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1 INTRODUCTION

A central goal in condensed matter physics is to characterize phases of matter.
Some phases, such as magnets and superconductors, can be understood in terms
of the symmetries that they spontaneously break. In recent decades, it has
become apparent that there can exist a more subtle kind of order in the pattern of
entanglement in a quantum ground state. The concept of topological order was
introduced to describe the quantum Hall effect [1,2]. The quantum Hall state
does not break any symimetries, but it has fundamental properties (such as the
quantized Hall conductivity, and the number of conducting edge modes) that
are insensitive to smooth changes in materials parameters and cannot change
unless the system passes through a quantum phase transition. These properties
can be understood as consequences of the topological structure of the quantum
state.

While the topological characterization of the quantum Hall effect is an
old story, interest in topological order has been rekindled by the discovery
of topological insulators [3-13]. A topological insulator, like an ordinary
insulator, has a bulk energy gap separating the highest occupied electronic
band from the lowest empty band. The surface (or edge in two dimensions) of
a topological insulator, however, necessarily has gapless electronic states that
are protected by time reversal symmetry. Like the integer quantum Hall state,
which has unique gapless chiral edge states [14], the surface (or edge) states of a
topological insulator are topologically protected and exhibit a conducting state
with properties that are unlike any other known 1D or 2D electronic systems.

The concept of topological order [2] is often used to characterize fractional
quantum Hall states [15], which require an inherently many body approach
to understand [16]. However, topological considerations also apply to the
simpler integer quantum Hall states [1], for which an adequate description can
be formulated in terms of single particle quantum mechanics. In this regard,
topological insulators are similar to the integer quantum Hall effect. Due to
the presence of a single particle energy gap, electron-electron interactions do
not modify the state in an essential way. The phenomenology of topological
insulators can be understood in the framework of the band theory of solids [17].
It is remarkable that after more than 80 years, there are still treasures to be
uncovered within band theory.

In this chapter we will provide a pedagogical introduction to the foundations
of topological band theory and explain how these ideas can be used to
characterize the integer quantum Hall effect and topological insulators.

2 TOPOLOGY AND BAND THEORY

We begin by reviewing the key elements of topology and band theory. We will
introduce the notion of topological equivalence and explain its role in band
theory, and we will describe the deep connection between the bulk topology
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FIGURE1T Thesurfaces of asphere (g = 0) and a doughnut (g = 1) are distinguished topologically
by their genus g.

and protected boundary modes. In Section 2.3. We will discuss the Berry phase,
which is a key conceptual tool for the analysis of topological phenomena.

2.1 Topology

Topology is a branch of mathematics concerned with geometrical properties
objects that are insensitive to smooth deformations. This is most easily
illustrated by the simple example of closed two-dimensional surfaces in three
dimensions (see Fig. 1). A sphere can be smoothly deformed into many different
shapes, such as the surface of a disk or a bowl. But a sphere cannot be
smoothly deformed into the surface of a doughnut. A sphere and a doughnut
are distinguished by an integer topological invariant called the genus, g, which
is essentially the number of holes. Since an integer cannot change smoothly,
surfaces with different genus cannot be deformed into one another, and are
said to be topologically distinct. Surfaces that can be deformed into one
another are topologically equivalent. Determining the topological invariants
that characterize a given object is an interesting math problem. For surfaces, a
beautiful theorem, known as the Gauss-Bonnet theorem, states that the integral
of the Gaussian curvature, K over a surface defines an integer topological
invariant called the Euler characteristic [18],

1
x = ——/KdA. (1)
21 K

It can easily be checked that x = 2 for a sphere of radius R, where K = 1/R?.
More generally, the Euler characteristic is quantized and related to the genus
by x = 2 — 2g. The topological invariants that we will be concerned with in
this chapter are similar, though they will characterize more abstract objects.
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2.2 Band Theory

How can topology be used to characterize phases of matter? Here we will
explain the topological classification of insulators. An insulator is a material
that has an energy gap for electronic excitations, which separates the ground
state from all excited states. This allows for a notion of topological equivalence
based on the principle of adiabatic continuity. Insulators are equivalent if they
can be changed into one another by slowly changing the Hamiltonian, such
that the system always remains in the ground state. Such a process is possible if
there is an energy gap E ¢, which sets a scale for how slow the adiabatic process
must be. Thus, insulators are topologically equivalent if there exists an adiabatic
path connecting them along which the energy gap remains finite. It follows that
connecting topologically inequivalent insulators necessarily involves a phase
transition, in which the energy gap vanishes.

The topological classification of general gapped many body states is
a formidable problem that has not been completely solved. A tremendous
simplification occurs if we consider a subclass of states that can be described by
the band theory of solids. Such band insulators can be effectively described in
the independent electron approximation, where the many body ground state
is represented as a Slater determinant of single particle states. This does
not mean that electron interactions are being ignored. The existence of an
energy gap means that the many body state remains topologically equivalent
when finite strength interactions are turned on. We thus assume that the state
in question can be adiabatically connected to noninteracting electrons, and
topologically classify the band structures. Itis then important to address whether
the topological distinctions found within band theory persist when interactions
are added. We shall see that this is indeed the case.

