The Jamming Transition and the Marginally Jammed Solid

Andrea J. Liu\(^1\) and Sidney R. Nagel\(^2\)

\(^1\)Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104; email: ajliu@physics.upenn.edu
\(^2\)The James Franck Institute, The University of Chicago, Chicago, Illinois 60637; email: srnagel@uchicago.edu

Key Words
glasses, colloids, granular materials, anomalous modes, rigidity

Abstract

When a system jams, it undergoes a transition from a flowing to a rigid state. Despite this important change in the dynamics, the internal structure of the system remains disordered in the solid as well as the fluid phase. In this way jamming is quite different from crystallization, the other common way in which a fluid solidifies. Jamming is a paradigm for thinking about how many different types of fluids—from molecular liquids to macroscopic granular matter—develop rigidity. Here we review recent work on the jamming transition. We start with perhaps the simplest model: frictionless spheres interacting via repulsive finite-range forces at zero temperature. In this highly idealized case, the transition has aspects of both first- and second-order transitions. From studies of the normal modes of vibration for the marginally jammed solid, new physics has emerged for how a material can be rigid without having the elastic properties of a normal solid. We first survey the simulation data and theoretical arguments that have been proposed to understand this behavior. We then review work that has systematically gone beyond the ideal model to see whether the scenario developed there is more generally applicable. This includes work that examines the effect of nonspherical particles, friction, and temperature on the excitations and the dynamics. We briefly touch on recent laboratory experiments that have begun to make contact with simulations and theory.
1. INTRODUCTION

William Butler Yeats bemoaned that “Things fall apart; the centre cannot hold; Mere anarchy is loosed upon the world.” Equally calamitous is that things get stuck and often seemingly at the worst possible moment—they lose the ability to flow so that no further rearrangement is possible. This can occur as particles get wedged tightly together in a pipe on a factory floor or as molasses refuses to pour from a container as the temperature drops in winter. Of course, falling apart and getting stuck are just approaching from opposite directions this catastrophic transition in the dynamics known as the jamming transition. The metaphor of jamming is powerful—it extends across many physical phenomena to social behavior and politics and even to the internal state of mind of a poet. Our goal here is to review some progress that has been made in seeing if the concept of a jamming transition has a more general applicability (in the purely physical realm!) than had previously been realized and whether it can unite our understanding of different ways in which a flowing material or liquid can gain rigidity.

A liquid with low viscosity solidifies into a glass when the temperature is lowered; a flowing foam becomes rigid when the applied stress is lowered; and a colloidal suspension loses the ability to flow when the density is increased. In each of these cases, a different control parameter is varied to bring the system into the rigid phase, yet the structure does not change appreciably at the transition. Both phases are amorphous, and it is difficult to specify an unambiguous order parameter to tell the two apart. Just as there are similarities between how different fluids nucleate into a crystal, there are similarities in the way different systems lose the ability to flow while still remaining amorphous. A common framework could prove useful for revealing connections between these seemingly disparate phenomena.

A theory for the jamming transition must account for the extraordinary increase in relaxation times found at the onset of rigidity. However, this dramatic slowdown poses experimental problems and makes it difficult to study the very phenomena being investigated. There is no (first-order) jump as in crystallization, nor is it possible to approach very closely the point at which the relaxation times might appear to diverge. The laboratory transition is determined by kinetics: The definition of the glass-transition temperature, T_g, depends on the choice of an arbitrary time (or, equivalently, viscosity) scale (1, 2). If an experiment is carried out more slowly, a supercooled liquid remains fluid to a (slightly) lower temperature so that the glass-transition temperature, T_g, is lower. Similar behavior occurs in the onset of rigidity in a driven system such as a foam: More patient measurements produce lower values of the yield stress, Σ_y. Such transitions are therefore not sharp (1); experiments, always done on a laboratory timescale, cannot produce a unique value for either the glass-transition temperature or the yield stress. Even with 14 decades of dynamic range in frequency, experiments have not been able to verify or refute the possibility that there is an underlying sharp finite-temperature transition where the timescale diverges.

One important advance in the study of jamming is that, at least for one admittedly idealized model described below, there is a transition for which an order parameter can be defined. In this simplified case, the physics is beginning to be put on a firm foundation. This physics is not merely an extension of previously known results, but contains new elements. It is presently a subject of considerable controversy whether this jamming transition, interesting as it is, will be relevant to more realistic systems and whether it has the explanatory power to deal with the complexities of glass formation. However, a solid
understanding of the physics in one region of phase space is an advance that offers the hope that this understanding can be enlarged at least to the region around it.

Our review of jamming starts by considering a model of ideal spheres at zero temperature and zero shear stress. These frictionless spheres interact with repulsive pair potentials that vanish at a well-defined distance that defines their diameters. Because we restrict ourselves initially to zero temperature, the system is always in mechanical equilibrium, in which the forces on all particles balance. At low-enough packing fraction, the particles are free to push each other apart so that there are no overlaps. In this case, the particles are free to move in response to any stress on the system—it behaves as a fluid. At higher packing fraction, the particles are forced to overlap and the system is jammed—any infinitesimal force will be resisted by the force network between the spheres. At a critical value of the packing fraction, the system is precariously perched between a liquid and a solid state. This sharp transition itself is unusual in that it exhibits both a discontinuity, as in a first-order transition, and power-law scaling, as in an ordinary critical point. Moreover, the properties of the marginally jammed solid, just above the transition, differ from those of ordinary elastic solids. Interestingly, they resemble in many ways the properties of glasses at low temperatures.

This particular transition can be placed on a so-called jamming phase diagram (3), as shown in Figure 1. In the context of such a diagram, one can see how this transition might relate to more realistic materials, such as granular matter or glasses. The generic dynamical glass transition and yield stress are drawn as curves to show that as the density is increased, one normally expects that a system will become more rigid. The shape of the jamming surface will vary from system to system; the purpose of this diagram is to identify the important control parameters for jamming and to see how different systems might relate to one another. We note that although the control parameters are not necessarily thermodynamic variables (i.e., the shear stress can drive the system into a flowing state), they do

Figure 1
Jamming phase diagram. Outside the shaded green region, at high temperature T, applied shear stress Σ, and high inverse density $1/\phi$, the system is unjammed and can flow; inside the shaded green region, the system is jammed. The lines in the $(T - 1/\phi)$ and $(1/\phi - \Sigma)$ planes represent the generic dynamical glass transition and yield stress, respectively. The point “J” marks the jamming transition for ideal spheres at zero temperature and applied stress.
control the rigidity of the system. Moreover, the jamming surface is not sharply defined in the dynamics as discussed above. The transition for ideal sphere systems lies at zero temperature and shear stress at a density ϕ_c, at which the spheres just begin to have unavoidable overlap.

