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Considerations of rotational invariance in one-dimensionally modulated systems such as
smectics-A, necessitate nonlinearities in the free energy. The presence of these
nonlinearities is critical for determining the layer configurations around defects. We
generalize our recent construction for finding exact minima of an approximate nonlinear
free energy to the full, rotationally invariant smectic free energy. Our construction
exhibits the detailed connection between mean curvature, Gaussian curvature and layer
spacing. For layers without Gaussian curvature, we reduce the Euler–Lagrange equation
to an equation governing the evolution of a surface. As an example, we determine the
layer profile and free energy of an edge dislocation.
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1. Introduction

Phases with one-dimensional broken translational invariance provide a rich
phenomenology which includes strong fluctuation effects (Landau 1937; Peierls
1934), anomalous elasticity (Grinstein & Pelcovits 1981, 1982), and grounds states
rife with topological defects (Renn & Lubensky 1988). As these phases are readily
realized in smectic-A liquid crystals, lyotropic lamellae and cholesterics, many of
these surprising phenomena can be critically and dramatically verified by
experiment. When defects are present, the layers must bend and the resulting
curvature is, in general, incompatible with equally spaced layers, even locally
(DiDonna & Kamien 2002; Achard et al. 2005). Except in special geometries (e.g.
concentric spheres or cylinders), the problem of determining ideal layer
configurations in smectics becomes significantly more complicated than the
problem of finding minimal configurations for single surfaces. This is apparent in
the smectic blue phases, in which minimal surfaces, which have zero bending
energy, cannot simultaneously have equal spacing (DiDonna & Kamien 2002,
2003). In this article, we develop a manifestly rotationally invariant theory which
allows us to study a large class of defect configurations. Using the Bogomol’nyi,
Prasad and Sommerfield (BPS) decomposition of the free energy (Bogomol’nyi
1976; Prasad & Sommerfield 1976), we find first order evolution equations for the
layers, akin to those in models of mean curvature flow (Deckelnick & Dziuk 2003)
and which generalize and complete earlier work on approximate theories of
smectics (Brener & Marchenko 1999; Santangelo & Kamien 2003).
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C. D. Santangelo and R. D. Kamien2912
We describe smectic layers with separation a0 as surfaces of constant
f(x)ZzKu(x)Za0n; when n is an integer, these level sets correspond to the
nth layer. The function u describes the deformations of the surfaces from flat
layers with normals in the ẑ direction. The layer normal is defined by
n̂ZVf=jVfj. The free energy has a term from the compression strain, uzz, that
maintains the layer spacing and a term from the bending strain

F Z 1

2

ð
d3x½Bu2zz CK1ðV$n̂Þ2�: ð1:1Þ

Strictly speaking, in the smectic-A phase, there is another degree of freedom, the
nematic director. The difference between the director and the layer normal,
however, is a high energy or ‘optical’ mode. In the following we will ignore this
mode and assume that the layer normal and nematic director are locked. In this
case, the bending energy ðV$n̂Þ2 arises from the Frank free energy for the nematic
(de Gennes & Prost 1974)

FFrank Z
1

2

ð
d3xfK1ðV$n̂Þ2CK2½n̂$ðV!n̂Þ�2 CK3½ðn̂$VÞn̂Þ�2g: ð1:2Þ

For surfaces defined as level sets of some phase field f(x, y, z), n̂$ðV!n̂ÞZ0
implying the twist term vanishes identically whenever the surface is non-
singular. Near the core of defects, the director and the layer normal differ—
though the director develops twist, the layer normal does not. Additionally, we
will ignore the bend term as, for small deformations, it is higher order in
derivatives along the layer normal than the compression uzz . However, to
properly treat the elastic strain near the core of deformations with large uzz , it is
necessary to include this term (Pleiner 1988). We will return to this point later
and will propose a way to incorporate the bend. For the moment, however, we set
K3Z0.