A second key assumption we will make in this chapter is that the material
is crystalline, which allows us to take advantage of translation symmetry. This
assumption can be relaxed, and we will touch on the issue of disorder later in this
chapter. Translation symmetry allows the single particle states to be labeled by
their crystal momentum k. According to Bloch’s theorem, they may be written
| (K)) = e T|u(Kk)), where |u(k)) is a cell periodic eigenstate of the Bloch
Hamiltonian,

H(K) = T He kT, )

. H(K), or equivalently its eigenvalues E,(k) and eigenvectors |u, (k)), defines
the band structure. An insulating band structure has an energy gap separating
the highest occupied band from the lowest empty band. Lattice translation
symmetry implies H (k+G) = H (k) for reciprocal lattice vectors G. The crystal
momentum is therefore defined in the periodic Brillouin zone, withk = k4G,
which has the topology of a torus T in d dimensions. Thus, an insulating band
structure can be viewed as a mapping from the Brillouin zone torus to the space
of Bloch Hamiltonians with an energy gap.
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2.3 Topological Band Theory and the Bulk-Boundary
Correspondence

One of the objects of topological band theory is to classify topologically distinct
Hamiltonians H (k). By doing so, we are classifying distinct electronic phases.
The most important consequence of this occurs when there is a spatial interface
between two topologically distinct phases. Imagine an interface where a crystal
slowly interpolates as a function of distance y between a two topologically
distinct phases. Somewhere along the way the energy gap has to go to zero,
because otherwise the two phases would be equivalent. There will therefore be
low energy electronic states bound to the region where the energy gap passes
through zero.

A second object of topological band theory is thus to characterize those
gapless states. We will see that they too can be classified topologically, and
that there is a deep principle, which we will refer to as the bulk-boundary
correspondence, which relates the boundary topological invariants to the
difference in the bulk topological invariants. This interplay between topology
and gapless modes is a ubiquitous phenomenon in physics, and has appeared
in many contexts [19,21-24].

2.4 Berry Phase, and the Chern invariant

A key role in topological band theory is played by the Berry phase [25].
The Berry phase arises because of the intrinsic phase ambiguity of a
quantum mechanical wavefunction. The Bloch states are invariant under the
transformation

() — ¢ ®u)). ©)

This transformation is reminiscent of an electromagnetic gauge transformation,
and invites the definition of the Berry connection,

A = —i ()| Vi uk)). €]

A is similar to the electromagnetic vector potential. Under (3) it transforms as
A — A + Vo (k). Though A is not gauge invariant, the analog of magnetic
flux is. For any closed loop C in k space, we may define the Berry phase,

ve =¢A-dk =/]—‘d2k, 5)
C S

where F = V x A defines the Berry curvature. For notational simplicity, we will
assume here that k is two dimensional. The generalization to higher dimensions
is straightforward.

The Berry phase has many applications in physics, and describes the phase
acquired under an adiabatic cycle. In the present context, it will be useful for
classifying loops in momentum space. In the following section we will attach
physical meaning to it.
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FIGURE 2 The Berry phase in a two band theory is given by half the solid angle swept out
by d(k).

It is useful to understand the Berry phase for the simplest two lével
Hamiltonian, which may be expressed in terms of Pauli matrices ¢ as

d dy —id
HE) =dk) -7 = z * ). 6
K =d® (dx+idy . ) (©)

This Hamiltonian has eigenvalues £|d|. We ignore a term proportional to the
identity because that does not affect the eigenvectors, which depend only on
the unit vector d = d /1d|. d can be viewed as a point on a sphere 52.

A classic result, shown by Berry [25], is that for aloop C the phase associated
with the ground state, obtained from (4) and (5) is (see Fig. 2)

1 .
ve=3 (Solid angle swept out by d(k)) . 0

In particular, when C corresponds to a 2 rotation of dina plane, the Berry
phase is 7r. The Berry curvature is given by the solid angle per unit area in k
space, which is simply half the solid angle element for the mapping d(k),

1 - - A
F = Eeijd- (0;d x 9;d). ®)

An important consequence of (8) is that the Berry curvature integrated over
a closed 2D space (such as a 2D Brillouin zone T 2} is a multiple of 27 that is
equal to the number of times a(k) wraps around the sphere as a function of k.
This defines a topological invariant called the Chern numbesx [18], which for a
closed surface S may be expressed as

n= 1 / Fd*k. 9)
2 K

The quantization of the Chern number is more general than the two band model,
and follows from the fact that for a loop C on a closed surface, the “inside” of C
used in (3) is arbitrary, so that the surface integral over the inside and the outside
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must agree with one another up to a multiple of 277 It follows that the Berry
curvature integrated over the entire surface must be 27 . This quantization is
also closely related to the quantization of the Dirac magnetic monopole. Note
the similarity with (1). F can be viewed as a curvature, similar to the Gaussian
curvature K.