In this review, we take the point of view that by studying in detail this transition and the properties of the marginally jammed solid, we can obtain a deeper understanding of the nature of jamming transitions and of amorphous solids in general. Particular attention will be paid to the normal modes of vibration in the jammed solid. If the zero-temperature solid is to lose rigidity because of an infinitesimal decrease in packing fraction, it must do so by creating at least one soft mode (i.e., a mode with zero frequency). This is how a solid under shear stress fails (4, 5). But in that case, the failure produces another solid and not a fluid with quite different properties. The complete loss of rigidity at J should be more catastrophic and should not be reflected in the behavior of just a single soft mode. The low-frequency modes of the solid should display a characteristic signature as the jamming/unjamming transition is approached.

It turns out that this signature is indeed dramatic. The shape of the vibrational spectrum and the nature of the low-frequency modes at the unjamming threshold are completely different from those seen in ordinary solids. This result has implications for the behavior of glasses at low temperature as well as for other amorphous systems. As the temperature is raised even slightly above zero, the lowest-frequency modes will be the dominant excitations. Thus they control not only how the marginal solid falls apart because of a small decrease in density, but also how it responds to a small increase in temperature or applied stress.

Section 2 summarizes the properties of the transition and of the marginally jammed solid. The remainder of the review is organized around different ways of perturbing the system around point J. In Section 3, we discuss work on extending the results to nonzero temperatures and shear stresses. This is the first step toward exploring the connection between the transition at point J and the glass transition or the development of a yield stress. In Section 4, we discuss generalizations of the ideal-sphere model to explore the extent to which the behavior of ideal spheres is applicable to more realistic systems. Finally, in Section 5 we discuss open questions that are the subject of current research.

2. PROPERTIES OF THE ZERO-TEMPERATURE JAMMING TRANSITION

Numerical simulations suggest that the zero-temperature jamming transition of ideal spheres, point J in Figure 1, is a special transition with aspects of both first- and second-order behavior and with multiple diverging and vanishing length scales associated with its approach. Despite its unusual nature, this transition still controls many of the properties of the system in its vicinity in the manner of an ordinary critical point.

The analysis that follows is centered around ideal spheres or discs in two and three dimensions, which interact via the following pairwise potentials:

$$V(r_{ij}) = \begin{cases} \frac{\varepsilon}{\alpha} \left(1 - \frac{\sigma_{ij}}{r_{ij}}\right)^\alpha & r_{ij} < \sigma_{ij} \\ 0 & r_{ij} \geq \sigma_{ij}, \end{cases}$$

where r_{ij} is the distance between sphere i and sphere j, and ϕ_c is the jamming density.
where \(\varepsilon \) sets the energy scale of the repulsion, \(\sigma_{ij} = (\sigma_i + \sigma_j)/2 \) is the average of the diameters of particles \(i \) and \(j \), and \(r_{ij} \) is the distance between the centers of the two particles. The cases \(\alpha = 2 \), \(\alpha = 5/2 \), and \(\alpha = 0 \) correspond to harmonic, Hertzian (in three dimensions), and hard-sphere repulsions, respectively.

2.1. Isostaticity and Scaling near Point \(J \)

The order parameter that characterizes the transition is \(Z \), the average number of overlaps a particle has with its neighbors. At low packing fraction \(\phi \), \(Z = 0 \) because if particles are not forced to be in contact, they will push each other apart, leaving no overlapping particles. To have any overlap, a particle must be held in place by neighbors on all sides, so overlapping particles must span the entire system. Consequently, \(Z \) must jump discontinuously from \(Z = 0 \) to a nonzero value, \(Z_c \), at the transition packing fraction, \(\phi_c \). The value \(Z_c \) must be at least twice the dimension of space, because of the following argument.

A mechanically stable system must have force balance on every particle so that for \(N \) spheres in the connected backbone in \(d \) dimensions, the number of equations that must be satisfied by the interparticle forces is \(Nd \). According to Maxwell’s criterion for rigidity (6), the number of interparticle forces, \(NZ/2 \), must be at least the number of equations. This leads to the condition \(Z \geq 2d \) (7). For frictionless spheres, \(Z_c \) turns out to be the minimum possible (or isostatic) value needed for mechanical stability (8–11), \(Z_c = 2d \).

When the system is compressed above the transition, the coordination number \(Z \) increases above \(Z_c \). Our simulations show that the excess number of contacts scales as (10, 12, 13)

\[
\Delta Z \equiv Z - Z_c \sim \Delta \phi^{\alpha \approx 1/2},
\]

where \(\Delta \phi = \phi - \phi_c \) is the amount of compression above the threshold. The existence of isostaticity at the transition implies a diverging length scale (11, 14, 15). Consider a system that is compressed to a packing fraction \(\Delta \phi \) above the transition. Such a system has an excess of \(Z - Z_c \sim \Delta \phi^{1/2} \) contacts per particle beyond those needed for mechanical stability. If a chunk of material of size \(\ell \) is cut from the \(d \)-dimensional system, there will be \(\ell^{d-1} \) boundary contacts missing. If the total number of contacts in the chunk, \(N_{\text{tot}} \), is below the isostatic value, \(N_{\text{iso}} = NZ_c/2 \), there will be zero-frequency modes (floppy or soft modes). The number of these soft modes is therefore given by the difference between the number of contacts cut at the boundary and the extra contacts created by compression in the bulk:

\[
N_{\text{soft}} \approx c_1 \ell^{d-1} - c_2 (Z - Z_c) \ell^d,
\]

where \(c_1 \) and \(c_2 \) are constants that depend on the geometry of the chunk. The cutting length, \(\ell^* \), is the size of the chunk at which \(N_{\text{soft}} \) vanishes, so that the excess number of contacts in the bulk is equal to the number of missing contacts at the perimeter:

\[
\ell^* \sim \Delta \phi^{-\alpha \approx -1/2}.
\]

Below \(\ell^* \), the system looks isostatic, but above \(\ell^* \), the system is overcoordinated and should behave as a normal elastic solid. This length scale was observed in simulations probing fluctuations in the response to a point force or to a small inflation of a single particle, as shown in Figure 2.
Above the transition, the elastic moduli vary as power laws with increasing packing fraction, $\Delta \phi$ (10, 12, 13). The pressure p, the bulk modulus B, and the shear modulus G all vanish in the unjammed regime at $\phi < \phi_c$. The elastic constants are conveniently expressed in terms of the effective elastic constant for the interaction, k_{eff}, given by the second derivative of the pair interaction, V'', which scales as $k_{\text{eff}} \sim \Delta \phi^{-2}$. The moduli scale as $B \sim k_{\text{eff}}$ and $G \sim k_{\text{eff}} \Delta \phi^{0.5}$. Note that the ratio

$$\frac{G}{B} \sim \Delta \phi^{\approx 1/2}$$

does not depend on the interaction potential and vanishes at the transition. From Equation 2, G/B therefore scales as ΔZ for frictionless spheres (10). This large difference between the shear and the bulk moduli is not expected in normal solids and is characteristic of the jamming transition.

