

Sequences of Type IIB String Vacua

Magdalena Larfors

Background and motivation

Type IIB compactifications

Vacuum sequences

Finiteness an D-limits

Statistical studies

Finiteness and Warping

Conclusions and outlook

Sequences of Type IIB String Vacua

Magdalena Larfors

Ludwig-Maximilians Universität, München

"New Ideas at the Interface of Cosmology and String Theory"

UPenn, 17.03.2012.

Background and motivation

Sequences of Type IIB String Vacua

Magdalena Larfors

Background and motivation

Type IIB compactifications

Vacuum sequences

Finiteness an D-limits

Statistical studies

Finiteness and Warping

Conclusions and outlook

String compactifications

- 10D supergravity
- $M_{10} = M_4 \times_w M_6$
- Fluxes and branes

• ..

Background and motivation

Topology of landscape:

- How many vacua?
- Distribution of vacua?
- Barriers between vacua?

Cosmological questions:

- Cosmological constant?
- Inflation?
- Vacuum stability (classical/quantum)?

Type IIB on warped CY manifolds.

- Mathematically tractable.
- Moduli stabilisation.
- Sequences of connected vacua.

Sequences of Type IIB String Vacua

Magdalena Larfors

Background and motivation

Type IIB compactifications

Vacuum sequences

Finiteness an D-limits

Statistical studies

Finiteness and Warping

Conclusions and outlook

Type IIB compactifications

Sequences of Type IIB String Vacua

Magdalena Larfors

Background and motivation

Type IIB compactifications

Vacuum sequences

Finiteness an D-limits

Statistical studies

Finiteness and Warping

Conclusions and outlook

Some CY geometry	/	Candelas, de la Ossa:91,		
Complex structure Kähler structure	~ ~	Holomorphic 3-form Ω Real 2-form J	~ ~	3-cycles 2,4-cycles

Typ cor

Type IIB compactifications

	9	Some CY geometry	Candelas, de la Ossa:91,
equences of Type IB String Vacua		Periods:	$\Pi_{I}(z) = \int_{\mathcal{C}_{I}} \Omega(z) = \int_{\mathcal{M}} \mathcal{C}_{I} \wedge \Omega(z)$
agdalena Larfors kground and ivation e IIB spactifications uum sequences		collected in vector:	$\Pi(z) = \begin{pmatrix} \Pi_N(z) \\ \Pi_{N-1}(z) \\ \vdots \\ \vdots \\ \Pi_{N-1}(z) \end{pmatrix}$
teness and mits tistical studies teness and ping		Intersection matrix:	$Q_{IJ} = \int_{C_I} C_J = \oint_{\mathcal{M}} C_I \wedge C_J$

CS moduli space is (special) Kähler

$$\mathcal{K}_{cs} = -\ln\left(i\int\limits_{\mathcal{M}}\Omega\wedgear\Omega
ight) = -\ln\left(i\Pi^{\dagger}\cdot Q^{-1}\cdot\Pi
ight)$$

Type IIB compactifications

Fluxes

Giddings, Kachru, Polchinski hep-th/0105097

- Break SUSY:
- Warp geometry

Sequences of Type **IIB String Vacua** Magdalena Larfors

Type IIB compactifications

$$\mathcal{N}=2
ightarrow \mathcal{N}=1$$

Flux vector:

$$G = F - \tau H$$

Gukov–Vafa–Witten superpotential:

$$W(z,\tau) = G \cdot \Pi$$

Kähler potential:

$$\mathcal{K} = -\ln\left(-i(\tau-ar{ au})
ight) + \mathcal{K}_{\mathrm{cs}}\left(z,ar{z}
ight) - 3\ln\left(-i(
ho-ar{
ho})
ight)$$

Scalar potential:

$$V = e^{K} \left(g^{i\bar{\jmath}} D_{i} W D_{\bar{\jmath}} \bar{W} + g^{\tau\bar{\tau}} D_{\tau} W D_{\bar{\tau}} \bar{W} \right)$$

Type IIB compactifications

Sequences of Type IIB String Vacua

Magdalena Larfors

Background and motivation

Type IIB compactifications

Vacuum sequences

Finiteness an D-limits

Statistical studies

Finiteness and Warping

Conclusions and outlook

Kähler moduli

Not stabilised at classical level.

