Effective Temperatures in Driven Systems near Jamming

Andrea J. Liu
Department of Physics & Astronomy
University of Pennsylvania

Tom Haxton
Yair Shokef
Tal Danino
Ian Ono
Corey S. O'Hern
Douglas Durian
Stephen Langer
Sidney R. Nagel

Physics, UPenn
Physics, UPenn
Chemistry, UCLA
Chemistry, UCLA
Mechanical Engineering, Yale Univ.
Physics, UPenn.
NIST
James Franck Inst., U Chicago
Modern Challenge

- We understand a lot about the collective properties of many-particle systems in thermal equilibrium

- But flowing glassy systems are far from equilibrium

microscopic \[\left\{\begin{array}{c}
\text{systems near thermal equilibrium} \\
\text{statistical mechanics}
\end{array}\right\} \rightarrow \text{macroscopic}
\]

\[\left\{\begin{array}{c}
\text{systems far from equilibrium} \\
??
\end{array}\right\}
\]
Can fluctuations be described by effective temperature?

If so, so what?
Testing Effective Temperature

• We and others conducted numerical simulations of simple models under steady-state shear

• Calculate T_{eff} in several independent ways

• In an equilibrium system, all calculations must yield same result

• Are they the same in a driven system?

Model: Equations of Motion

\[m \frac{d^2 \vec{r}_i}{dt^2} = \vec{F}_i^e + \alpha \vec{F}_i^v - \beta \Delta \vec{v}_i \]

\[\Delta \vec{v}_i = \vec{v}_i - \dot{\gamma} y_i \hat{x} \]

Constant Shear-rate \(\dot{\gamma} \) b.c.’s

Types of simulations:

1. Sheared; massless; athermal \(\dot{\gamma} > 0; m = 0; \beta = 0 \)
2. Sheared; massive; athermal \(\dot{\gamma} > 0; m \neq 0; \beta = 0 \)
3. Sheared; massive; thermal \(\dot{\gamma} > 0; m \neq 0; \alpha = 0; T > 0 \)
4. Equilibrium \(\dot{\gamma} = 0; m \neq 0; \alpha = 0; T > T_g \)
Temperatures from Linear Response

• Thermal diffusion

\[\langle (\Delta r(t))^2 \rangle = 6Dt \]

\[D = \frac{T}{S} \]

- Temperature
- Drag

• Response to Force F

Particles move at speed \(F / \zeta \) where \(\zeta = 6\pi \eta a \) is drag

\[T_{eff} = \left\{ \frac{D}{v/F}, \frac{\langle (\Delta V)^2 \rangle}{V \kappa_T}, \ldots \right\} \]

- Size of fluctuations (correlation)
- Ease of creating fluctuation (response)
Other Linear Response Relations

Adiabatic compressibility ↔ Pressure Fluctuations

\[\kappa_s^{-1} = \frac{A}{T} \left\langle (p - \langle p \rangle)^2 \right\rangle \]

Viscosity ↔ Shear Stress Fluctuations

\[\eta = \frac{A}{T} \int_0^\infty dt \left\langle \sigma_{xy}(t) \sigma_{xy}(0) \right\rangle \]

Heat Capacity ↔ Energy Fluctuations

\[\frac{\partial \langle U \rangle}{\partial T} = \frac{1}{T^2} \left\langle (U - \langle U \rangle)^2 \right\rangle \]

\[\int \frac{d \langle U \rangle}{\left\langle (\delta U)^2 \right\rangle} = \int \frac{dT}{T^2} \]
Results

• 4 indep. def’ns of T_{eff} yield the same result
• Effective temperature appears to be a useful concept!

• AND there’s more....
Textbook Definition of Temperature

• Monte-Carlo results for $1/T = dS/dU$:

- Shear makes system nearly ergodic!

• Shear makes system nearly ergodic! BUT…….
Two Time-Scale/Two Temperatures

• At short times, system sees T_{bath}

• At long times, system sees T_{eff}

• What happens if harmonic oscillator is inserted into system?