The behavior of the coordination number $Z - Z_c$ in Equation 2 is reflected in the pair-correlation function, $g(r)$, which measures the probability of finding a particle at r given one at the origin. At the transition, there is divergent first peak in $g(r)$ because of a delta function at contact with amplitude Z_c; this arises from the Z_c contacting neighbors per

Footnote 1: The exponent values quoted in this review were obtained from numerical simulations. In cases in which we have assigned a name to the exponent, as in Equation 2, we have used the approximately equal sign to denote the numerical value of the exponent as a rational number. In cases in which the exponent is not assigned a name, we have listed the numerical values up to significant figures.
particle that are precisely at \(r = \sigma \) (16). As the system approaches the transition, the overlap distance, or the width of the first peak in \(g(r) \) on the small-\(r \) side, \(\ell_w \), vanishes as (16)

\[
\ell_w \sim \Delta \phi,
\]

whereas the height of the first peak diverges (16) as \(g_1 \sim \Delta \phi^{-1.0} \). In addition, the pair-correlation function near the jamming transition has the functional form \(g(r) \propto \sqrt{r - \sigma} \) for \(r \) above but close to the sphere diameter, \(\sigma \) (17). When integrated, this yields Equation 2 (13). At the jamming threshold, the states are allowed hard-sphere states. Thus, the hard-sphere pair correlation function at jamming should be exactly the same. This was later verified (18).

There is a vanishing frequency scale associated with the vibrational spectrum. Consider the chunk of size \(\ell \) cut from the system at the isostatic transition. As argued above, each of the \(\ell^{d-1} \) bonds that is cut at the perimeter of this chunk yields a floppy mode. If these modes are assumed to be extended, we can use them to create trial vibrational modes for the chunk when it is compressed to some \(\Delta \phi \) above the transition. The trial modes are floppy modes distorted by a plane wave that satisfies the boundary condition that the mode amplitudes vanish at the boundary of the chunk where the bonds were cut. This distortion leads to an energy cost of \(O(1/\ell^2) \), so that the corresponding mode has frequency

\[
\omega \sim \sqrt{k_{\text{eff}}/m} \sqrt{1/\ell^2} \sim \sqrt{k_{\text{eff}}/m} O(1/\ell).
\]

For a chunk compressed to \(\Delta \phi \), the onset frequency of anomalous modes, corresponding to floppy modes shifted upward in frequency upon compression, should be determined by the cutting length, \(\ell^* \sim \Delta \phi^{-0.5} \), as defined in Equation 4; this frequency then scales as

\[
\omega^* \sim \sqrt{k_{\text{eff}}/m} \Delta \phi^* \sim 1/2.
\]

If we assume that the modes are plane-wave-like below \(\omega^* \), so that they obey the dispersion relation \(\omega = ck \), where \(c \) is the speed of sound and \(k \) is the wave vector, this yields two length scales \(\ell \propto 1/k \), corresponding to the longitudinal and transverse sound speeds, determined by the bulk and shear moduli, respectively. Because of the dependence on \(c \), they scale differently with \(\Delta \phi \). The longitudinal length \(\ell^* \approx c_l/\omega^* \sim \Delta \phi^{-v_1} \) scales as the cutting length of Equation 4. This longitudinal length scale has also been observed in the dispersion relation (19, 20). At frequencies above \(\omega^* \), many wave vectors contribute nearly equally to the anomalous modes, but the lowest wave vectors that contribute are of order \(1/\ell^* \).

There is also a new length scale arising from transverse sound modes (19)

\[
\ell^* \approx c_l/\omega^* \sim \Delta \phi^* \sim 1/4,
\]

which also marks the mean-free path of vibrations at the crossover between weak and strong scattering at \(\omega^* \) (20–22).

There appears to be another diverging length scale whose connection to the length scales introduced above is not understood. The finite-size shift of the position of the jamming transition, \(\phi_c \), yields a length scale that apparently diverges as \(|\phi - \phi_c|^{-0.7} \) in both two and three dimensions (10). The same exponent shows up in simulations in which a hard disk is pushed through a sphere packing below \(\phi_c \) (23). Finally, the same exponent has been observed for correlations of the transverse velocity in athermal, slowly sheared sphere packings near the jamming transition (24), but only for certain models of the dynamics (25). It is not known whether the exponent is really different from 1/2.
In summary, we have a transition, known as a random first-order transition (26), consistent with a discontinuity in the coordination number and a diverging length scale. The apparently rational values of the exponents for the jamming transition and the fact that the numerically calculated exponents are the same in two and three dimensions indicate that the transition is mean-field-like. An Imry-Ma-type argument due to Wyart (11) supports this suggestion and suggests that the upper critical dimension of the jamming transition should be \(d = 2 \). If one includes disorder in the coordination number that could lead to additional soft modes, the number of soft modes in a cut chunk of size \(\ell \) in Equation 3 is modified:

\[
N_{\text{soft}} = c_1 \ell^{d-1} - c_2 (Z - Z_c) \ell^d + c_3 \delta Z L^{d/2},
\]

where \(\delta Z \) characterizes the amount of disorder. Evidently, disorder does not affect the transition if \(d/2 \leq d - 1 \), or equivalently, if \(d \geq 2 \).

To understand the interplay of isostaticity and disorder, it is useful to study isostatic systems with no disorder. A recent analysis (27) considers periodic isostatic lattices in \(d = 2 \) stabilized by next-nearest-neighbor bonds. By tuning the strength of the next-nearest-neighbor bonds to zero, the systems are taken toward an isostatic structural transition. One can identify a cutting length, \(\ell^* \), and crossover frequency, \(\omega^* \), that scale as expected. However, the ratio \(G/B \) varies among systems, periodic or disordered, exhibiting isostatic transitions (27–29). In the square lattice with randomly added next-nearest-neighbor bonds (29), \(G/B \) varies as \((Z - Z_c)^2 \), not \(Z - Z_c \) as for the jamming transition (Equations 5 and 2), whereas for a randomly diluted network, \(G/B \) is constant with \(Z - Z_c \) (28). This suggests that isostaticity alone is not enough to determine the universality class of the structural transition.

