PHYS314 - Ocean-Atmosphere Dynamics and Implications for Future Climate Change

This course covers the fundamentals of atmosphere and ocean dynamics, and aims to put these in the context of climate change in the 21st century. Large-scale atmospheric and oceanic circulation, the global energy balance, and the global energy balance, and the global hydrological cycle. We will introduce concepts of fluid dynamics and we will apply these to the vertical and horizontal motions in the atmosphere and ocean. Concepts covered include: hydrostatic law, buoyancy and convection, basic equations of fluid motions, Hadley and Ferrel cells in the atmosphere, thermohaline circulation, Sverdrup ocean flow, modes of climate variability (El-Nino, North Atlantic Oscillation, Southern Annular Mode). The course will incorporate student led discussions based on readings of the 2007 Intergovernmental Panel on Climate Change (IPCC) report and recent literature on climate change. Aimed at undergraduate or graduate students who have no prior knowledge of meteorology or oceanography or training in fluid mechanics. Previous background in calculus and/or introductory physics is helpful. This is a general course which spans many subdisciplines (fluid mechanics, atmospheric science, oceanography, hydrology).
Section 401 - LEC
T 0300PM-0600PM
MARINOV, IRINA
CLAUDIA COHEN HALL 402
Section 402 - REC
R 0430PM-0530PM
MARINOV, IRINA
CHEMISTRY BUILDING 119