(6A) Decay

Write down the simplest Lagrangian that admits the following process: a real scalar particle ϕ of mass m directly decays into three real massless particles – excitations of the field χ. Normalize the interaction term to make the Feynman rules as simple as possible, and use a factor of $-g$ in this interaction term of the Lagrangian (times an appropriate rational factor to make it simple). Check that g is dimensionless.

Denote the energies p^0 of the final three particles to be E_B, E_C, E_D and their 3-momenta $\vec{p}_B, \vec{p}_C, \vec{p}_D$. In the two-dimensional plane with coordinates E_B, E_C, what is the kinematically allowed region of E_B, E_C in the decay? Finally, compute the total decay rate Γ.

(6B) Feynman rules for a derivative theory

Consider the Lagrangian
\[\mathcal{L} = \frac{1}{2} \partial\mu \phi \partial\mu \phi - \frac{u}{4!} \partial\alpha \phi \partial\beta \phi \partial\gamma \phi. \]
Here, u is a coupling constant. What is the mass dimension of u in units $c = \hbar = 1$? What is the mass of the field ϕ? Write down the Feynman rules for this theory, especially for the vertex proportional to u. What counterterms do you need up to the order u^2 to preserve the vanishing energy of the vacuum and the previously determined mass of ϕ? Don’t calculate their values.

(6C) A simple phase space integral

In d spacetime dimensions, the Lorentz-invariance phase space for one particle is proportional to the factor
\[d\Omega = \frac{d^{d-1}k}{(2\pi)^{d-1}E_k} \]
where $E_k = (\vec{k}^2 + m^2)^{1/2}$ where m is the mass. Calculate the total volume Ω of the region of this phase space bounded by $E_k < E$ where E is a constant upper cutoff for the energy. What is the power law between Ω and E for large values of E?

(6D) Generalizing Mandelstam variables

Consider N different spacetime momenta p_i^μ where $i = 1 \ldots N$ that satisfy
\[\sum_{i=1}^{N} p_i^\mu = 0 \]
Each p_i^μ is on-shell with a different mass, $p_i^\mu p_i,\mu = m_i^2$ for $i = 1 \ldots N$. Define variables
\[s_{ij} = (p_i + p_j)^2 \]
where the Minkowski $++--$ inner product is included in the right-hand side. How many different variables s_{ij} for $i \neq j$ there are? Don’t double count. (For $N = 4$, you get the Mandelstam variables back.) Calculate the sum of all nontrivial values s_{ij} in terms of the masses m_i. Hint: if the sum of the momenta is zero, its square is still zero.