The particular behavior displayed by the jamming transition—a discontinuity and subsequent power-law increase with \(\beta \approx 1/2 \) in the number of interacting neighbors, a divergent susceptibility (or ratio of bulk to shear moduli) with \(\gamma \approx 1/2 \), and two diverging length scales with exponents \(\nu \approx 1/2 \) and \(\nu^\dagger \approx 1/4 \)—is rare but has been seen in several models. Remarkably, all these models correspond to ones that have been proposed for the glass transition or that capture glassy dynamics (26, 30–35), in the mean-field limit. Another class of models known as \(k \)-core percolation (36), and its variants, called jamming percolation (33, 37–40), and force-balance percolation (41, 42), also displays the same behavior in the mean-field limit as the jamming transition (41). These models yield insight into the connection of one class of models with glassy dynamics, namely kinetically constrained spin models (33), to the jamming transition. In \(k \)-core percolation, which maps onto kinetically constrained spin models (43, 44), sites are populated randomly with probability \(p \). The \(k \)-core is the set of occupied sites with at least \(k \) occupied neighbors, each of which has at least \(k \) neighbors, and so on. In jammed packings, similarly, each particle in the connected cluster must be locally stable with at least \(d + 1 \) neighbors to hold it in place; each of these neighbors must have at least \(d + 1 \) neighbors, and so on. This analogy between \(k \)-core percolation and jamming is not exact: The global constraint that there must be at least \(2d \) neighbors per particle on average is not satisfied in \(k \)-core percolation because it is a scalar model, not a vector one. Consequently, the two models do not exhibit the same behavior in \(d = 2 \) (39, 40), but they are apparently similar enough to have the same behavior in the mean-field limit.

Finally, there have been several suggestions for a statistical mechanics of stable packings, starting with Edwards & Oakeshott (45) and colleagues (46–49). This approach suggests a...
2.2. Location of Point J

Each mechanically stable configuration corresponds to a local minimum in the potential-energy landscape. For ideal spheres, the properties of different minima are remarkably similar so that to a large extent, the properties of a minimum are dictated by its energy. Now consider a given local minimum with some potential energy V. As the system is decompressed, V decreases and eventually reaches $V = 0$. At this density, ϕ_c, the state corresponding to the energy minimum has reached its jamming threshold and is isostatic.

Different minima or mechanically stable configurations can have different jamming thresholds, ϕ_c. The width of the distribution of jamming thresholds vanishes in the infinite system-size limit, so that nearly all distinct states jam at the same density (10, 13). This density is $\phi_J \approx 0.84$ for two-dimensional bidisperse packings of disks and $\phi_J \approx 0.64$ for three-dimensional packings of monodisperse spheres, close to the random close-packing density, ϕ_{rcp}.

However (10, 13), we know (51) that there is a small tail of states at higher and lower densities. Because there is a distribution of jamming thresholds even in the thermodynamic limit, different protocols can yield different results by weighting states differently. For example, equilibrating a sample at a finite temperature before quenching to $T = 0$ can lead to an increase in its jamming threshold density beyond the value found for the infinitely rapid quenches discussed above. Depending on the preparation history of the system, the jamming transition of an ensemble can therefore occur over a range of densities (52, 53).

However, in all the cases studied, it appears that the scaling upon compression, above the threshold value ϕ_c, is independent of its precise value. That is, the behavior depends only on the system jamming at an isostatic point.

2.3. Harmonic Properties of the Marginally Jammed Solid at $T = 0$

A defining characteristic of the vibrational spectrum of elastic solids is that at sufficiently low frequency, the vibrations are plane-wave sound modes. This behavior gives rise to the familiar Debye scaling of the vibrational density of states with frequency $D(\omega) \sim \omega^{d-1}$ for a solid in d dimensions. One of the most striking features of marginally jammed sphere packings at $\phi = \phi_{J}^+$ is that they violate this Debye law. Instead, $D(\omega)$ is simply a plateau (10, 19) down to zero frequency in both $d = 2$ and $d = 3$. As shown in Figure 3, the plateau persists upon compression but only above a frequency, ω^*, that increases with $\Delta\phi$ as in Equation 7 (19). We note that in glasses and amorphous solids, modes in excess of the Debye prediction for plane waves arise at a frequency called the boson peak frequency; our system has a boson peak frequency at ω^* (19).

These modes arise from soft modes at the jamming transition. The variational calculation (11, 14, 15) outlined above Equation 7 predicts a plateau in the density of normal-mode excitations, $D(\omega)$, which persists down to ω^*. At the jamming transition, ω^* approaches zero frequency (Figure 3). The number of soft modes created by cutting a chunk of size ℓ scales as $N_{\ell} \sim \ell^{d-1}$. By creating trial modes that have a long-wavelength plane-wave distortion, these modes are shifted upward to frequencies $\omega_{\ell} \sim 1/\ell$. The total
number of modes in the chunk scales as the volume ℓ^d. Thus the density of states must satisfy

$$\int_0^{\omega_0} d\omega D(\omega) \approx \frac{N_f}{\ell^d} \sim \frac{1}{\ell} \sim \omega_0.$$

Clearly, this is satisfied if $D(\omega) \sim \text{constant}$, independent of ω.

An important question with many physical consequences concerns the structure of the normal modes, shown in Figure 4. In the vicinity of ω^* the modes are highly heterogeneous and resonant, with large displacements of a few particles superimposed on a plane-wave-like background. The modes become progressively more heterogeneous and quasi-localized as the frequency is lowered (Figure 5a and Figure 4b). Moreover, for the system sizes that we have been able to access, there is no appreciable difference in the magnitude of the participation ratio for the lowest-frequency modes at the different compressions, suggesting that quasi-localized modes exist even at the jamming threshold. Similar modes have been observed in other disordered solids (54–61). We are tempted to think of the quasi-localization of the low-frequency modes, as in other localization phenomena, as due to the rapid decrease in the density of states at the bottom of the band of anomalous modes. However, we must be careful and realize that the systems we are able to study are so small that there are very few long-wavelength plane waves at low frequencies that can hybridize with the anomalous modes. The effect of the plane waves on the low-frequency anomalous modes has not yet been adequately studied.

Above ω^*, the modes become more extended (Figure 4c) with contributions from a broad range of wave vectors (20, 62). These are the anomalous modes, presumed to originate from the soft modes at the isostatic jamming transition. At the highest frequencies, where the density of states drops dramatically, the modes are highly localized (Figure 4d) as expected.

Figure 3
Density of vibrational states for three-dimensional ideal sphere packings with harmonic repulsions at various compressions, $\Delta\phi$ (19). At a given $\Delta\phi$, the density of states falls off toward zero as the frequency is decreased below $\omega^*(\Delta\phi)$, which marks the lower frequency end of the plateau. As $\Delta\phi \to 0$, $\omega^* \to 0$ and the density of states approaches a constant.
The nature of the modes determines their contribution to the thermal conductivity κ, as quantified by the energy diffusivity $d(\omega)$. The quantity $d(\omega)$ is defined as follows. A wave packet peaked at ω and localized at r spreads over time and can be characterized by $d(\omega)$, given by the square of the width of the wave packet divided by time at long times. [In a weakly scattering three-dimensional system, $d(\omega) = c\ell(\omega)/3$, where c is the sound speed and $\ell(\omega)$ is the phonon mean-free path.]