$k_B T_{spr} = k_{spr} < y^2 >$

T. Danino
Time-Dependent Linear Response

e.g. FD relation for density

\[\rho(\vec{k},t) = \sum_{j=1}^{N} e^{i\vec{k}\cdot\vec{r}_j(t)} \]

\[C(t) = \langle \rho(\vec{k},t)\rho(-\vec{k},0) \rangle \]

correlation

\[h_\rho = \text{perturbation} \]

\[\bar{R}(t) = \frac{\langle \rho(\vec{k},t) - \rho(\vec{k},0) \rangle}{h_\rho} \]

response

\[\bar{R}(t) = \frac{\bar{C}(0)}{T} \left[1 - \frac{\bar{C}(t)}{\bar{C}(0)} \right] \]

\[C(t) = \frac{\bar{C}(t)}{\bar{C}(0)} \]

Fluctuation-Dissipation Theorem

\[R(t) = \frac{\bar{R}(t)}{\bar{C}(0)} \]

\[R(t) = \frac{[1 - C(t)]}{T} \]
Intercept vs. Long-Time Slope

• Previous definitions based on static linear response
 \[R(t) = \frac{1 - C(t)}{T} \]
 \[R(t = \infty) = \frac{1}{T} \]

• Definitions based on time-dependent linear response

System in thermal equilibrium
Sheared Glassy Systems

The response-correlation curve is not a straight line!

• short-time slope: \(T_S \) is bath temperature
• long-time slope: \(T_L \) depends on shear rate

Because curve is not straight, \(T_L \neq T_I \)

Cugliandolo and Kurchan, PRL 71, 173 (1993)
Density fluctuations: Def. 4

\[\rho(\vec{k}, t) = \sum_{j=1}^{N} e^{i\vec{k} \cdot \vec{r}_j(t)} \]

\(m > 0; \) athermal
\(\dot{\gamma} = 0.01 \)

\[R_{\rho(k)}(t) \]

\[C_{\rho(k)}(t) \]

\(T_L \) from density fluctuations matches Defs. 1-3 based on static linear response!
Pressure fluctuations

\[P = \sum_{j=1}^{N} P_j \]

k=0 quantity

\[m>0; \text{thermal} \]

\[\dot{\gamma} = 0.01 \]

\[R_P(t) \]

\[C_P(t) \]

\[\frac{1}{T_L} \]

\[\frac{1}{T_S} \]

\[\frac{-1}{T_S} \]

\[\frac{1}{T_I} \]

\[0 \]

\[0.2 \]

\[0.4 \]

\[0.6 \]

\[0.8 \]

\[1 \]

• Intercept, not slope, corresponds to consistent \(T_{\text{eff}} \)
This result is robust. We have varied

- **System** (athermal with dissipation, thermal with no dissipation)
- **Potential**
- **Density**
- **Shear rate**
- **Bath temperature**

\[T_I(p) = T_L(\rho_k) \]

- Static and dynamic linear response give consistent \(T_{\text{eff}} \)
- Cugliandolo-Kurchan picture is conceptually incomplete
The Complications

For most observables, can choose consistent set

<table>
<thead>
<tr>
<th>Quantity</th>
<th>T_I</th>
<th>T_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(k=0)$</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>$\sigma(k=0)$</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>$p(k_y)$</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>$\rho(k_y)$</td>
<td>X</td>
<td>✓</td>
</tr>
</tbody>
</table>

But how to know which definition to use???

- $k=0$ quantities: T_I
- $k>0$ or local quantities: T_L

Others don’t agree

$p_{zz}, (2p_{xx}-p_{yy}-p_{zz})/3,$ config. temps, force temp. (Shokef)
Altogether, 8 indep. def'ns of T_{eff} yield same value

- $T_p, T_\sigma, T_{pk}, T_U, T_\rho, T_E, T_{spr}, T_K$

T_S is consistent

Effective temp. appears to be reasonable concept
Why should we care?

• If I tell you the temperature of a material, you don’t get very excited.

• What does T_{eff} tell us about the system (other than the relation between correlation and response)?

• Does T_{eff} tell us anything about the dynamics of the system near jamming?
• But this is a weird phase diagram
 - Shear stress is nonequilibrium axis
 - Can we replace shear stress with T_{eff}?
Glass Transition

\[\log \tau(s) \]

\[T_g / T \]

Super-Arrhenius dependence of relaxation time

Viscosity vs. T

T. Haxton

\[\eta = \eta_0 e^{A/(T-T_0)} \]

\[T_0 \approx 0.0013 \]

Super-Arrhenius dependence of viscosity on T
System has apparent yield stress for $T < T_0$.

