ or n̂, but that the viscous friction

coefficients in these two directions, ζ⊥ and ζ‖, are not equal: The parallel drag is typically 2
3 as

great as ζ⊥. For intermediate directions, we get a linear combination of a parallel force proportional

to the parallel part of the velocity, plus a perpendicular force proportional to the perpendicular

part of the velocity:

f = ζ‖t̂(t̂ · v) + ζ⊥n̂(n̂ · v) = ζ⊥
(

2
3 t̂(t̂ · v) + n̂(n̂ · v)

)
. (9.12)

This formula is indeed a linear function of vx and vz, the components of v:

Students can take simple models motivated by 
macroscopic mechanics, add thermal motion, and get 
connection to recent experimental data on single 
molecules.
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Genetic drift
Genetic drift is also a random walk -- with non-constant 
“diffusion constant.” Kimura had to work very, very hard to 
solve this model, but it led to the very important result that 
probability of fixation is proportional to 1/(population).
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Students can trivially simulate 
this system and obtain this 
result in Matlab.
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Proteomics

Noble et al FEBS 2005

If you’re looking at an unknown gene, and it 
resembles a lot of kinase genes, then maybe 
it’s a kinase.
But resemblance can be hard to spot. 
Nonlocal sequence homologies can be 
important.
Diffusive processes on graphs can tease out 
those nonlocal aspects.

Well, that’s yet another random-walk 
problem. It’s also the basis of the Google 
PageRank algorithm.
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Often we just stop after merely showing that physics “works.” We must 
keep the intrinsic interest of the results and tools front and center.

Usually our textbooks are devoid of real experimental data. Students need 
to see real data because it’s not as nice as fake data, and yet nevertheless 
sometimes strong conclusions can be drawn from it.

In our urgent desire to get the basics down, we often forget to put in 
current discoveries, with appropriate links to the basics.

We theorists sometimes overdo the theory:

First clean up our own act
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Last word

Remember to have fun yourself. Students feel it.
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