For sphere packings, the diffusivity was calculated using the Kubo approach (20, 21). At low frequencies, the diffusivity behaves as for weakly scattered plane waves. Above a crossover frequency that scales in the same way as ω^*, $d(\omega)$ is nearly frequency independent, consistent with theoretical expectations (11, 20, 22). Such a regime, postulated to exist in glasses to explain the temperature dependence of the thermal conductivity at intermediate and high temperatures (63), thus arises from properties of the jamming transition (20, 21). The scaling of the crossover from weakly scattered plane waves to

Figure 4

Vibrational modes of a $d = 2$ packing of $N = 2000$ particles at $\Delta \phi = 10^{-4}$. (a) The density of states, with vertical lines indicating frequencies of the modes in panels b–d: (b) a quasi-localized mode, (c) an extended anomalous mode, and (d) a localized mode at high frequency.
strong scattering can be understood by assuming continuity of the mean-free path in conjunction with the scaling laws for the shear and bulk moduli (20, 21).

Recently, dynamical effective medium theory (64, 65) has been used to study the dynamics of a square lattice with randomly placed next-nearest-neighbor springs (29) and random isotropic off-lattice systems near the isostatic limit (22). Both calculations yield a characteristic frequency \[\omega^* \sim \frac{Z_c}{Z} \] above which the density of states \(D(\omega) \) exhibits a plateau. In the isotropic case (22), both the zero-frequency bulk and shear moduli vanish as \(Z \to Z_c \) in agreement with static effective medium calculations for rigidity percolation (66) so that their ratio is constant, in contrast to Equation 5. However, \(d(\omega) \) exhibits a plateau above a frequency \(\omega^* \sim \lambda Z \), in agreement with numerical results (20, 21). If the starting point is a periodic isostatic system (29), the frequency-dependent shear modulus \(C_{44}(\omega) \) satisfies the scaling relation \(C_{44}(\omega)/C_{44}(0) = h(\omega/\omega^*) \). This model also yields \(l^* \sim (\Delta z)^{-1} \) in agreement with the cutting arguments discussed above Equation 4 (11, 14, 15).

2.4. Anharmonic Properties of the Marginally Jammed Solid at \(T = 0 \)

To consider how a solid disintegrates and loses rigidity, either at high temperature or under a mechanical load, we must push beyond the harmonic approximation and consider the anharmonic response of the solid. It has not been generally appreciated that on approaching the unjamming transition, the barriers between nearby configurations shrink to zero so that anharmonic effects will also diverge.

The existence of low-frequency quasi-localized modes (Figure 5a) suggests that the structural stability of jammed solids might be quite different from that of ordinary crystals, according to the following argument. Because such modes have a somewhat localized character, the same energy input into one of them, as compared with an extended mode, would drive some particles to have much larger amplitude of oscillation. In addition, the relative displacement between a particle and its neighbor will also be very large because such high displacements contain very high wave-vector components.

Figure 5

(a) Participation ratio \(p(\omega) = \frac{\left(\sum_n |e_{n,i}|^2 \right)^2}{N \sum_n |e_{n,i}|^4} \) of the vibrational modes, where \(e_{n,i} \) is the displacement of particle \(n \) in mode \(i \).

(b) Energy barrier \(V_{\text{max}} \) encountered along each mode before falling into another energy basin. Data are for a configuration of \(N = 1000 \) particles at \(\Delta \phi = 0.1 \). The modes with the smallest participation ratios have the lowest barriers to rearrangements.
Application of shear stress can push a mode frequency downward until it reaches zero (5). At that point the system must rearrange into a new stable configuration. Compressive stress can have the same effect. For crystals, the shift of frequency with compression (the Grüneisen parameter) is typically small and negative. For disordered sphere packings, however, we have found that the shift is highly negative (67) for the low-frequency, low-participation ratio modes shown in Figure 5a; such modes are highly unstable to compression. Another measure of the anharmonicity is how far a given mode can be excited (leaving all the others alone) before the system becomes unstable (67). Figure 5b shows that the low-frequency quasi-localized modes are the most anharmonic.

3. EFFECT OF TEMPERATURE AND STRESS ON POINT J

The progress on understanding the jamming transition discussed in Section 2 was possible because properties can be studied cleanly at zero temperature. Each mechanically stable configuration corresponds to a metastable energy minimum whose properties can be studied simply by applying energy minimization. Working at \(T = 0 \) is appropriate for granular systems and foams, for which the energy for even small rearrangements of the configuration is many orders of magnitude greater than the thermal energy at room temperature. However, for molecular glasses, temperature is obviously relevant. In this section, we review work that has been done to connect the zero-temperature jamming transition at point \(J \) to phenomena at nonzero temperature.

3.1. Effect of Temperature on Length Scales Near Point J

The jamming transition at point \(J \) is marked by at least two diverging length scales and one vanishing length scale, the overlap distance. One strategy for understanding behavior at nonzero temperature is to track these lengths and watch their evolution as temperature \(T \) increases from zero. The effect of \(T \) on the overlap distance, \(\ell_w \), has been studied numerically and experimentally (68). It has been shown that \(\ell_w \sim \phi - \phi_v(T) \), consistent with the scaling of Equation 6 at zero temperature. Indeed, recent results suggest that above \(\phi_v(T) \) the elastic moduli also scale with \(\phi - \phi_v(T) \) as they do at zero temperature (69). This suggests that the behavior at \(\phi_v(T) \) is a vestige of the jamming transition at \(T = 0 \). The vestige has been observed experimentally on two-dimensional bidisperse systems of colloidal thermosensitive hydrogel particles by Zhang et al. (68). The vibrational behavior of these systems has recently been measured and is in excellent agreement with predictions of the idealized sphere model (70). In particular, there is a boson peak that shifts to higher frequency with compression. The experimentally determined modes have the same character as in Figure 4, with quasi-localized modes at low frequency, highly disordered extended modes at intermediate frequency, and localized modes at high frequency.