When boundaries are present, it is necessary to add the saddle–splay energy

FSS ZK24

ð
d3xV$½n̂ðV$n̂ÞKðn̂$VÞn̂Þ�: ð1:3Þ

As a total derivative, the contribution of this term depends only on the boundary
conditions. Since the presence of topological defects implies the presence of
boundaries as well, this term can contribute to the core energy of a defect.

Both the splay and saddle–splay energies are naturally understood in terms of
curvature invariants of the smectic layers. Defining the principle radii of
curvatures on each surface, we see that the splay energy and saddle–splay energy
can be written in terms of the mean curvature

H Z
1

2
V$n̂ Z

1

2

1

r1
C

1

r2

� �
; ð1:4Þ

and the Gaussian curvature

K Z
1

2
V$½n̂ðV$n̂ÞKðn̂$VÞn̂�Z 1

r1r2
; ð1:5Þ

respectively (see, for instance, Kamien 2002).
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The elastic strain must vanish when the layers are evenly spaced, i.e. when
jVfjZ1, and is a rotationally invariant function of derivatives of f. Though the
form uzzZð1=2Þ½1KðVfÞ2� arises naturally from a Landau theory for the
nematic–smectic transition (Chen & Lubensky 1976), there are other rotationally
invariant functional forms in the same universality class. We will find it most
convenient to use (Kléman & Parodi 1975)

uzz Z 1K jVfj: ð1:6Þ

Though the magnitude may appear unnatural, note that jVfjZ n̂$Vf, the
normal derivative of f.

Expanding the compression modulus in powers of u, and defining
Vthx̂vxC ŷvy, we find that

uzzzvzuK
1

2
ðVtuÞ2COðu3Þ; ð1:7Þ

which is the expression for strain considered in by Brener & Marchenko (1999)
and in our prior work (Santangelo & Kamien 2003). The expansion in powers of u
must be treated with care, however, because it destroys the rotational invariance
of the free energy. For instance, if one were to approximate uzzZvzu, the layer
deformations due to an edge dislocation are incorrect even very far from the
dislocation core (Brener & Marchenko 1999). This occurs because this
approximation measures the distance between layers along the ẑ-axis rather
than the layer normal. Using equation (1.7), however, apparently retains enough
rotation invariance to correctly describe the layers around an edge dislocation
(Ishikawa & Lavrentovich 1999), which will follow from our general
development.
2. BPS minima of the full free energy

Our fully rotationally invariant free energy is

F Z
B

2

ð
d3x½ð1K jVfjÞ2Cl2ðV$n̂Þ2�: ð2:1Þ

We may rewrite this as a perfect square plus a cross-term

F Z
B

2

ð
d3x½ð1K jVfjKlV$n̂Þ2C2lð1K jVfjÞV$n̂�: ð2:2Þ

We now consider just the cross-term

FCT

B
Z l

ð
d3xV$n̂Kl

ð
d3xðn̂$VfÞðV$n̂Þ: ð2:3Þ

The first term on the right-hand side of this equation is a total derivative. The
second term is proportional to an integral of the mean curvature

I Z 2

ð
d3xjVfjH Z

ð
d3xVf$½n̂ðV$n̂Þ�: ð2:4Þ
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Because n̂ is a unit vector, 0Zðn̂$VÞn̂2Z2n̂$ðn̂$VÞn̂ and so

Vf$½ðn̂$VÞn̂�Z 0; ð2:5Þ

because Vf is parallel to n̂. Adding this to the expression (2.4) we have

I Z

ð
d3xVf$½n̂ðV$n̂ÞKðn̂$VÞn̂�ZK2

ð
d3xfK C

ð
d3xV$ðfjÞ; ð2:6Þ

where the final equality follows from integration by parts, jhn̂ðV$n̂ÞKðn̂$VÞn̂,
and KZð1=2ÞV$j is the Gaussian curvature of the layers.