In the following sections we will discuss the physical meaning and
consequences of this and other topological invariants.

3 ILLUSTRATIVE EXAMPLE: POLARIZATION AND
TOPOLOGY IN ONE DIMENSION

In this section we will consider the simplest setting for topological band theory,
. which is one dimension. This will allow us to introduce several key concepts in
their simplest form, including the electric polarization, the Chern number, and
topologically protected boundary states. We will introduce the Su, Schrieffer
Heeger (SSH) [20] model, which provides a simple and solvable theory that
illustrates these ideas.

3.1 Polarization as a Berry Phase

In elementary electrostatics, the electric polarization P is defined as the dipole
moment per unit volume. Polarization leads to bound charges in the bulk
pp = —V - P and on the surface o, = P - 1. In one dimension, the polarization
P is related to the end charge,

Qend = P. (10)

In this section, we show how to determine the polarization from a 1D band
structure. The problem is not trivial because a band structure is generally defined
on a system with periodic boundary conditions, s0 Qenq is inaccessible. The
solution, which has emerged in the theory of ferroelectricity [26—29], provides
a beautiful application of Berry’s phase. The 1D polarization is the Berry phase
of the occupied Bloch wavefunctions around the 1D Brillouin zone,

P=2S¢ AW 1)
2n Jpz

The integral is over the 1D Brillouin zone, which is equivalent to a circle §'.
Detailed derivations of (11) can be found in the literature. Here we will motivate
the result using physical arguments.

The first piece of circumstantial evidence is that both the polarization and the
Berry phase share a similar intrinsic ambiguity. Qeng in (10) is not completely
determined because integer charges can be added or removed from the ends
without changing the bulk. Thus, Qepa =P mod e. P in (11) has a similar
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FIGURE 3 () The polarization in 1D deterraines the end charge modulo e. (b) The change in the
polarization is given by the difference of Berry phases on loops C; and Cs.

ambiguity because under a gauge transformation |u(k)) — ® |y (%)) with
¢(m/a)—¢(—m/a) = 2xn,P —> P +ne. Atfirst sight, this appears to violate
(5), which implies y¢ is gauge invariant. However, it must be noted that the
1D Brillouin zone defines a special kind of loop that is not the boundary of an
interior, so that the reasoning in (5) does not apply. On such nontrivial loops,
y¢ changes by 2 under “large” gauge transformations, in which the phase
winds by 2srn around the hole.

Though the polarization and the Berry phase are both ambiguous up to an
integer, changes in either quantity are well defined and gauge invariant. Imagine
that the band structure is a function of a control parameter ¢. Then the change
in the polarization betweent = O and ¢t = T is

AP:Pt:T—Pz:o:i[yg —56 ]A-dk
2 Cy C
- —e—ffdkdt. 12)
2 S

In this case, as shown in Fig. 3, C; — C; is the boundary of an interior, so Stokes’
theorem can be used to express the integral in terms of the gauge invariant Berry
curvature F.

A second piece of circumstantial evidence is that the polarization is
something like the expectation value of er, while the Berry phase is something
like the expectation value of 2711 Vg, so if you are willing to believe r ~ iV the
equality follows. This is not convincing, though, because neither (r) nor (i Vi)
are defined for extended Bloch states. A somewhat more rigorous version of
this argument is to introduce a basis of localized Wannier states associated with
lattice sites R [28],

dk .
1¢(R>>:y§ Z—e—"‘““”mk». (13)
BZ 4T
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FIGURE 4 (a,b) The two distinct groundstates of the SSH model. Figures (c) and (d) show the
unit vector &(k).

The Wannier states depend on the gauge choice for |u(k)), but for a sufficiently
smooth gauge they are localized so that {r) is well defined. The polarization
can then be written
ie
P =e(p(R)r — R|$(R)) = gy{dk(u(k)lvklu(k))- (14)

3.2 Su, Schrieffer, Heeger Model

In this section we consider an important model that illustrates the analysis of
the preceding sections. It will also provide a setting for introducing domain wall
states. The Su Schrieffer Heeger (SSH) [20] model was introduced as a model of
the conducting polymer polyacetylene, which at half filling undergoes a Peierls
instability to a dimerized state. What makes this interesting is that, as shown in
Fig. 4, there are two different dimerized states. We will see that there is a sense
in which these two states are topologically distinct (and a sense in which they
are not). Importantly, interfaces between the two states are associated with zero
energy boundary states. The SSH model provides the simplest two band model
for describing these topological phenomena.
To model polyacetylene, SSH introduced a 1D tight binding model

H=Y (t+8)chcp + (t — 1)k, 0 +hc. (15)
1
Here we have arbitrarily defined a unit cell with two atoms, labeled A and B.
The dimerization is characterized by &z, which leads to an energy gap. The
two dimerization patterns are distinguished by the sign of §z. For simplicity,
we consider spinless electrons here (even though the real SSH model includes
spin). The filling is one electron per unit cell.
To analyze (15) we Fourier transform and write

H =Y Huk)clcn, (16)
k

where
Hk =dk) -6 an
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and

dy (k) = (t + 8t) + (t — 1) cos ka,
dy(k) = (t — ét)sinka, (18)
d, (k) = 0.