3.2. Sphere Systems in Thermal Equilibrium

Whereas the zero-temperature plane in the jamming phase diagram (Figure 1) can be studied by energy minimization, the unjammed region must be studied numerically by standard methods such as molecular dynamics simulations. Here we focus on equilibrium properties of the repulsive sphere systems characterized by the potentials of Equation 1, approaching the jamming surface from high temperature. Such systems exhibit typical
glass-transition behavior, with a relaxation time that increases with decreasing T at fixed pressure, p. Alternatively, for colloidal systems such as hard-sphere suspensions, p or ϕ is typically varied at fixed T. Recent molecular dynamics simulations (71) show that in the limit of low pressure, the relaxation time, τ, along many different trajectories in the $T - \phi$ plane, can be scaled onto a single master plot as a function of the ratio T/p if the times are scaled also by the square root of pressure. However, the low-pressure limit for soft spheres is equivalent to the hard-sphere limit, where $e \rightarrow 0$. In this limit, the data collapse shows that the soft-sphere glass transition and the colloidal glass (i.e., hard-sphere-glass) transition are actually the same phenomenon.

Point J for soft spheres corresponds to the double limit $p\sigma^d/\epsilon \rightarrow 0$, $T/\sigma^d \rightarrow 0$. This also corresponds to the infinite-pressure limit $(p\sigma^d/T \rightarrow \infty)$ of hard spheres. This equivalence explains why the properties of the maximally random jammed state of hard spheres (72) are identical to the properties of soft spheres at point J. It also tells us that we can learn about the effect of temperature on point J by studying hard spheres just below the jamming transition.

Brito & Wyart (73–75) proposed an important conceptual extension of the results for athermal soft-sphere systems above point J to those of hard-sphere systems below point J. The analogy is valid at times long compared with the collision time of the hard spheres but short compared with the rearrangement time. Although each particle has many neighbors, it does not necessarily collide with all of them. Following earlier work for granular materials (76), one can define a contact network of particles that experience many collisions with each other. The coordination is Z_c at the transition and increases as $Z - Z_c \sim |\Delta \phi|^{1/2}$ (similar to Equation 2 above ϕ_c) (73). Each particle in this network has an average position and fluctuates around this average position as it explores its free volume. From the free-volume entropy, one can obtain a dynamical matrix for the system. Thus the vibrational behavior discussed in Sections 2.2 and 2.3 has been extended to hard spheres below the jamming transition (74, 75).

3.3. Effect of Stress on the Jamming Transition

The rheology near point J was first studied by Olsson & Teitel (24) using the bubble model introduced by Durian (12, 77) for modeling foams. They found that the viscosity, $\eta \equiv \Sigma/\dot{\gamma}$, where Σ is the steady-state shear stress and $\dot{\gamma}$ is the shear rate, exhibits scaling collapse onto two branches, one above and the other below the critical jamming density, ϕ_c (see Figure 6). This data collapse suggests that the jamming transition is indeed critical. Although there is no disagreement over this basic result, the values of the exponents characterizing the rheology are still controversial. It has recently been suggested that above ϕ_c there are multiple scaling regimes as shear rate is varied, each characterized by rational exponents (25). This view differs from that of Olsson & Teitel (24), in which the exponents are not necessarily rational and there are corrections to the leading scaling behavior, as at a standard critical point.

4. BEYOND THE IDEAL SPHERE MODEL

Above we focus on the behavior of packings of frictionless spheres interacting via purely repulsive, finite-ranged potentials. Clearly, no system in nature is so ideal, and it is
important to understand the extent to which the results apply to more realistic systems. To this end, several groups have explored generalizations such as nonspherical particle shapes, friction, and long-ranged interactions, including attractions. Here we show that each time a more general system has been investigated, it has been possible to understand it, despite subtleties that have invariably emerged, in terms of the transition at point J.

4.1. Ellipsoidal Particles

The intuition developed in Section 2.1 suggests that the coordination number at the jamming transition should be the isostatic value, which depends on the particle shape. Once rotational degrees of freedom are introduced, the isostatic number in three dimensions increases from $Z_{\text{iso}} = 6$ to $Z_{\text{iso}} = 10$ for ellipsoids of revolution, or spheroids. Thus, on the basis of the arguments in Section 2.1, one might expect the number of contacts at the jamming transition, Z_c, to jump discontinuously from 6 to 10 as the shape of the particles is perturbed infinitesimally from a sphere to a spheroid. In fact, this is not what is observed (78, 79). The number of interacting neighbors at the transition increases continuously as the shape is varied (78–82).

This conundrum has recently been resolved (83). The isostatic number for spheres was obtained without considering the rotational degrees of freedom, which give rise to rotational soft modes that can be viewed as being localized on each sphere. As the spheres are deformed into spheroids, these soft modes are gradually recruited into the vibrational

Figure 6
Scaling plot showing the inverse viscosity η^{-1} rescaled by $\Delta \phi^0$ versus shear stress σ rescaled by $\Delta \phi^4$, for a system of two-dimensional frictionless disks, following the analysis of Reference 24. The upper branch of the scaling function corresponds to $\phi < \phi_J$, whereas the lower branch corresponds to $\phi > \phi_J$, both showing a data collapse consistent with behavior near an ordinary critical point. The data here are for a system of $N = 65,536$ particles simulated at constant applied shear strain rates, $\dot{\gamma}$. The scaling collapse yields the values of the critical parameters, $\phi_J = 0.8433$, $\sigma = 1.2$, and $\beta = 2.2$ (P. Olsson & S. Teitel, unpublished data).
spectrum at nonzero frequencies. At small distortions from a sphere, \(\varepsilon \), the resulting predominantly rotational modes form a new band that lies below the band of predominantly translational modes found for spheres. The onset frequency of the upper band of modes scales as \(\omega^* \sim Z_c(\varepsilon) - 6 \). This is exactly the same scaling that was observed for compression (see Equations 2 and 7), except that in this case the extra contacts are created not by compressing the particles together, but by deforming their shape. Similar results were found in two dimensions (84).

These results indicate that, although changing the particle shape gives rise to new physics—in this case a new band of rotational modes—the scenario developed in Section 2 for point \(J \) is surprisingly robust. The scaling of the characteristic frequency \(\omega^* \) at the jamming transition of ellipsoids can be predicted from the scaling of the contact number for spheres under compression. Thus the singular case of spheres, like other singular points, controls a wide swath of behavior in its vicinity.