- W: non-perturbative corrections.
- K: perturbative and non-perturbative corrections.

 \implies SUSY and non-SUSY vacua:

KKLT LARGE volume scenarios Kachru *et. al.* hep-th/0301240 Balasubramanian *et. al.* hep-th/0502058,

Conlon et. al. hep-th/0505076 ...

Warping

Suppressed at large volume. Important around special points in moduli space.

Sequ	iences	of	Туре
IIB	String	V	acua

Magdalena Larfors

Background and motivation

Type IIB compactifications

Vacuum sequences

Finiteness an D-limits

Statistical studies

Finiteness and Warping

Conclusions and outlook

Landscape topography

Vacuum sequences

Danielsson, Johansson, ML hep-th/0612222

Chialva et. al. 0710.0620

$$W = G \cdot \Pi \rightarrow G \cdot T \cdot \Pi \qquad K_{cs} \rightarrow K_{cs}$$

Dual description: Π fixed, $G \rightarrow G \cdot T$.

Vacuum sequences

Danielsson, Johansson, ML hep-th/0612222

Johnson, ML 0805.3705

Magdalena Larfors

Background and motivation

Type IIB compactifications

Vacuum sequences

Finiteness an D-limits

Statistical studies

Finiteness and Warping

Conclusions an outlook

Vacuum sequences

Braun, Johansson, ML, Walliser 1108.1394

Finiteness and D-limits

Sequences of Type **IIB String Vacua**

Magdalena Larfors

Finiteness and D-limits

No-go theorem Ashok, Douglas hep-th/0307049 $D_{\tau}W = D_{i}W = 0 \quad \Leftrightarrow \quad *G_{(3)} = iG_{(3)}$

Tadpole condition:

ISD vacua:

$$\langle F_{(3)},H_{(3)}
angle = \int_{\mathcal{M}}F_{(3)}\wedge H_{(3)}\leq L_{max}$$

$$\begin{split} \langle F_{(3)}, H_{(3)} \rangle &= \frac{i}{2 \, \text{Im} \, \tau} \langle \bar{G}_{(3)}, G_{(3)} \rangle \\ &= \frac{1}{2 \, \text{Im} \, \tau} \langle \bar{G}_{(3)}, *G_{(3)} \rangle = \hat{N}^T \cdot (\mathcal{G}_\tau \otimes \mathcal{G}_z) \cdot \hat{N} \ge 0 \\ \end{split}$$
where $\hat{N} = (F, H).$

Finiteness and D-limits

Sequences of Type IIB String Vacua

Magdalena Larfors

Background and motivation

Type IIB compactifications

Vacuum sequences

Finiteness and D-limits

Statistical studies

Finiteness and Warping

Conclusions and outlook

Tadpole condition, ISD vacua: $0 \leq \hat{N}^T \cdot (\mathcal{G}_\tau \otimes \mathcal{G}_z) \cdot \hat{N} \leq L_{max}$

If bounded $(\mathcal{G}_{ au}\otimes\mathcal{G}_z)$ eigenvaules: $\Lambda_i(z, au)>\epsilon$

 \implies Admissible $\hat{N} : \hat{N}^2 \leq L_{max}/\epsilon$

Finite number of vacua.

Evade no-go: find (z, τ) such that $\Lambda_i(z, \tau) = 0$

D-limit.

D-limits

- \mathcal{G}_{τ} : Decoupling limit Im $\tau \to \infty$
- \mathcal{G}_z : LCS and conifold loci.

Sequences of Type IIB String Vacua

Magdalena Larfors

Background and motivation

Type IIB compactifications

Vacuum sequences

Finiteness and D-limits

Statistical studies

Finiteness and Warping

Conclusions and outlook

Finiteness and D-limits: One-parameter models

Refined no-go theorem: LCS (w. bounded \mathcal{G}_{τ} -eigenvalues) Let $t \sim -i \log z$, LCS point is at $t_2 = \operatorname{Im} t \to \infty$

Infinite sequence:

$$\lim_{n\to\infty} (t_2)_n = \infty \qquad \hat{N}_n \cdot \mathcal{G}_{\tau_n} \otimes \mathcal{G}_{t_n} \cdot \hat{N}_n^{\mathsf{T}} \neq \infty$$

$$\implies F_n \cdot w_j^n = \mathcal{O}(1/\sqrt{\lambda_j^n}) \qquad H_n \cdot w_j^n = \mathcal{O}(1/\sqrt{\lambda_j^n})$$