Viewing the two band H (k) in terms of d, it is important to note that d; = 0.
Tt follows that H (k) possesses a “chiral” symmetry defined by the operator
I = 0%, which anticommutes with the Hamiltonian: { H (k), 1} = 0. This chiral
symmetry leads to a particle-hole symmetric spectrum because any eigenstate
|ug) withenergy E has apartner |u_g) = ITjug) withenergy —E. This symme-
try is not intrinsic, though, and will be violated in real polyacetylene (for exam-
ple by second neighbor hopping). Nonetheless, it is useful to consider its effects.

Consider the polarization, which can be expressed in terms of the Berry
phase using (4) and (11). For 8t > 0, d; (k) > 0 for all k so fl(k) sweeps out
no solid angle, and P = 0. For ¢ < 0, however, dy(k ~ m/a) < 0, so that
d (k) rotates by 27 leading to Berry phase 7 and P = ¢/2. The polarization can
be understood easily in the strong coupling limit, [8¢] = ¢, in which electrons
reside in localized states on the strong bonds. It is clear that passing from the
8t = -+t state to the §t = —¢ state involves moving each electron over by half
a unit cell, resulting in a polarization e/2.

In the presence of the chiral symmetry, the polarization must be a multiple
of e/2. On the other hand, if the symmetry constraint is relaxed, then d can tip
out of the xy plane, and the polarization can vary continuously. Thus, in general,
there is no topology in 1D: all 1D insulating band structures are topologically
equivalent. But imposing chiral symmetry leads to topologically distinct states
that are distingnished by their quantized polarization. To get from the §z > 0
state to the 8t < 0 state without violating the chiral symmetry requires a point
where d vanishes, signifying a quantum phase transition. This is an example
of the general principle that enhanced symmetry can lead to richer topological
structure.

Real polyacetylene does not have chiral symmetry, but it does have the
spatial symmetry of inversion about the center of a bond. This is expressed
by H(—k) = o*H(k)o*, and leads to a quantized polarization, even in the
absence of chiral symmetry. The SSH model also resembles the Bogoliubov-
de Gennes Hamiltonian for a one-dimensional topological superconductor. In
that case there is an intrinsic particle-hole symmetry, expressed by H(—k) =
—o*H (k)*o?, which also leads to distinct topological phases.

3.3 Domain Wall States and the Jackiw Rebbi Model

The interface between the two ground states of polyacetylene gives rise to a
soliton state with a polarization charge &e/2 on the boundary. The electronic
structure in the presence of such a domain wall has a zero energy midgap state.
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FIGURE 5 (a) A domain wall in the SSH model. (b) The midgap state is associated with a change
in sign of the mass m.
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The e /2 states arise when this “zero mode” is empty/occupied. The existence
of the zero mode is easily understood in the strong coupling limit |§¢| = ¢, since
" there is an unpaired site on the boundary, as shown in Fig. 5(a). This state is
protected in the sense that it is impossible to get rid of it without closing the
bulk energy gap. Its existence can be traced to the fact that it is on an interface
between topologically distinct states. Such topological zero modes were first
found in a 1D field theory by Jackiw and Rebbi [19], who presented a simple
exact solution for the zero mode. The SSH model provides a physical realization
of the Jackiw Rebbi model.

Here we will present the Jackiw Rebbi solution, starting from the SSH
model (15). The chiral symmetry {I1, H (k)} = 0 implies that eigenstates come
in pairs at £E. It is possible, however, for a state at £ = 0 to be its own partner,
lug) = IT|ug). If this is the case, then this zero mode is topologically protected,
because to move it away from E = 0 would require another state to appear out
of nowhere.

To explicitly construct this zero mode, it is helpful to develop a low energy
continuum theory for (15). We consider the limit §z <« ¢ and focus on the low
energy states near k = 7 /a. We thus let k = w/a 4 g and expand for small g.
In real space we then let ¢ — —idy. This results in a low energy Hamiltonian
of the form

H = —ivpo™* 0y +mo?, 19)

where vy = ta and m = 28¢. This Hamiltonian has the form of a massive 1 + 1D
Dirac Hamiltonian, with spectrum E{(g) = ++/(vpq)? + m2.