4.2. Frictional Spheres

If the spheres have static friction, then in addition to the interparticle normal forces, \(f_n \), discussed above, there can also be tangential forces, \(f_t \), up to a threshold set by the usual friction law, \(f_t \leq \mu f_n \), where \(\mu \) is the friction coefficient. The presence of tangential forces introduces torque balance conditions for a stable system and changes the counting of the number of degrees of freedom. The result is that the isostatic number in the case of frictional particles is \(Z_{\text{iso}}^\mu = d + 1 \) in \(d \) dimensions. \(d + 1 < 2d \) for \(d \geq 2 \) suggests that at the jamming threshold, mechanically stable packings of frictional spheres can exist over a range of values of \(Z \), namely

\[
d + 1 \leq Z_c \leq 2d.
\]

In the case of frictionless particles, different mechanically stable packings created with different initial conditions have the same properties, described in Section 2.1. Thus the scaling of the elastic moduli, coordination number, and other quantities depends in the same way on the degree of compression above the jamming threshold, \(\Delta \phi \), for different configurations. With regard to frictional particles, this is no longer the case because at the jamming threshold, different configurations can have different values of \(Z_c \) with different \(\phi_c \) (17, 85–87). Nonetheless, it was found (87) that the static shear modulus obeys the expected scaling for point \(J \) with \(Z_c \) replaced by \(Z_{\text{iso}}^\mu \). From this result, one would therefore expect that only packings with \(Z_c \approx Z_{\text{iso}}^\mu \) would be marginal with many low-frequency vibrational modes as for frictionless spheres (87) (see Section 2.2). Standard protocols produce mechanically stable packings with \(Z_c \approx Z_{\text{iso}}^\mu \) only for extremely high values of the friction coefficient, \(\mu \rightarrow \infty \) (88, 89). Thus it would appear that most stable packings of frictional particles with more realistic values of \(\mu \) would not resemble the marginally jammed packings of frictionless particles.

This turns out not to be true, for the following reason (88, 90). Depending on how a frictional packing is prepared, there might be \(n_m \) contacts with tangential forces \(f_t \) that are just at the Coulomb threshold, \(f_t = \mu f_n \), where \(f_n \) is the normal force. Thus \(f_t \) for these contacts are constrained and do not contribute to the number of degrees of freedom. The counting can therefore be generalized to

\[
Z \geq (d + 1) + \frac{2n_m}{d} \equiv Z_{\text{iso}}^m
\]
for mechanically stable packings (88, 90). According to this criterion, all packings with \(Z \) close to \(Z_{m}^{\text{iso}} \) will be marginal, with many low-frequency excitations coming from the slipping of tangential contacts that just exceed the Coulomb threshold. Thus packings at any value of the friction coefficient \(\mu \) can be prepared to be close to this generalized isostaticity criterion (90), which is approached at the lowest density that can typically be accessed for a given \(\mu \) (89). Packings prepared gently therefore tend to be marginal in this sense (90) and have properties similar to those of frictionless sphere packings near the jamming threshold.

4.3. Long-Ranged Interactions

For long-ranged interactions, the number of interacting neighbors is technically infinite. For long-ranged repulsive interactions, point \(J \)—the jamming threshold, below which no particles are interacting—must lie at zero density. For spheres with long-ranged attractions, point \(J \) does not even exist—it lies inside the vapor-liquid coexistence curve, at least for binary Lennard-Jones mixtures (10). Thus long-ranged interactions have a nonperturbative effect on the jamming transition. It is possible, however, that the jamming transition might still influence behavior. For systems with interactions that decay with distance, for example, one would not expect weak interactions with distant particles to have a strong effect on the vibrational properties. Indeed, it was found that a variational approach could be used to predict the boson peak frequency, \(\omega^* \), even in systems with long-ranged interactions, and that the value of \(\omega^* \) is primarily determined by the strongest bonds in the system, whose number is not much larger than the isostatic value (91). Thus the vibrational properties of such systems are similar to those of ideal spheres not far above point \(J \).

4.4. Network Glasses

Phillips (92) and Thorpe and colleagues (7, 93, 94) recognized long ago that isostaticity is important to many of the properties of network glasses. In such systems, bond-bending interactions can be viewed as giving rise to additional constraints, beyond those discussed in Section 2. The proximity to the isostatic point can be tuned by varying the composition of a network glass; this gives rise to rich phase behavior and unusual properties near the isostatic point. Recently, Wyart and colleagues (11, 95, 96) extended the variational analysis introduced in Section 2 to examine the vibrational spectra of networks near isostaticity, such as rigid tetrahedra connected by flexible joints (97), used to model silica.

5. IMPLICATIONS FOR REAL GLASS FORMERS: OPEN QUESTIONS

Compared with other jamming systems such as foams, emulsions, colloidal suspensions of spherical particles, and granular bead packings, real glass-forming systems arguably resemble ideal spheres the least. The constituent molecules or atoms are not spherical; they have long-ranged attractions; and they may have three-body interactions such as bond-bending interactions in network glasses. The work reviewed in Section 4 suggests that point \(J \) may shed light on the vibrational properties of glasses. In this section, we discuss the connection of the properties of marginally jammed sphere packings with the low-
intermediate-temperature properties of amorphous solids, and the possible connection of the jamming transition to the glass transition.

5.1. Jammed Sphere Packings and Amorphous Solids

We have gone on at some length to describe the new physics that is controlled by the critical nature of point J. These include structural properties appearing in the pair distribution function $g(r)$ and the presence of a new class of normal mode excitations. In studying the properties of these excitations, it has become clear that they have much to tell us about the low-temperature properties of glasses. They produce a large excess number of excitations (known as the boson peak), and they are poor transporters of energy. The onset frequency of the boson peak in the density of vibrational states, ω^*, would show up as a peak in the heat capacity at temperature $T \approx h\omega^*$. Similarly, the small and constant energy diffusivity associated with the modes above ω^* should give rise to a linear increase of the thermal conductivity above $T \approx h\omega^*$, crossing over to a constant at $T \approx h\omega_{\text{max}}$, where ω_{max} marks the Debye frequency, or the upper limit of the vibrational spectrum (20).

Real amorphous solids universally exhibit this very same behavior in the intermediate temperature regime, from ~ 10 K to room temperature (98). In this regime, the thermal conductivity, $\kappa(T)$, has a plateau followed by a nearly linear rise at higher T, crossing over to a constant; this behavior is in sharp contrast to that of crystalline materials in the same temperature range (99). In addition, the ratio $C(T)/T^3$ of the heat capacity to the expected T^3 dependence predicted by the Debye model for crystalline solids exhibits a characteristic peak, known as a boson peak (98, 100), which is not seen in crystals. However, the origin of the plateau in the thermal conductivity and the question of whether the plateau is related to the boson peak in the heat capacity remain controversial.

In jammed sphere packings, it is clear that the boson peak in the heat capacity is tied to the onset of linear behavior in the thermal conductivity through the frequency ω^*. That ω^* is only weakly affected by long-ranged interactions (91) and also emerges in models of network glasses (95, 96) as well as in ellipsoid packings (83) suggests that it is a robust feature that may well appear in real glasses. Thus the jamming scenario predicts that it is not a coincidence that the boson peak in the heat capacity occurs in the same temperature range as the end of the plateau in the thermal conductivity.

This still leaves open the question of the origin of the apparently universal behavior of amorphous solids at low temperature. There the heat capacity increases approximately linearly in T (98), instead of as T^3 as expected, whereas the thermal conductivity increases as T^2 instead of as T^3 as it does for crystals (101). It is believed that these features arise from the scattering of phonons from two-level systems (98, 102). However, two-level systems are not yet concretely understood in physical terms.