This final identity is reminiscent of the celebrated result of Minkowski
(Minkowski 1903) used effectively to study bubble geometries (Hilgenfeldt et al.
2001; Hilgenfeldt 2002). Though the Gaussian curvature is an intrinsic quantity,
when considering a series of layers it is hopelessly intertwined with the mean
curvature and the layer spacing (DiDonna & Kamien 2002). To understand this
further, we may choose an embedding for the surfaces, Xðx; y;nÞ and coordinates
(x, y, n), where x and y are coordinates on each layer and n labels the layer.
The embedding satisfies the condition f(X)Za0n. For equally spaced layers,
jVfjZ1, and we may change variablesð

d3xjVfjH Z

ð
dx dy dn

dz

dn
H Za 0

ð
dx dy dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gnðx;yÞ

p
H Za 0

ð
dn

ð
dAH ; ð2:7Þ

where
ffiffiffiffiffi
gn

p
a0Zdz=dn follows from conservation of volume (DiDonna & Kamien

2003) and dAZ
ffiffiffiffiffi
gn

p
dxdy is the surface area element of the nth layer. Thus when

the layers are evenly spaced, the cross-term is the sum of the integrals of the
mean curvature over the surfaces. Using Minkowski’s (1903) result1, the average
mean curvature on each layer is related to an integral of the Gaussian curvatureð

dn

ð
dAH Z

ð
dn

ð
dAn̂$ðXKX0ÞK : ð2:8Þ

Since for equally spaced layers, XZX0Ca0nn̂, we have n̂$ðXKX0ÞZa0nZf
and it follows that for evenly spaced layersð

d3xjVfjH Z

ð
d3xfK ; ð2:9Þ

and so our result generalizes Minkowski’s theorem (up to the ambiguity in the
sign of H and the sign of n̂). This form of the theorem allows us to relate the
phase field to the principal curvatures of the evolving surfaces.

Returning to the full free energy, we have

F Z
B

2

ð
d3x½ð1K jVfjKlV$n̂Þ2 C4lKfC2lV$ðn̂KfjÞ�: ð2:10Þ
1 See, in particular, eqns (29) and (30). For a modern formulation and proof, see Flanders (1963).
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3. BPS evolution

It is now possible to simplify our discussion by considering those configurations
for which KZ0—in other words, for which each layer is a developable surface.
Note that in the case of parallel edge dislocations, this condition is easily satisfied
as the layers only bend in one direction. For these configurations, the free energy
has the form

F Z
B

2

ð
d3x½ð1K jVfjKlV$n̂Þ2 C2lV$ðn̂KfjÞ�; ð3:1Þ

i.e. the sum of a perfect square and a total derivative. The total derivative
depends only on the boundary conditions, and so it is fixed by topological
considerations.

Therefore, there exists a class of minima given by setting the perfect square to
zero and whose energy is determined entirely from topology, the so-called BPS
states. This results in the equation

1K jVfjZ lV$n̂: ð3:2Þ

Notice that, as is typical with Bogomol’nyi equations in other contexts, equation
(3.2) is of lower order than the full Euler–Lagrange equations. It is an evolution
equation for the layers: given one layer, it determines the shape and location of
all other layers. Note also that the ambiguity in the sign of l allows us to have
two different evolution equations. We have exploited this in our solution for
parallel edge dislocations in the approximate nonlinear theory (Santangelo &
Kamien 2003).

In terms of the embedding function X, we have the deceptively simple
evolution equation (setting a 0Z1)

n̂$vnX Z
1

1K2lH
: ð3:3Þ

In Monge gauge, XZxx̂CyŷChðx; y;nÞẑ, this equation becomes

vnhðx; yÞZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1CðVthÞ2

q
½1K2lHðhÞ� ; ð3:4Þ

where

H ZVt$
Vthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1CðVthÞ2
q

2
64

3
75: ð3:5Þ

By choosing h(x, y, 0) and evolving it with equation (3.4), we have determined
the layer profile for an edge dislocation numerically and have plotted it in
figure 1. One interesting feature of the evolution is that the layer deformation of
the full theory is very close to that from the partially nonlinear theory with free
energy considered previously (Brener & Marchenko 1999)

