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String
compactifications

10D supergravity

M10 = M4 ×w M6

Fluxes and branes

...

(Scientific American)
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Background and motivation

Topology of landscape:

How many vacua?

Distribution of vacua?

Barriers between vacua?

Cosmological questions:

Cosmological constant?

Inflation?

Vacuum stability (classical/quantum)?

Type IIB on warped CY manifolds.

Mathematically tractable.

Moduli stabilisation.

Sequences of connected vacua.
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Type IIB compactifications

Some CY geometry Candelas, de la Ossa:91, ...

Complex structure ∼ Holomorphic 3-form Ω ∼ 3-cycles
Kähler structure ∼ Real 2-form J ∼ 2,4-cycles
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Type IIB compactifications

Some CY geometry Candelas, de la Ossa:91, ...

Periods: ΠI (z) =
∫
CI

Ω(z) =
∫
M CI ∧ Ω(z)

collected in vector: Π(z) =




ΠN(z)
ΠN−1(z)

...
Π0(z)




Intersection matrix: QIJ =
∫
CI
CJ =

∮
M CI ∧ CJ

CS moduli space is (special) Kähler

Kcs = − ln

(
i
∫
M

Ω ∧ Ω̄

)
= − ln

(
iΠ† · Q−1 · Π

)
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Type IIB compactifications

Fluxes Giddings, Kachru, Polchinski hep-th/0105097

Break SUSY: N = 2→ N = 1

Warp geometry

Flux vector: G = F − τH

Gukov–Vafa–Witten superpotential:

W (z , τ) = G · Π

Kähler potential:

K = − ln (−i(τ − τ̄)) + Kcs (z , z̄)− 3 ln (−i(ρ− ρ̄))

Scalar potential:

V = eK
(
g i ̄DiWD̄W̄ + gττ̄DτWDτ̄W̄

)
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Type IIB compactifications

Kähler moduli
Not stabilised at classical level.

W : non-perturbative corrections.
K : perturbative and non-perturbative corrections.

=⇒ SUSY and non-SUSY vacua:
KKLT Kachru et. al. hep-th/0301240
LARGE volume scenarios Balasubramanian et. al. hep-th/0502058,

Conlon et. al. hep-th/0505076 ...

Warping

Suppressed at large volume.
Important around special points in moduli space.
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Landscape topography
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Vacuum sequences Danielsson, Johansson, ML hep-th/0612222

Chialva et. al. 0710.0620

Monodromies:

Π(z)→ T · Π(z)

C

z

10

T TLCS

W = G · Π→ G · T · Π Kcs → Kcs

Dual description: Π fixed, G → G · T .
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Vacuum sequences Danielsson, Johansson, ML hep-th/0612222

Johnson, ML 0805.3705

V

VHMVHM

T FV
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Vacuum sequences Braun, Johansson, ML, Walliser 1108.1394

Is there a bound on the sequence length?
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Finiteness and D-limits

No-go theorem Ashok, Douglas hep-th/0307049

ISD vacua: DτW = DiW = 0 ⇔ ∗G(3) = iG(3)

Tadpole condition:

〈F(3),H(3)〉 =
∫
M F(3) ∧ H(3) ≤ Lmax

〈F(3),H(3)〉 = i
2 Im τ 〈Ḡ(3),G(3)〉

= 1
2 Im τ 〈Ḡ(3), ∗G(3)〉 = N̂T ·(Gτ⊗Gz)·N̂ ≥ 0

where N̂ = (F ,H).
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Finiteness and D-limits

Tadpole condition, ISD vacua: 0 ≤ N̂T · (Gτ ⊗ Gz) · N̂ ≤ Lmax

If bounded (Gτ ⊗ Gz) eigenvaules: Λi (z , τ) > ε

=⇒ Admissible N̂ : N̂2 ≤ Lmax/ε Finite number of vacua.

Evade no-go: find (z , τ) such that Λi (z , τ) = 0 D-limit.

D-limits
Gτ : Decoupling limit Im τ →∞
Gz : LCS and conifold loci.



Sequences of Type
IIB String Vacua

Magdalena Larfors

Background and
motivation

Type IIB
compactifications

Vacuum sequences

Finiteness and
D-limits

Statistical studies

Finiteness and
Warping

Conclusions and
outlook

Finiteness and D-limits: One-parameter models

Refined no-go theorem: LCS (w. bounded Gτ -eigenvalues)

Let t ∼ −i log z , LCS point is at t2 = Im t →∞
Infinite sequence:

limn→∞(t2)n =∞ N̂n · Gτn ⊗ Gtn · N̂T
n 6=∞

=⇒ Fn · wn
j = O(1/

√
λnj ) Hn · wn

j = O(1/
√
λnj )

LCS limit: can compute Gtn -eigenvalues and -vectors λnj ,w
n
j

λ1 = a11 t3
2 + O

(
t2
)
, wT

1 =
[

1,O
(
t
−2
2

)
,O

(
t
−4
2

)
,O

(
t
−6
2

)]
λ2 = a22 t2 + O

(
t
−1
2

)
, wT

2 =
[
O
(
t
−2
2

)
, 1,O

(
t
−2
2

)
,O

(
t
−4
2

)]
λ3 =

a33

t2

+ O
(
t
−2
2

)
, wT

3 =
[
O
(
t
−4
2

)
,O

(
t
−2
2

)
, 1,O

(
t
−2
2

)]
λ4 =

a44

t3
2

+ O
(
t
−5
2

)
, wT

4 =
[
O
(
t
−6
2

)
,O

(
t
−4
2

)
,O

(
t
−2
2

)
, 1
]