The recent discovery (67, 74) that anharmonic effects in jammed sphere packings are quite different from those in crystals may open new doors. The low-frequency modes of jammed systems are, by many measures, considerably more anharmonic than the high-frequency ones. The large anharmonicity coupled with the strong quasi-localization of low-frequency modes may give rise to the exciting possibility of local melting and concomitant dynamical heterogeneities (74, 103). It may be possible to identify them with two-level systems and shear transformation zones (104, 105). We suggest that this is one of the most exciting avenues to explore in the near future.
5.2. Point \(J \) and the Glass Transition

One question of current controversy is whether point \(J \) is connected to the glass transition. A number of papers have recently suggested that the jamming and the glass transition are separate phenomena \((35, 52, 106, 107)\). For example, Figure 7a shows a scenario in which there is a true thermodynamic glass transition at nonzero \(T/p \), labeled as \(K \), which is clearly distinct from the line of \(J \) points at \(T/p = 0 \). An alternate scenario is depicted in Figure 7b, in which there is a thermodynamic glass transition only at zero \(T/p \). Note that in both cases, it is assumed that the densest close-packed state is disordered, which is not the case for monodisperse or bidisperse systems. In the first scenario, the glass transition is unrelated to the jamming transition, whereas in the second scenario, the only thermodynamic glass transition is the jamming transition so that point \(J \) controls the entire jamming surface in the jamming phase diagram depicted in Figure 1. The question of which scenario is correct seems unanswerable for now.

We must also ask what happens to the dynamics when we go beyond the ideal sphere model. For example, do attractive interactions completely disrupt the scaling scenario for the relaxation times that appear near point \(J \) for repulsive interactions? Recent studies \((108)\) suggest that the density dependence of the relaxation time is quite different for systems with attractions than for systems with only repulsions. Nevertheless, our experience with liquids \((109)\) suggests that the physics can be dominated by repulsions. The understanding of the effect of attractions is an area of active research.

6. CONCLUSION

Jamming provides a fertile field for future research. It should be clear from this review that there are many parallels between phenomena observed in computer simulations of jammed sphere packings and those observed in amorphous systems existing in the laboratory. The parallels appear despite what must be admitted are the drastic idealizations used in the
canonical model of jamming: a collection of frictionless spheres interacting via repulsive, finite-ranged, two-body potentials at zero temperature. Many issues still remain to be answered that focus on different aspects of the jamming scenario.

Over the past decade, most of the research on the jamming transition was on simulated systems in which the interactions could be tightly controlled, with the notable exception of experiments on emulsions and foams measuring the scaling of elastic moduli (110, 111). Recently, however, a number of experiments have been performed that are capable of testing some of the predictions of the simulations. These include experiments that focus on structural features (68, 112–115), experiments on rheology near the jamming transition (116–118), and experiments on granular systems near the transition (112, 113, 119–121).

Moreover, a number of reports have recently come out of experiments that are designed to measure the distribution of low-frequency anomalous modes in colloidal samples that have densities that are adjusted to vary through the jamming transition (68, 70; M. Gardel, unpublished data and observations). These experiments show that the picture of the vibrational properties obtained from simulations on idealized spheres applies to real systems and that features such as the boson peak that are known to exist in atomic and molecular glasses also appear in systems made of much larger constituent particles, in accord with the jamming scenario.

Our conclusions are highly optimistic. Recent discoveries in jammed particle packings have opened new doors into understanding how amorphous systems behave in general. A number of studies suggest that many properties of glasses may be governed by the proximity to a novel and unusual critical point that marks the jamming transition of frictionless spheres at zero temperature. This new physics is still being unraveled.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

We have benefited from discussions with too many people to be listed here, but would particularly like to thank L. Chayes, W. Ellenbroek, T.K. Haxton, S.A. Langer, T. C. Lubensky, C.S. O’Hern, J.M. Schwarz, L.E. Silbert, W. van Saarloos, A. Souslov, V. Vitelli, T.A. Witten, M. Wyart, N. Xu, and Z. Zeravcic for stimulating collaborations. In addition, we thank the Kavli Institute for Theoretical Physics in Santa Barbara for hospitality at the inception of the field. We are grateful for funding from the Department of Energy via DE-FG02-05ER46199 (A.J.L.) and DE-FG02-03ER46088 (S.R.N.) and the National Science Foundation MRSEC program via DMR-0520020 (A.J.L.) and DMR-0820054 (S.R.N.). These grants help fund this research.

LITERATURE CITED

Contents

Electron Transport in Carbon Nanotubes
Shahal Ilani and Paul L. McEuen .. 1

FeAs-Based Superconductivity: A Case Study of the Effects of Transition Metal Doping on BaFe$_2$As$_2$
Paul C. Canfield and Sergey L. Bud’ko ... 27

Scattering and Pairing in Cuprate Superconductors
Louis Taillefer .. 51

Spintronics
S.D. Bader and S.S.P. Parkin .. 71

Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy
M.S. Dresselhaus, A. Jorio, and R. Saito ... 89

Single-Molecule Nanomagnets
Jonathan R. Friedman and Myriam P. Sarachik 109

Fermi-Hubbard Physics with Atoms in an Optical Lattice
Tilman Esslinger ... 129

Nematic Fermi Fluids in Condensed Matter Physics
Eduardo Fradkin, Steven A. Kivelson, Michael J. Lawler, James P. Eisenstein, and Andrew P. Mackenzie 153

The “Coulomb Phase” in Frustrated Systems
Christopher L. Henley ... 179

First-Principles Calculations of Complex Metal-Oxide Materials
Karin M. Rabe .. 211

X-Ray Diffraction Microscopy
Pierre Thibault and Veit Elser ... 237
Physics of Cellular Movements
 Erich Sackmann, Felix Keber, and Doris Heinrich 257

Molecular Theories of Segmental Dynamics and Mechanical
 Response in Deeply Supercooled Polymer Melts and Glasses

Rheology of Soft Materials
 Daniel T.N. Chen, Qi Wen, Paul A. Janmey, John C. Crocker, and
 Arjun G. Yodh ... 301

The Mechanics and Statistics of Active Matter
 Sriram Ramaswamy .. 323

The Jamming Transition and the Marginally Jammed Solid
 Andrea J. Liu and Sidney R. Nagel 347

Dynamics of Simple Cracks
 Eran Bouchbinder, Jay Fineberg, and M. Marder 371

Friction, Fracture, and Earthquakes
 Eric G. Daub and Jean M. Carlson 397

Errata

An online log of corrections to Annual Review of Condensed Matter Physics
 articles may be found at http://conmatphys.annualreviews.org/errata.shtml