Fz
B

2

ð
d3x½ðvzuK 1

2
Vtu2Þ2Cl2ðV2

tuÞ2�: ð3:6Þ
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Figure 1. Numerical solution to BPS equation for edge dislocation. Lengths are measured in units
of l. The dashed curve is the parabola x2Z2lz, where the difference between the full evolution (3.2)
and the approximate evolution (3.8) is greatest.
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To see this, we can consider the long-distance behavior of the BPS evolution, far
away from the dislocation core. We choose new dimensionless variables, ~uZu=l,
aZx=

ffiffiffiffiffi
lz

p
and bZz=l. In terms of these new variables, lvxZð1=

ffiffiffi
b

p
Þva and

lvzZvbKa=ð2bÞva. As b/N for fixed a, we may expand the BPS evolution
equation in powers of bK1. To lowest order, we find the equation

vb~u Z 0; ð3:7Þ

implying that ~u depends only on a as b becomes large. Therefore, we look
for solutions of the form ~uða;bÞZ ~u0ðaÞC ~u1ðaÞ=bC/, order by order in bK1.
Matching terms of order bK1, we find that ~u0 is determined by

0Z
1

2
½ava~u0Cðva~u0Þ2�Cv2au0: ð3:8Þ

This recapitulates the BPS evolution which follows from (3.6) for edge
dislocations, in which the solution is a function only of aZx=

ffiffiffiffiffi
lz

p
. Similarly,

we could have chosen the variable gZx=l instead of b and expanded in powers of
gK1 for a fixed. For large g, we find thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1Cðvg~uÞ2
q

Z 1Cv2g~u; ð3:9Þ

which implies that vg~uZ0 as g/N,2 and the resulting evolution is again given
by (3.8). Thus we see that far away from the defect, the nonlinear theory
originally considered by Brener and Marchenko captures the essential physics of
the problem.

Note that the standard harmonic theory

Fhar Z
1

2

ð
d3x½BðvzuÞ2 CK1ðVtuÞ2�; ð3:10Þ
2 Let fZvg~u, so vgfZ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1C f 2

p
K1R0. Since, f/0 as g/GN for the geometry considered, it

follows, since vgfR0, that fZ0 for all g.
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Figure 2. For a single edge dislocation at xZ0: (a) Difference between layer height from full BPS
theory and height of long wavelength theory for zZ25l (dashed), zZ100l (dotted), and zZ300l
(solid), in units of the layer spacing. (b) Plot of GpartialZvzuKðvxuÞ2=2Klv2xu for u given by the
full BPS evolution. As z increases from zZ50l (dashed), zZ100l (dotted) to zZ350l (solid), the
full solution approaches the similarity solution of the long distance equation.
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is not a consistent approximation to the full nonlinear theory in any sense—as
first noted by Grinstein & Pelcovits (1981, 1982), the nonlinear correction to the
strain is relevant in the renormalization group sense and, not surprisingly, we
find that it is essential even to understand the elasticity of equilibrium
configurations. The approximate scaling symmetry x/L1/2x and z/Lz
is responsible for the result that edge dislocations never recover the profile
from the quadratic theory along parabolas of constant a (Brener & Marchenko
1999; Santangelo & Kamien 2003). Moreover, it suggests that the difference
between the full nonlinear theory and the long distance theory will disagree on
the parabola aZconstant for a defect at the origin—the defect is approximately
spread along parabolas for both large x and z. This is borne out in our numerical
evolution: as shown in figure 2a, the difference between the layer height of the full
evolution and that given by the long distance theory has peaks which occur on
the parabola xZ2

ffiffiffi
z

p
. Figure 2b shows that as z increases, the full solution

approaches a solution to the long distance theory, as expected by our analysis.
4. Further development of BPS evolution

The Bogomol’nyi equation (3.2) can be rewritten in a quasi-linear form through
the Cole–Hopf transformation SZef/l

lV$ðn̂SÞZS: ð4:1Þ

Note that because n̂ZVS=jVSj, this is a nonlinear equation. However, if S is a
solution then so is cS for any consant c. This is just a reflection of the underlying
global symmetry, f/fC ~c, i.e. the translation symmetry which is spon-
taneously broken. Expanding (4.1) in powers of u gives a linear equation at both
the lowest order (the Euler–Lagrange equation for the harmonic theory) and the
next order correction (Santangelo & Kamien 2003).