=⇒ F 0
n = F 1

n = H0
n = H1

n = 0 for large n =⇒ 〈F(3),H(3)〉 = 0
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Finiteness and D-limits: One-parameter models
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Finiteness and D-limits

One-parameter models: decoupling limit and conifold

No infinite sequences:

Decoupling limit Im τ →∞ (also for more cs moduli)

Conifold locus (disclaimer: warping neglected)

Two-parameter model

Checked particular LCS limit: no infinite sequences.
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Statistical studies Ashok, Douglas hep-th/0307049,

Denef, Douglas hep-th/0404116, Giryavets et. al. hep-th/0404243,
Eguchi, Tachikawa hep-th/0510061, Acharya, Douglas hep-th/0606212,

Torroba hep-th/0611002

Statistical distribution of flux vacua:

dNvac(z) ∼ det (R(z) + ω(z))

where the relevant constants µ0, µ1, µ2 and µ3 are given by

µ0 = i(2π)6(a0c0 − c0a0), µ1 = i(2π)6(c0a1 − c1a0 − d1b0),

µ2 = (2π)5|d1|2, µ3 = i(2π)6(c1a1 − a1c1 + d1b1 − b1d1).
(5.4)

One finds the following expression for the Kähler metric

gxx = −µ2

µ0
ln |x|2 +

( |µ1|2
µ2

0

− 2µ2 + µ3

µ0

)
+ O(|x| ln |x|). (5.5)

Then the curvature form is

Rxx =
1

4|x|2
1

(ln |x| + C)2
, (5.6)

where the constant C is determined to be

C = 1 − |µ1|2
2µ0µ2

+
µ3

2µ2
≈ −0.738. (5.7)

In computing Kähler covariantized derivatives with respect to ψ, it is also useful to note

that

∂xKψ = −µ1

µ0
− µ2

µ0
x ln |x|2 + O(x). (5.8)

5.2. Distribution of flux vacua
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Fig. 3: Each point is a vacuum on the x = 1 − ψ complex plane. The monte carlo

simulation data is: number of random fluxes N = 5 × 107; random flux interval

f, h ∈ (−100, 100); complex structure ψ space region |x| < 0.04. There are 11249

vacua, but 6306 of them arise at |x| < .00001 and have been removed from the plot

(they would all cluster at the origin).

14

ρ
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Finiteness and Warping Ahlqvist et. al. 1202.3172,

Giryavets et. al. hep-th/0404243

Giddings Maharana hep-th/0507158, Douglas et. al. 0704.4001,...
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Fig. 4: The plot of a numerical evaluation of
∫

M 2πi c1(ψ). The monte carlo

simulation data for each point is: number of random fluxes N = 107; random flux

interval f, h ∈ (−60, 60). The data is fit by the curve − 200000
ρ+C

, where ρ = ln r. The

conifold point r = 0 is at ρ = −∞ for this coordinate.
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Fig. 5: The numerical results for the number of vacua with Nflux < L for L ∈
(1, 972). The monte carlo simulation data is: number of random fluxes N = 1010;

random flux interval f, h ∈ (−200, 200); complex structure ψ space region |x| <

0.001. The data is fit by the curve L3

165000
.

15

log|ρ|

DρW = 0 =⇒
|ρ| ∼ exp

(
− A(F ,H)

B(F ,H)

)
Figure 2: A comparison between numerical and analytical distributions. Red circles mark the
numerical data while the blue curve is the integrated analytical distribution. Distance from the
conifold |ξ| is plotted on a log scale on the horizontal axis, while the vacuum count is plotted on
the vertical axis.

Consider equation (88), which now only depends on θ. Under the assumption that there is only
one near conifold vacuum for each set of fluxes, the left hand side must either start out positive,
and go negative or vice versa. To find the zero-crossing, we divide the region [0, 2π] into two
equally pieces and then determine in which region (if any) equation (88) changes sign. If such a
region is found, we apply the same method to that region, splitting it into two smaller intervals,
continuing in this way until we reach a predetermined level of accuracy. There are two relevant
comments. First, in equation (91) it is not clear that the value of ρ is real, or even positive. We
must therefore exclude the regions where ρ is either negative or complex. Fortunately, if ρ is real,
it is never negative since W (x) must have the same sign as x. A necessary and sufficient condition
for ρ to be real is that the argument of the Lambert W function is greater than or equal to −1/e.
This means that the relevant region to begin with may not be the entire interval [0, 2π]. Second,
it turns out that the Lambert W function has two real branches for arguments between −1/e and
0. Thus, both of these branches must be considered.

To better compare the numerical and analytical and numerical distributions, we fix τ and then

23

log|ρ|

Dw
ρW

w = 0 =⇒
|ρ| ∼ exp

(
− C(F ,H)

VCY A(F ,H)

)

Vacua pushed away from conifold.
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Conclusions and outlook

Conformal CY compactifications of type IIB string theory.

Infinite sequences of vacua only possible in D-limits

One-parameter CY:

LCS and decoupling limit: finite
Conifold: finite (w/w.o. warping)

Agrees with statistical result.

To do-list and open questions:

Multiple D-limits, CY with more parameters...

Vacuum properties: stability, CC, ...

Landscape dynamics

Inflation Yang 1202.3388

Quantum stability Johnson, ML 0805.3705, ...,

Ahlqvist et. al. 1011.6588

Kähler moduli
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