Apparent yield stress increases with decreasing T.

Power-law rheology for $T \equiv T_0$ (SGR)
Behavior of T_{eff}

- For $T>T_0$, $T_{\text{eff}} \rightarrow T$ as $\dot{\gamma} \rightarrow 0$
- For $T<T_0$, $T_{\text{eff}} \rightarrow T_{\text{eff},g}$ as $\dot{\gamma} \rightarrow 0$
- η vs. T_{eff} is super-Arrhenius
- $T_{\text{eff},g} < T_0$
What do shear-induced fluctuations do?

Let $V_r =$ typical size of rearrangement events

Suppose that between rearrangements, local strain can build up to $\gamma_{\text{max}} \approx \exp\left(\Delta E / T_{\text{eff}}\right)$ due to activated crossing of energy barriers ΔE with T_{eff}.

But $\Delta E \approx \sigma_{xy} \gamma_{\text{max}} V_r$

This yields $\sigma_{xy} \approx \sigma_0 \exp(-\Delta E / T_{\text{eff}})$

Data collapse for $T \ll T_0$ or large σ_{xy}

Limiting behavior:

$$1/T_{\text{eff}} \approx -\frac{1}{\Delta E} \log\left[\sigma_{xy} / \sigma_0\right]$$
Summary

• Steady shear appears to have two effects
 - It lowers typical energy barriers
 - But it also gives rise to fluctuations, which allow activated crossing of the barriers

• The typical energy barrier should depend on shear rate (Ashwin, Brumer, Reichman, Sastry, J Phys Chem B 108, 19703 (2004)).
• Still ahead: analysis of inherent structures
Second law of thermodynamics

• Do 2 systems in “thermal” contact equilibrate to same T_{eff}?

• Recall earlier results:
 - Small and large particles in binary sheared glass have same T_{eff} (Berthier & Barrat, J Chem Phys, 116, 6228 (2002))
 - Massive particle has same T_{eff} as small particles (Berthier & Barrat, PRL 89, 095702 (2002)).
 - Harmonic oscillator has same T_{eff} as system

• Requires matching of time scales
 - Massive particle
 - Low-frequency oscillator

• What about two large systems? How can we place them in contact?
Preliminary studies of 2nd law

- Separate by flexible chain with k_{chain}
- This allows
 - No particle exchange
 - Propagation of rearrangement events
 - Equilibration of shear stress if average horizontal position is not fixed
 - Equilibration of pressure if average vertical position is not fixed
Preliminary results

<table>
<thead>
<tr>
<th>Pressure allowed to equilibrate?</th>
<th>Shear stress allowed to equilibrate?</th>
<th>T_{eff} equilibrates?</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

• Final effective temps of both systems are equal if final pressures are equal.

• Does T_{eff} depend only on pressure? (N. Xu & C. S. O’Hern)
If T_{eff} were just a function of p, then all data for different T would collapse on single curve.

No, T_{eff} does not just depend on pressure.

So why does equilibration of p allow equilibration of T_{eff}?
Conclusions

• T_{eff} seems to be reasonable for sheared glassy systems
• Experiments need to measure as many T_{eff} as possible (Durian)
 • Einstein relation
 • Harmonic oscillator (optical or magnetic trap)
• T_{eff} seems to control barrier hopping w/ Boltzmann prob.
• When is T_{eff} useful? (2 time-scale/2 temp?)
• Second law?
 • How is “effective heat” exchanged?
 • Is configurational entropy conjugate to T_{eff} even when particles have inertia?

Song, et al. (PNAS 05)
Acknowledgements

Tom Haxton Physics, UPenn
Yair Shokef Physics, UPenn
Tal Danino Chemistry, UCLA
Ian Ono Chemistry, UCLA
Corey S. O’Hern Mechanical Engineering, Yale Univ.
Douglas Durian Physics, UPenn.
Stephen Langer NIST
Sidney R. Nagel James Franck Inst., U Chicago

Supported by NSF-DMR-0087349, 0605044