LCS limit: can compute \mathcal{G}_{t_n} -eigenvalues and -vectors λ_j^n, w_j^n

$$\begin{split} \lambda_1 &= \mathfrak{s}_{11} \, t_2^3 + \mathcal{O} \left(t_2 \right) \,, & \mathsf{w}_1^T &= \left[1, \mathcal{O} \left(t_2^{-2} \right), \mathcal{O} \left(t_2^{-4} \right), \mathcal{O} \left(t_2^{-6} \right) \right] \\ \lambda_2 &= \mathfrak{s}_{22} \, t_2 + \mathcal{O} \left(t_2^{-1} \right) \,, & \mathsf{w}_2^T &= \left[\mathcal{O} \left(t_2^{-2} \right), 1, \mathcal{O} \left(t_2^{-2} \right), \mathcal{O} \left(t_2^{-4} \right) \right] \\ \lambda_3 &= \frac{\mathfrak{s}_{33}}{t_2} + \mathcal{O} \left(t_2^{-2} \right) \,, & \mathsf{w}_3^T &= \left[\mathcal{O} \left(t_2^{-4} \right), \mathcal{O} \left(t_2^{-2} \right), 1, \mathcal{O} \left(t_2^{-2} \right) \right] \\ \lambda_4 &= \frac{\mathfrak{s}_{44}}{t_2^3} + \mathcal{O} \left(t_2^{-5} \right) \,, & \mathsf{w}_4^T &= \left[\mathcal{O} \left(t_2^{-6} \right), \mathcal{O} \left(t_2^{-4} \right), \mathcal{O} \left(t_2^{-2} \right), 1 \right] \end{split}$$

$$\implies F_n^0 = F_n^1 = H_n^0 = H_n^1 = 0 \text{ for large } n \implies \Big| \langle$$

$$F_{(3)}, H_{(3)} \rangle = 0$$

D-limits

Finiteness and D-limits: One-parameter models

Finiteness and D-limits

Sequences of Type IIB String Vacua

Magdalena Larfors

Background and motivation

Type IIB compactifications

Vacuum sequences

Finiteness and D-limits

Statistical studies

Finiteness and Warping

Conclusions and outlook One-parameter models: decoupling limit and conifold No infinite sequences:

- Decoupling limit Im $au o \infty$ (also for more cs moduli)
- Conifold locus (disclaimer: warping neglected)

Two-parameter model

Checked particular LCS limit: no infinite sequences.

Sequences of Type IIB String Vacua

Magdalena Larfors

Background and motivation

Type IIB compactifications

Vacuum sequences

Finiteness an D-limits

Statistical studies

Finiteness and Warping

Conclusions and outlook

Statistical studies

Ashok, Douglas hep-th/0307049,

Denef, Douglas hep-th/0404116, Giryavets *et. al.* hep-th/0404243, Eguchi, Tachikawa hep-th/0510061, Acharya, Douglas hep-th/0606212, Torroba hep-th/0611002

Statistical distribution of flux vacua:

 $dN_{vac}(z) \sim det\left(R(z) + \omega(z)
ight)$

Finiteness and Warping

Ahlqvist et. al. 1202.3172,

Giryavets et. al. hep-th/0404243

Giddings Maharana hep-th/0507158, Douglas et. al. 0704.4001,...

Conclusions and outlook

Sequences of Type IIB String Vacua

Magdalena Larfors

Background and motivation

Type IIB compactifications

Vacuum sequences

Finiteness an D-limits

Statistical studies

Finiteness and Warping

Conclusions and outlook

- Conformal CY compactifications of type IIB string theory.
- Infinite sequences of vacua only possible in D-limits
- One-parameter CY:
 - LCS and decoupling limit: finite
 - Conifold: finite (w/w.o. warping)
- Agrees with statistical result.

To do-list and open questions:

- Multiple D-limits, CY with more parameters...
- Vacuum properties: stability, CC, ...
- Landscape dynamics
 - Inflation
 - Quantum stability

Yang 1202.3388 Johnson, ML 0805.3705, ..., Ahlqvist *et. al.* 1011.6588

• Kähler moduli