PHYSICS 101 QUIZ, MAR 1, 2000

A small cart of mass 0.5 kg, which you are to treat as being a point particle, is set into motion on a frictionless loop-the-loop of radius R. The cart has speed 14 m/s when it passes the 3 o’clock position, as shown in the top panel at right. When the cart reaches its lowest point, as shown in the bottom panel at right, its speed is 16 m/s. Determine

a) the radius R of the loop-the-loop.

SOLUTION: Apply the conservation of energy between the two situations shown.

$$KE_f + PE_f = KE_i + PE_i.$$ \hspace{1cm} (1)

where ”f” is the top diagram and ”i” the bottom one. So

$$\frac{1}{2}mv_f^2 + mgh_f = \frac{1}{2}mv_i^2 + mgh_i.$$ \hspace{1cm} (2)

Cancel out the m’s. Then $\frac{1}{2}(14)^2 + (10)R = \frac{1}{2}(16)^2$, or $98 + 10R = 128$, so that $R = 3$ m.

b) Give the magnitude AND direction of the acceleration of the cart when it is at its lowest point.

SOLUTION: The acceleration is radially in, i.e. UPWARD. Its magnitude is $v^2/R = 16^2/3 = 85.3$ m/s².

c) Give the magnitude AND direction of the force the track exerts on the cart when the cart is at its lowest point.

SOLUTION: Apply $F = ma$. The forces on the cart (when it is at the bottom) are a) the force of gravity, mg, downward and b) the force exerted by the track on the cart, which is N, upward. The net upward force equals m times the upward acceleration, so

$$N - mg = mv^2/R,$$ \hspace{1cm} (3)

so $N = mg + ma = 0.5(10 + 85.3) = 47.6$ Nt.