

Brief Contents

	Prolog: A breakthrough on HIV		
	PART I First Steps		
Chapter 1	Virus Dynamics	9	
Chapter <mark>2</mark>	Physics and Biology	27	
	PART II Randomness in Biology		
Chapter <mark>3</mark>	Discrete Randomness	35	
Chapter 4	Some Useful Discrete Distributions	69	
Chapter <mark>5</mark>	Continuous Distributions	97	
Chapter <mark>6</mark>	Model Selection and Parameter Estimation	123	
Chapter 7	Poisson Processes		

vi Brief Contents

PART III Control in Cells

Chapter 8	Randomness in Cellular Processes	179
Chapter <mark>9</mark>	Negative Feedback Control	203
Chapter 10	Genetic Switches in Cells	241
Chapter 11	Cellular Oscillators	277
	Epilog	299
Appendix <mark>A</mark>	Global List of Symbols	303
Appendix B	Units and Dimensional Analysis	309
Appendix <mark>C</mark>	Numerical Values	315
	Acknowledgments	317
	Credits	321
	Bibliography	323
	Index	333

Detailed Contents

Web Resources xvii To the Student xix To the Instructor xxiii

· /·

Prolog: A breakthrough on HIV

PART I First Steps

Chapter 1	Virus Dynamics		
	1.1 First S	ignpost 9	
	1.2 Model	ling the Course of HIV Infection 10	
	1.2.1	Biological background 10	
	1.2.2	An appropriate graphical representation can bring out key features of data 12	
	1.2.3	Physical modeling begins by identifying the key actors and their main interactions 12	
	1.2.4	Mathematical analysis yields a family of predicted behaviors 14	
	1.2.5	Most models must be fitted to data 15	
	1.2.6	Overconstraint versus overfitting 17	
	1.3 Just a	Few Words About Modeling 17	
	Key Formul	as 19	
	Track 2 21	l	
	1.2.4'	Exit from the latency period 21	

1.2.6'a Informal criterion for a falsifiable prediction 21

1.2.6′b		More realistic viral dynamics models		21
1.2.6'c	2	Eradication of HIV	22	
Problems	23			

Chapter 2 Physics and Biology

27

- 2.1 Signpost 272.2 The Intersection 28
- 2.3 Dimensional Analysis 29
- Key Formulas 30

Problems 31

PART II Randomness in Biology

Chapter 3

3.1 Signpost 35

35

3.2 Avatars of Randomness 36

Discrete Randomness

- 3.2.1 Five iconic examples illustrate the concept of randomness 36
- 3.2.2 Computer simulation of a random system 40
- 3.2.3 Biological and biochemical examples **40**
- 3.2.4 False patterns: Clusters in epidemiology 41
- 3.3 Probability Distribution of a Discrete Random System 41
 - 3.3.1 A probability distribution describes to what extent a random system is, and is not, predictable **41**
 - 3.3.2 A random variable has a sample space with numerical meaning **43**
 - 3.3.3 The addition rule 44
 - 3.3.4 The negation rule 44
- 3.4 Conditional Probability 45
 - 3.4.1 Independent events and the product rule 45
 - 3.4.1.1 Crib death and the prosecutor's fallacy 47
 - 3.4.1.2 The Geometric distribution describes the waiting times for success in a series of independent trials **47**
 - 3.4.2 Joint distributions 48
 - 3.4.3 The proper interpretation of medical tests requires an understanding of conditional probability **50**
 - 3.4.4 The Bayes formula streamlines calculations involving conditional probability **52**
- 3.5 Expectations and Moments 53
 - 3.5.1 The expectation expresses the average of a random variable over many trials 53
 - 3.5.2 The variance of a random variable is one measure of its fluctuation **54**
 - 3.5.3 The standard error of the mean improves with increasing sample size 57

Key Formulas 58

Track 2 60

3.4.1'a Extended negation rule 60
3.4.1'b Extended product rule 60
3.4.1'c Extended independence property 60
3.4.4' Generalized Bayes formula 60
3.5.2'a Skewness and kurtosis 60
3.5.2'b Correlation and covariance 61
3.5.2'c Limitations of the correlation coefficient 62

