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The book’s Web site (http://www.macmillanhighered.com/physicalmodels1e)

contains links to the following resources:

• The Student’s Guide contains an introduction to some computer math systems, and some

guided computer laboratory exercises.

• Datasets contains datasets that are used in the problems. In the text, these are cited like

this: Dataset 1, with numbers keyed to the list on the Web site.

• Media gives links to external media (graphics, audio, and video). In the text, these are

cited like this: Media 2, with numbers keyed to the list on the Web site.

• Finally, Errata is self-explanatory.
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