LaBr3 detector modules for Next Generation PET scanners

On the left is a schematic of adjacent modules with overlapping photomultiplier tubes while the right is a photograph of a single module with PMT's and 8-mm thick light guide.  Improvements in timing resolution for time-of-flight PET is the research of Adjunct Prof. Joel Karp in Penn Radiology.

Self-assembling Building Blocks

Self-assembling building blocks occur in a diverse set of supramolecular, macromolecular, and other complex systems that impact numerous fields such as industrial dyes and pigments, xerographic receptors, organic semiconductors, transistors, light-emitting diodes and solar cells.  Prof. Paul Heiney collaborates with chemists and material scientists on the study of such molecular systems.


Two-Dimensional Foams

The evolution of foams in 2 and 3 dimensions has interested theorists and experimentalists for decades. Professor Doug Durian's group is developing apparatus to test theoretical laws on coarsening of foams on planar and curved surfaces.


Dark Energy Studies

Professor Masao Sako uses Type Ia supernovae to study the expansion history of the universe.  The graphs show (left and middle) Hubble diagrams from a simulated 5-year Type Ia sample from the Dark Energy Survey.  The right graph shows the 95% confidence limits on dark energy parameters.


Penn physicists study graphenes, atomically thin sheets of carbon atoms in a honeycomb lattice. Graphene is the prototype Dirac material hosting a solid state realization of an ultra-relativistic electron gas and accessing new phenomena that are controlled by electric and magnetic fields and by the atomic registry when graphenes are stacked.