Problems 63

Chapter 4 Some Useful Discrete Distributions

- 4.1 Signpost 69
- 4.2 Binomial Distribution **70**
 - 4.2.1 Drawing a sample from solution can be modeled in terms of Bernoulli trials **70**
 - 4.2.2 The sum of several Bernoulli trials follows a Binomial distribution **71**
 - 4.2.3 Expectation and variance 72
 - 4.2.4 How to count the number of fluorescent molecules in a cell **72**
 - 4.2.5 Computer simulation 73
- 4.3 Poisson Distribution 74
 - 4.3.1 The Binomial distribution becomes simpler in the limit of sampling from an infinite reservoir 74
 - 4.3.2 The sum of many Bernoulli trials, each with low probability, follows a Poisson distribution **75**
 - 4.3.3 Computer simulation 78
 - 4.3.4 Determination of single ion-channel conductance 78
 - 4.3.5 The Poisson distribution behaves simply under convolution **79**
- 4.4 The Jackpot Distribution and Bacterial Genetics 81
 - 4.4.1 It matters 81
 - 4.4.2 Unreproducible experimental data may nevertheless contain an important message **81**
 - 4.4.3 Two models for the emergence of resistance 83
 - 4.4.4 The Luria-Delbrück hypothesis makes testable predictions for the distribution of survivor counts **84**
 - 4.4.5 Perspective 86
- Key Formulas 87

Track 2 89

4.4.2'	On resistance 89	
4.4.3'	More about the Luria-Delbrück experiment 89	
4.4.5'a	Analytical approaches to the Luria-Delbrück calculation 89	
4.4.5′b	Other genetic mechanisms 89	
4.4.5′c	Non-genetic mechanisms 90	
4.4.5′d	Direct confirmation of the Luria-Delbrück hypothesis	90
Problems 91		

x Detailed Contents

Chapter 5	Continuous Distributions 97
Chapter 5	
	5.1 Signpost 97
	5.2 Probability Density Function 98
	5.2.1 The definition of a probability distribution must be modified for the case of a continuous random variable 98
	5.2.2 Three key examples: Uniform, Gaussian, and Cauchy distributions 99
	5.2.3 Joint distributions of continuous random variables 101
	5.2.4 Expectation and variance of the example distributions 102
	5.2.5 Transformation of a probability density function 104
	5.2.6 Computer simulation 106
	5.3 More About the Gaussian Distribution 106
	5.3.1 The Gaussian distribution arises as a limit of Binomial 106
	5.3.2 The central limit theorem explains the ubiquity of Gaussian distributions 108
	5.3.3 When to use/not use a Gaussian 109
	5.4 More on Long-tail Distributions 110
	Key Formulas 112
	Track 2 114
	5.2.1' Notation used in mathematical literature 114
	5.2.4' Interquartile range 114
	5.4'a Terminology 115
	5.4'b The movements of stock prices 115
	Problems 118
Chapter <mark>6</mark>	Model Selection and Parameter Estimation 123
	6.1 Signpost 123
	6.2 Maximum Likelihood 124
	6.2.1 How good is your model? 1246.2.2 Decisions in an uncertain world 125
	6.2.3 The Bayes formula gives a consistent approach to updating our degree of belief in the light of new data 126
	6.2.4 A pragmatic approach to likelihood 127
	6.3 Parameter Estimation 128
	6.3.1 Intuition 129
	6.3.2 The maximally likely value for a model parameter can be computed on the basis of a finite dataset 129
	6.3.3 The credible interval expresses a range of parameter values consistent with the available data 130
	6.3.4 Summary 132

- 6.3.4 Summary 132
- 6.4 Biological Applications 133
 - 6.4.1 Likelihood analysis of the Luria-Delbrück experiment 133
 - 6.4.2 Superresolution microscopy 133
 - 6.4.2.1 On seeing 133
 - 6.4.2.2 Fluorescence imaging at one nanometer accuracy 133

Localization microscopy: 6.4.2.3 PALM/FPALM/STORM 136 6.5 An Extension of Maximum Likelihood Lets Us Infer Functional Relationships from Data 137 Key Formulas 141 Track 2 142 6.2.1' Cross-validation 142 6.2.4'a Binning data reduces its information content 142 6.2.4′b Odds 143 The role of idealized distribution functions 143 6.3.2′a 6.3.2′b Improved estimator 144 6.3.3'a Credible interval for the expectation of Gaussian-distributed data 144 6.3.3′b Confidence intervals in classical statistics 145 Asymmetric and multivariate credible intervals 146 6.3.3'c 6.4.2.2' More about FIONA 146 6.4.2.3' More about superresolution 147 6.5'What to do when data points are correlated 147