Though there is no known analytical solution corresponding to edge
dislocations for the full theory, the energy of a dislocation (or multiple
dislocations) can be determined simply from the shape of the layers near the
Proc. R. Soc. A (2005)
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dislocation core. This is given by the boundary term

Fv ZBl

ð
R
d3x½V$n̂KV$ðfjÞ�ZBl

ð
vR

dAKBl

ð
R
d3xV$ðfjÞ; ð4:2Þ

for some region R with boundary vR. Since we are considering KZ0 and
configurations for which Vf/1 at infinity, we have jZV!V for some vector
V. Notice that

viðf3ijkvjVkÞZ vjðvif3ijkVkÞ; ð4:3Þ

where repeated indices are summed. Thus, the second integral of equation (4.2)
gives us the boundary term

Ð
vR dAn̂ivjfVk3

ijk which vanishes identically, again
since Vff n̂.

Thus for BPS configurations, the edge dislocation free energy is simply
proportional to the area of the layer closest to the core. In particular, suppose the
core layer is described by the height function

hðx; 0ÞZ bffiffiffi
p

p
x

ðx
KN

dyeKy2=ð2x2Þ; ð4:4Þ

where x is the core size. Then we compute the line tension to be

tZ 2lB

ð
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C

b2

px2
eKx2=x2

s
K1

2
4

3
5; ð4:5Þ

where the first term in brackets is from the surface near the core and the second
from the surface at z/N. Expanding in powers of b2 recovers the result from
equation (3.6) (which agrees with the linear theory), and indeed, the form of the
edge dislocation energy is the generalization of the form of the energy found in
equation (3.6) (Santangelo & Kamien 2003). In the opposite limit of very large b,

however, there is a region of sizewx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln½b2=ðpx2Þ�

p
in which the expansion is not

valid, and thus for large b, the line tension becomes linear in b. Note that the
split-core model of large b dislocations (Kléman 1983) also exhibits a line tension
linear in b, but this is a result of an anisotropic core and differs from the
phenomenon here. In this limit, one can distinguish between the compression
strains uzzZ1KjVfj and u 0

zzZ ½1KðVfÞ2�=2. However, as long as defects are far
apart compared to x, we may compute the energy of several parallel edge
dislocations. At long distances, we recover the interactions found from the exact
minimization of equation (3.6).
5. Discussion

We have discussed the role of curvature and topology in smectic-A liquid
crystals, and revealed a close connection between layer spacing, the Gaussian
curvature and the mean curvature. For uniformly spaced layers, this connection
is related to a celebrated theorem of Minkowski which connects the average mean
curvature of a surface to a particular integral of the Gaussian curvature. In the
case of smectics with unequal layer spacing, however, we find a generalized
Proc. R. Soc. A (2005)



2919Curvature and topology in smectics-A
version of this theorem which is conveniently written in terms of the level set
function f.

When the Gaussian curvature vanishes, we can identify a special class of
minima of the full smectic free energy. Our construction is related to the methods
used to study field configurations of magnetic monopoles and solitons in field
theories (Bogomol’nyi 1976, Prasad & Sommerfield 1976), vesicle shapes (Benoit,
Saxena & Lookman 2001), and thermal fluctuations (Golubovic & Wang 1994),
and which we have used previously to find minima for an approximate smectic
free energy (Santangelo & Kamien 2003).