To describe the zero mode we allow m to vary spatially with a kink such
that m(x — +o0) < 0 and m(x — —o0) > 0, as shown in Fig. 5(b). A zero
energy solution H|u) = 0 can easily be constructed by multiplying on the left
by io* and considering eigenstates |z%) of o¢ with eigenvalue £1. Integrating
the resulting first-order equation leads to a single normalizable solution,

Yo(x) = e~ Jo mEE Ly (20)

This zero mode is topological in that it does not depend on the precise form of
m{x"). It only depends on the sign change. It is guaranteed to be at zero energy if
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FIGURE 6 In a Thouless charge pump the polarization changes by e in each cycle.

there is chiral or particle-hole symmetry. The antikink with +m(x — +o0) > 0
is similar, but involves |z—).

3.4 Thouless Charge Pump, and the Chern Invariant

We have seen that without extra symmetries, such as chiral symmetry, particle-
hole symmetry, or inversion symmetry there are no topological band structures
in one dimension. In this section we describe another topological phenomenon
that occurs in 1D in the absence of symmetries.

Consider a one-dimensional insulating Hamiltonian that changes with time
adiabatically in a cyclic manner, so that H (k, t) = H(k,t 4+ T). At every time
t, the system has a polarization P, that is well defined up to an integer charge
e. As t changes, the change in P is completely defined. After one full cycle,
the Hamiltonian returns to its original value. However, since the polarization is
only defined modulo e it is possible that the polarization changes by

AP = ne (21)

for integer n (see Fig. 6). Such a system defines a topological charge pump
[30,31], in which n electrons are transported across the system in every cycle,
despite the fact that the energy gap remains finite.

In Section 3.1, we showed that the change in the P in one cycle, given
by 12, is related to the Berry curvature integrated for —n/a < k < m/a and
0 <t <T.Since H(t) = H(t +T), t is defined on a circle. Thus, the domain
of integration of the surface integral in (12) is the 2-torus, T2 defined by k and
t. It follows that the integer n in (21) is the Chern number, defined in (9),

1
n=—{( Fdkdt. (22)
27 T2
We thus conclude that the cyclic families of 1D insulators defined by H(k, t)
are classified by the Chern number, and that topological invariant characterizes
the quantized charge pumped per cycle.

4 INTEGER QUANTUM HALL EFFECT

The integer quantom Hall effect occurs when a two-dimensional electron gas
is placed in a strong perpendicular magnetic field [32]. The quantization of the



Chapter | 1 Topological Band Theory and the Z; Invariant !

FIGURE 7 Laughlin’s argument shows that when flux ¢y = h/e is threaded down the cylinder
the polarization changes by e.

electrons’ circular orbits leads to quantized Landau levels. If » Landau levels
are filled and the rest are empty, then an energy gap separates the occupied and
empty states just as in an insulator. Unlike an insulator, though, an electric field
causes the cyclotron orbits to drift, leading to a Hall current characterized by
the quantized Hall conductivity, oy, = ne*/h.

Landau levels can be viewed as a band structure. Since the generators of
translations do not commute with one another in a magnetic field, electronic
states cannot be labeled with momentum. However, if a unit cell with area
hc/eB enclosing aflux quantum is defined, then lattice translations do commute,
so Bloch’s theorem allows states to be labeled by the 2D crystal momentum
k. In the absence of a periodic potential, the energy levels are simply the k
independent Landau levels. In the presence of a periodic potential with the
same lattice periodicity, the energy levels will disperse with k. This leads to a
band structure that looks identical to that of an ordinary insulator. What is the
difference between the quantum Hall state and the ordinary insulator? They are
distinguished by topology.

4.1 Laughlin Argument, and the TKNN Invariant

In an important 1982 paper, Thouless, Kohmoto, Nightingale, and den Nijs
(TKNN) [1] showed that the integer in the integer quantized Hall conductivity is
precisely the Chern number. Their calculation was a straightforward application
of linear response theory, which showed that the Kubo formula for oy, is
identical to (9). Rather than repeat their analysis here, we will give a slightly
different physical motivation for this result, which relates it to the quantized
charge pump discussed in Section 3.4.

The key insight is provided by Laughlin’s argument for the integer quantum
Hall effect [33]. Suppose we have an integer quantum Hall state on a cylinder
and we adiabatically turn up the magnetic flux ¢ threading the cylinder from
0 to the flux quantum ¢y = h/e (see Fig. 7). The changing flux induces a
Faraday electric field d @ /dt going around the cylinder, which in turn generates
a Hall current I = o,,d®/dt going down the cylinder. At the end, a net charge
oxyh/ehasbeentransported from one end to the other. When @ = ¢y, the vector
potential can be eliminated by a gauge transformation, so that the Hamiltonian
has returned to its original form at ® = 0. It follows that the charge transferred
must be an integer number of electrons O = ne, from which the quantization
Oy = ne?/h follows.