"main"

page xi

Problems 149

Chapter 7 Poisson Processes

- 7.1 Signpost 153
- 7.2 The Kinetics of a Single-Molecule Machine 153
- 7.3 Random Processes 155
 - 7.3.1 Geometric distribution revisited 156
 - 7.3.2 A Poisson process can be defined as a continuous-time limit of repeated Bernoulli trials **157**
 - 7.3.2.1 Continuous waiting times are Exponentially distributed 158
 - 7.3.2.2 Distribution of counts 160
 - 7.3.3 Useful Properties of Poisson processes 161
 - 7.3.3.1 Thinning property 161
 - 7.3.3.2 Merging property 161
 - 7.3.3.3 Significance of thinning and merging properties **163**
- 7.4 More Examples 164
 - 7.4.1 Enzyme turnover at low concentration 164
 - 7.4.2 Neurotransmitter release 164
- 7.5 Convolution and Multistage Processes 165
 - 7.5.1 Myosin-V is a processive molecular motor whose stepping times display a dual character 165
 - 7.5.2 The randomness parameter can be used to reveal substeps in a kinetic scheme **168**
- 7.6 Computer Simulation 168
 - 7.6.1 Simple Poisson process 168
 - 7.6.2 Poisson processes with multiple event types 168

Key Formulas	169
Track 2 171	
7.2'	More about motor stepping 171
7.5.1′a	More detailed models of enzyme turnovers 171
7.5.1′b	More detailed models of photon arrivals 171
Problems 172	2

PART III Control in Cells

Chapter 8

Signpost 179

179

8.1

- 8.2 Random Walks and Beyond 180
 - 8.2.1 Situations studied so far 180

Randomness in Cellular Processes

- 8.2.1.1 Periodic stepping in random directions 180
- 8.2.1.2 Irregularly timed, unidirectional steps 180
- 8.2.2 A more realistic model of Brownian motion includes both random step times and random step directions 180
- 8.3 Molecular Population Dynamics as a Markov Process 181
 - 8.3.1 The birth-death process describes population fluctuations of a chemical species in a cell 182
 - 8.3.2 In the continuous, deterministic approximation, a birth-death process approaches a steady population level 184
 - 8.3.3 The Gillespie algorithm 185
 - 8.3.4 The birth-death process undergoes fluctuations in its steady state 186

8.4 Gene Expression 187

- 8.4.1 Exact mRNA populations can be monitored in living cells 187
- 8.4.2 mRNA is produced in bursts of transcription 189
- Perspective 193 8.4.3
- 8.4.4 Vista: Randomness in protein production 193

Key Formulas 194

- Track 2 195
 - 8.3.4' The master equation 195
 - 8.4′ More about gene expression 197
 - 8.4.2′a The role of cell division 197
 - 8.4.2′b Stochastic simulation of a transcriptional bursting experiment 198
 - 8.4.2'c Analytical results on the bursting process 199
- Problems 200

Chapter 9

9.1 Signpost 203

203

9.2 Mechanical Feedback and Phase Portraits 204

Negative Feedback Control

9.2.1 The problem of cellular homeostasis 204

- 9.2.2 Negative feedback can bring a system to a stable setpoint and hold it there **204**
- 9.3 Wetware Available in Cells 206
 - 9.3.1 Many cellular state variables can be regarded as inventories 206
 - 9.3.2 The birth-death process includes a simple form of feedback **207**
 - 9.3.3 Cells can control enzyme activities via allosteric modulation **207**
 - 9.3.4 Transcription factors can control a gene's activity 208
 - 9.3.5 Artificial control modules can be installed in more complex organisms 211
- 9.4 Dynamics of Molecular Inventories 212
 - 9.4.1 Transcription factors stick to DNA by the collective effect of many weak interactions 212
 - 9.4.2 The probability of binding is controlled by two rate constants **213**
 - 9.4.3 The repressor binding curve can be summarized by its equilibrium constant and cooperativity parameter **214**
 - 9.4.4 The gene regulation function quantifies the response of a gene to a transcription factor 217
 - 9.4.5 Dilution and clearance oppose gene transcription 218
- 9.5 Synthetic Biology 219
 - 9.5.1 Network diagrams 219
 - 9.5.2 Negative feedback can stabilize a molecule inventory, mitigating cellular randomness 220
 - 9.5.3 A quantitative comparison of regulated- and unregulated-gene homeostasis 221
- 9.6 A Natural Example: The trp Operon 224
- 9.7 Some Systems Overshoot on Their Way to Their Stable Fixed Point 224
 - 9.7.1 Two-dimensional phase portraits 226
 - 9.7.2 The chemostat 227
 - 9.7.3 Perspective 231
- Key Formulas 232