It is interesting to note that the variation of the Gaussian curvature term
takes a simple form (when holding f and dn fixed on any boundary)

Kd l

ð
d3xVf$j

� �
Z d 2l

ð
d3xfK

� �
Z 2l

ð
d3xKdf: ð5:1Þ

This follows from Noether’s theorem: since the action on the left is invariant
under f/fCc, for some constant c, the variation of the action results in a
conservation law which is identical to the equations of motion. Indeed, this
argument holds for the original free energy (2.1) and so the full Euler–Lagrange
equation is a conservation law

V$ðn̂GÞKlV$
PT$VG

jVfj

� �
Z 2lK ; ð5:2Þ

where Gh1K jVfjKlV$n̂ and PT
ij ZdijK n̂in̂j is the projection operator into the

tangent plane of the layers. Note that GZ0 is the BPS solution. This sort of
conservation law has proven to be useful in understanding focal conic structures
and other equilibrium layer configurations (Fournier 1994). One feature that
becomes immediately clear is that Gaussian curvature acts as a source for G, and
is related to the failure of the BPS construction for surfaces with Gaussian
curvature. Even when KZ0, however, non-zero solutions for G may exist. In
particular, two edge dislocations separated by several layers must be described
by a non-zero G. This suggests that superposition fails in this case, even in the
computation of the interaction energy.

We might attempt to extend the BPS construction to the case when K3ZK1.
Notice that

j2 Z ðV$n̂Þ2C ½ðn̂$VÞn̂�2; ð5:3Þ

which allows us to rewrite the free energy as

F Z
B

2

ð
d3xf½ð1K jVfjÞn̂Klj�2C2lð1K jVfjV$n̂Þg: ð5:4Þ

The BPS evolution then requires that jf n̂, which implies that these minima
have vanishing bend, ðn̂$VÞn̂Z0. This implies that the layers are evenly spaced
and that H is constant which, in turn, implies that H is 0 (DiDonna & Kamien
2003). Thus, flat layers are the only exact BPS minima if K3ZK1. However, it
may be possible to generalize our work to allow the director and the layer normal
to be independent (though coupled) degrees of freedom. This extension to include
the bend energy would require a construction along this avenue.
Proc. R. Soc. A (2005)
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Finally, it is possible to repeat the entire BPS construction in a curved
background, in analogy with DiDonna & Kamien (2003), by replacing all
derivatives with covariant derivatives, Di. It is straightforward to show that the
smectic free energy in curved space may be rewritten as

F Z
B

2

ð
dVfð1K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DifDif

p
KlDin̂

iÞ2Klfð2K KRnnÞC2lDiA
ig; ð5:5Þ

where dV is the measure, d3x
ffiffiffi
g

p
, on the three-dimensional curved space with

metric gab, Rnn is the normal–normal component of the Ricci tensor in the space,
and Ai is the result of the integration by parts. Therefore, we find the condition
that there exist BPS minima in curved space to be

K ZRnn=2: ð5:6Þ

Notice that, in the case of the smectic blue phases, the same condition appeared
in order to be able to fill the unit cell volume with equally spaced minimal
surfaces (DiDonna & Kamien 2003). In contrast, Gaussian curvature in flat space
necessarily generates mean curvature under normal evolution with equal layer
spacing, making such a construction impossible. Similarly, BPS evolution for
layers with Gaussian curvature necessarily results in additional mean curvature
in flat space. However, this effect may be compensated by the additional
curvature of the background space.

To conclude, we have found a large class of exact minima of the full smectic
free energy in complete correspondence to the exact minima of equation (3.6).
These minima have free energy determined entirely by the boundary conditions
and show deviations from the free energy of the same configurations determined
from the quadratic free energy approximation. We have applied this theory to
edge dislocations and demonstrated that, at long distances, the deformations of
the full theory recover those computed from equation (3.6).

The authors would like to acknowledge invaluable discussions with G. Grason. This work was
supported by NSF grant DMR01-29804, the donors of the Petroleum Research Fund and a gift
from Lawrence J. Bernstein.
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