Viewed as a 1D system, the cylinder with threaded magnetic flux is precisely
aThouless charge pump with ¢ = ®. The Chern number characterizing the pump
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can be evaluated by summing over all of the occupied one-dimensional subbands
of the cylinder with radius R. These are indexed by a discrete azimuthal
momentum k;"(CD) = (m + ®/¢o)/R. From (22), we find

1 do ”
n :%5; /0 dd / Ak F (ks K2 (). (23)

Changing variables from & to ki, it can be checked that the sum of integrals
becomes a single integral over the 2D Brillouin zone S = T2, given by (9).

4.2 Haldane Model

An example of the quantum Hall effect in a band theory is provided by a simple
model of graphene in a periodic magnetic field introduced by Haldane [34].
This mode] is important because it provides a simple 2 band description of the
quantum Hall effect. It also provides a stepping stone to the 2D quantum spin
Hall insulator.

Graphene is a 2D form of carbon that is a material of high current interest
due to experimental advances [35-38]. What makes graphene interesting
electronically is the fact that the conduction band and valence band touch
each other at two distinct points in the Brillouin zone. Near those points
the electronic dispersion is linear, and resembles the dispersion of massless
relativistic particles, which are described by the Dirac equation [39,40].

The simplest theory of graphene is a tight binding model that takes into
account the p, orbitals of each atom on a 2D honeycomb lattice.

Hy=-1)_ cc;. (24)
<ij>

Since there are two atoms per unit cell, this leads to a two band model (ignoring
spin) that can be expressed in the form of (16, 17) with

3
dy(k) = —t Z cosk -ap,
p=1

3
dy(k) = —t y_sink-ap, (25)
p=1
d; (k) = 0.

Herea; = a(0,1) andap 3 = a(* \/5/2, — 1/2) are the three nearest neighbor
vectors pointing from the A sublattice to the B sublattice. The combination
of inversion (P) and time reversal (7) symmetry requires d, (k) = 0. P takes
d, (k) to —d, (—Kk), while 7 takes d; (k) to +d,(—k). Animportant consequence
of this is that there can exist point zeros of d(k). These occur at the two distinct
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FIGURE 8 (a) Graphene’s honeycomb lattice. (b) Graphene’s Brillouin zone with two distinct
corners K and K'. (c) Massless Dirac spectrum. (d) Massive Dirac spectrum.

corners K = (47 /3+/3a,0) and K’ = —K of the hexagonal Brillouin zone. For
smallq = k — K, d(q) = vpq - 7, with ivp = 3taq/2. Taking q — —iV, the
continuum theory has the form of a 2D massless Dirac Hamiltonian,

H= —l.hUF(O'xfzax + Uyay)y (26)

which has a linear dispersion E(q) = hAvr|q| shown in Fig. 8(c). Here we
have introduced ¥ = =1 to represent states near K/K’'. The degeneracy at
q = 0is protected by P and 7 symmetry. By breaking these symmetries the
degeneracy can be lifted. For instance, P symmetry is violated if the two atoms
in the unit cell are inequivalent. This leads to a nonzero k independent

% (k) = rcpw- 27)
If Acpw is small, then the continuum theory acquires a mass term,

A’HCDW — mCDWUZ’ (28)

with mcpw = Acpw. The electronic dispersion E(q) = =,/ |Avpq|? + m%DW

then exhibits an energy gap 2|mcpw /. This state describes an ordinary insulator.
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Haldane imagined lifting the degeneracy by breaking time reversal
symmetry. This can be done by applying a magnetic field that is zero on the
average, but has all of the spatial symmetries of the honeycomb lattice. This
can be represented by an imaginary second neighbor hopping term, which has a
sign that depends on whether the electron makes a left or right turn going from
the first to second neighbor. This leads to

3
) =2rg Y sysink- (@, —ap), (29)
p<p'=1

with s,y = %1 when p’ = p & 1 mod 3. This also introduces a mass to the
Dirac points. Since d;(—k) = —d,(k), the masses at K and K' have opposite
sign, so that in the continuum theory,

AHH = myotr® (30)

with my = 3+/3A. Haldane showed that this gapped state is not an ordinary
insulator, but rather has a quantized Hall conductivity o,y = e /h.

The Hall conductivity can be understood by considering the Chern number
for the two band model in terms of (8). When the mcpw = mg = 0, &(k) is
confined to the equator d; = 0, with a unit (and opposite) winding around each
of the Dirac points where |d| = 0. For mcpw > mg,|d|is nonzero everywhere,
and visits the north pole near both K and K'. The net solid angle subtended is
thus zero, and 0,y = 0. Formy > mcpw the masses at K and K’ have opposite
sign, so that d (k) visits both the north and the south pole, and wraps the sphere
once. Thus oyy = e?/h. For mepw = my, d;(K) = 0, so that the system is
at a gapless quantum critical point characterized by a single 2D massless Dirac
fermion.