Track 2 234

- 9.3.1'a Contrast to electronic circuits 234
- 9.3.1'b Permeability 234
- 9.3.3' Other control mechanisms 234
- 9.3.4'a More about transcription in bacteria 235
- 9.3.4'b More about activators 235
- 9.3.5' Gene regulation in eukaryotes 235
- 9.4.4'a More general gene regulation functions 236
- 9.4.4'b Cell cycle effects 236
- 9.5.1'a Simplifying approximations 236
- 9.5.1'b The Systems Biology Graphical Notation 236
- 9.5.3' Exact solution 236
- 9.7.1' Taxonomy of fixed points 237

Problems 238

Chapter 10	Genetic Switches in Cells	241
	10.1 Signpost 241	
	10.2 Bacteria Have Behavior 242	
	10.2.1 Cells can sense their internal state and generate switch-like	
	responses 242	
	10.2.2 Cells can sense their external environment and integrate it with	n
	internal state information 243	
	10.2.3 Novick and Weiner characterized induction at the single-cell level 243	
	10.2.3.1 The all-or-none hypothesis 243	
	10.2.3.2 Quantitative prediction for Novick-Weiner experiment 246	
	10.2.3.3 Direct evidence for the all-or-none hypothesis 248	
	10.2.3.4 Summary 249	
	10.3 Positive Feedback Can Lead to Bistability 250	
	10.3.1 Mechanical toggle 250	
	10.3.2 Electrical toggles 252	
	10.3.2.1 Positive feedback leads to neural excitability 252	
	10.3.2.2 The latch circuit 252	
	10.3.3 A 2D phase portrait can be partitioned by a separatrix 252	
	10.4 A Synthetic Toggle Switch Network in <i>E. coli</i> 253	
	10.4.1 Two mutually repressing genes can create a toggle 253	
	10.4.2 The toggle can be reset by pushing it through a bifurcation 256	
	10.4.3 Perspective 257	
	10.5 Natural Examples of Switches 259	
	10.5.1 The <i>lac</i> switch 259	
	10.5.2 The <i>lambda</i> switch 263	
	Key Formulas 264	
	Track 2 266	
	10.2.3.1′ More details about the Novick-Weiner experiments 266	
	10.2.3.3'a Epigenetic effects 266	
	10.2.3.3'b Mosaicism 266	
	10.4.1'a A compound operator can implement more complex logic 266	
	10.4.1'b A single-gene toggle 268	
	10.4.2' Adiabatic approximation 272	
	10.5.1' DNA looping 273	
	10.5.2' Randomness in cellular networks 273	
	Problems 275	

Chapter 11 Cellular Oscillators

- 11.1 Signpost 277
- 11.2 Some Single Cells Have Diurnal or Mitotic Clocks 277
- 11.3 Synthetic Oscillators in Cells 278
 - 11.3.1 Negative feedback with delay can give oscillatory behavior 278

	 11.3.2 Three repressors in a ring arrangement can also oscillate 11.4 Mechanical Clocks and Related Devices Can also be Represented I their Phase Portraits 279 11.4.1 Adding a toggle to a negative feedback loop can improve i performance 279 11.4.2 Synthetic-biology realization of the relaxation oscillator 11.5 Natural Oscillators 285 11.5.1 Protein circuits 285 11.5.2 The mitotic clock in <i>Xenopus laevis</i> 286 Key Formulas 290 Track 2 291 11.4'a Attractors in phase space 291 11.4.1'a Linear stability analysis 291 11.4.1'b Noise-induced oscillation 293 11.5.2' Analysis of <i>Xenopus</i> mitotic oscillator 293 Problems 296 	by ts
	Epilog	299
Appendix A	Global List of Symbols A.1 Mathematical Notation 303 A.2 Graphical Notation 304 A.2.1 Phase portraits 304 A.2.2 Network diagrams 304 A.3 Named Quantities 305	303
Appendix B	 Units and Dimensional Analysis B.1 Base Units 310 B.2 Dimensions versus Units 310 B.3 Dimensionless Quantities 312 B.4 About Graphs 312 B.4.1 Arbitrary units 312 B.5 About Angles 313 B.6 Payoff 313 	309
Appendix C	Numerical Values C.1 Fundamental Constants 315	315
	Acknowledgments	317
	Credits	321
	Bibliography	323
	Index	333

Web Resources

The book's Web site (http://www.macmillanhighered.com/physicalmodels1e) contains links to the following resources:

- The *Student's Guide* contains an introduction to some computer math systems, and some guided computer laboratory exercises.
- *Datasets* contains datasets that are used in the problems. In the text, these are cited like this: Dataset 1, with numbers keyed to the list on the Web site.
- *Media* gives links to external media (graphics, audio, and video). In the text, these are cited like this: Media 2, with numbers keyed to the list on the Web site.
- Finally, *Errata* is self-explanatory.

xvii