4.3 Chiral Edge States, and the Bulk Boundary Correspondence

A fundamental consequence of the topological classification of gapped band
structures is the existence of gapless conducting states at interfaces where
the topological invariant changes. Such edge states are well known at the
interface between the integer quantum Hall state and vacuum [ 14]. They may be
understood in terms of the semiclassical skipping orbits that electrons undergo
as their cyclotron orbits bounce off the edge (Fig. 9(a)). Importantly, the
electronic states responsible for this motion are chiral in the sense that they
propagate in one direction only along the edge. These states are insensitive
to disorder because there are no states available for backscattering—a fact that
underlies the perfectly quantized electronic transport in the quantum Hall effect.
The existence of such “one way” edge states is deeply related to the topology
of the bulk quantum Hall state.
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FIGURE 9 (a) Edge states as skipping cyclotron orbits. (b) Edge states in Haldane’s model on
a semi-infinite plane. (¢) The chiral edge states connect the valence band near K and K'. (d) By
changing the Hamiltonian near the edge, the details of the edge states change, but Ng — Ny = 1
remains fixed.

A simple theory of the chiral edge states can be developed using the two
band Dirac model (28). Consider an interface where the mass m at one of the
Dirac points changes sign as a function of y. We thus let m — m(y), where
m(y) > 0 gives the insulator for y > 0 and m(y) < O gives the quantum Hall
state for y < 0. Assumem’ > 0is fixed. Translation symmetry in the x direction
allows us to consider plane wave states v, (x,y) = ¢'%* ¢ (y). For each Gx»
the problem is identical to the Jackiw Rebbi problem discussed in Section 3.3.
The zero energy mode ¢ (y) has precisely the form of (20), and leads to a band
with dispersion

E(qx) = hvpgy. (3D

This band of states intersects the Fermi energy E  with a positive group velocity
dE/dq, = hvr and defines a right moving chiral edge mode.

The chiral edge states can also be seen explicitly by solving the
Haldane model in a semi-infinite geometry with an edge at y = 0 (Fig. 9(b)).
Figure 9(c) shows the energy levels as a function of the momentum k, along
the edge. The solid regions show the bulk conduction and valence bands, which
form continuum states and show the energy gap near K and K’. A single band,
describing states bound to the edge, connects the valence band at K’ to the
conduction band at K with a positive group velocity.

By changing the Hamiltonian near the surface the precise dispersion of the
edge states can be modified. For instance, E(g,) could develop a kink so that
the edge states intersect the Fermi energy three times—twice with a positive
group velocity and once with a negative group velocity, as in Fig. 9(d). The
difference Ng — N between the number of right moving and left moving modes,
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however, cannot change, and is an integer topological invariant characterizing
the interface. The value of Ng — Ny, is determined by the topological structure
of the bulk states. This is summarized by the bulk-boundary correspondence:

NR~—NL=AI’L, (32)

where An is the difference in the Chern number across the interface.

5 Z TOPOLOGICAL INSULATORS

Since the Hall conductivity (and hence the TKNN invariant) is odd under time
reversal, the topologically nontrivial states described in the preceding section
can-only occur when time-reversal symmetry is broken either by an external
magnetic field or by magnetic order. However, the spin orbit interaction allows
a different topological class of insulating band structures when time reversal
symmetry is unbroken [4]. In this section we will introduce the Z; topological
insulators and show that they exhibit protected boundary states.

The possibility of a time reversal invariant 2D topological insulator was first
noticed in a model of graphene with spin orbit interactions [3]. We will begin
by introducing that model of a quantum spin Hall insulator, from which it is
straightforward to establish the existence of edge states, and to see why they
are protected. We will then go onto consider the quantum spin Hall insulator in
more generality and show that it is protected by a Z, topological invariant. We
will discuss how the Z, invariant can be computed, as well as its consequences.
Finally, we will briefly introduce the three-dimensional topological insulators,
which will be discussed in detail in the following chapter.

5.1 Quantum Spin Hall Insulator in Graphene

In Section 4.2 we argued that the degeneracy at the Dirac point in graphene
is protected by inversion and time reversal symmetry. However, that argument
ignored the spin of the electrons. The spin orbit interaction allows a new mass
term in (26) that leads to a topological insulating state [3].

That such a mass term is possible can be easily understood by considering
the symmetries of the possible mass terms. Without spin, it is clear that the only
possible terms in (26) that can open a gap are Acpwo * (which violates inversion)
and A yo?r? (which violates time reversal). The spin degree of freedom allows
a new mass term of the form

SHSO = AgooiTis?, (33)

where s¢ = +1 represents the spin degree of freedom. This term respects all of
the symmetries of graphene, so it must be present. However, since the spin orbit
interaction in carbon is weak, this term is small, and has not yet been observed.
Nonetheless, it is of conceptual value to consider its effects.
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Taken separately, the Hamiltonians for the s, = == 1 spins violate time rever-
sal symmetry and are equivalent to Haldane’s model for spinless electrons,
which gives quantized Hall conductivity +e®/h. An applied electric field thus
leads to Hall currents for the s, = =1 spins that cancel each other, but generate
a net spin current J; = (A/2¢)(J4 — J,) characterized by a quantized spin Hall
conductivity oy, = e/27. This is the origin of the name “quantum spin Hall
effect.” However, it must be emphasized that this quantized spin Hall conduc-
tivity is an artifact of an oversimplified model in which the spin s* is conserved.
In reality, spin is not conserved, and this quantization will break down in the
presence of s? nonconserving interactions.

Since it is two copies of a quantum Hall state, the quantum spin Hall state
must have gapless edge states. Unlike the quantized Hall conductivity, these
edge states remain robust even when spin is not conserved. These edge states
have the special “spin filtered” property that up and down spins propagate
in opposite directions. They were later dubbed “helical,” in analogy with the
correlation between spin and momentum of a particle known as helicity [41].
They form a unique 1D conductor that is essentially half of an ordinary 1D
conductor. Ordinary conductors, which have up and down spins propagating
in both directions, are fragile because the electronic states are susceptible
to Anderson localization in the presence of weak disorder. By contrast, the
quantum spin Hall edge states cannot be localized even for strong disorder.
Here we will present one argument that this is the case [3]. Another proof will
be given in Section 5.2.2.

Imagine an edge that is disordered in a finite region and perfectly clean
outside that region. The exact eigenstates can be determined by solving
the scattering problem relating incoming waves to those reflected from and
transmitted through the disordered region. They will be characterized by a2 x 2
unitary S matrix, which relates the incoming to outgoing states, ®out = S Pip,
where @ is a two component spinor consisting of the left and right moving
edge states ¢4 and ¢g. Time reversal symmetry (to be discussed in more
detail below) relates the left and right moving states by @iy oue —> 07 P75 .
Time reversal therefore imposes a constraint on the S matrix of the form
S = ¢?8T oY, It is straightforward to show that this requires the off diagonal
component of S, which describes backscattering, to vanish. It follows that unless
time reversal symmetry is broken, an incident electron is transmitted perfectly
across the disordered region. Thus, eigenstates at any energy are extended, and
at temperature 7 = 0 the edge state transport is ballistic. For T > 0 inelastic
backscattering processes are allowed, which will, in general, lead to a finite
conductivity.

The edge states can be explicitly seen in a lattice model that generalizes
Haldane’s model to include the intrinsic symmetry-allowed spin orbit
interaction. We thus add to (26) a second neighbor spin dependent hopping
amplitude proportional to is - (a; x az), where aj » are the nearest neighbor
bonds traversed. Such a term does not break any symmetries of the graphene
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FIGURE 10 The edge states in graphene with the intrinsic spin orbit interaction have the spin
filtered property that up and down spins propagate in opposile directions.

lattice, and can be represented as
AHSOK) = Ag0s%o - d¥ (k), (34)

where d¥ is given in (29). The resulting theory is simply two time reversed
copies of Haldane’s model, and on a semiinfinite strip has a spectrum shown in
Fig. 10.

5.2 Z, Topological Invariant

The fact that the edge states of the quantum spin Hall insulator are robust
suggests that there must be a topological distinction between the quantum
spin Hall insulator and an ordinary insulator. In this section we describe that
topological invariant [4,42]. We will begin with a discussion of time reversal
symmetry. We will then argue using the bulk-boundary correspondence that
there are two and only two topological classes of time reversal invariant band
structures. We will then discuss the physical meaning of the Z; invariant as well
as how to determine it.

5.2.1 Time Reversal Symmetry

The key to understanding this new topological class is to examine the role of 7'
symmetry for spin 1/2 particles. 7- symmetry is represented by an antiunitary
operator @ = exp (in S, /) K, where Sy is the spin operator and K is complex
conjugation. For spin 1/2 electrons, ® has the property ©? = —1. This leads to
an important constraint, known as Kramers’ theorem, that all eigenstates of a 7'
invariant Hamiltonian are at least twofold degenerate. This follows because if
a nondegenerate state |x ) existed then ®]x) = c|x) for some constant c. This
would mean ©2|x) = |¢|2|x), which is not allowed because |c|> # —1. In the
absence of spin orbit interactions, Kramers’ degeneracy is simply the degen-
eracy between up and down spins. In the presence of spin orbit interactions,
however, it has nontrivial consequences.

A T invariant Bloch Hamiltonian must satisfy

OHEK)O™! = H(—k). (35)



Chapter | 1 Topological Band Theory and the Z, Invariant

One can classify the equivalence classes of Hamiltonians satisfying this
constraint that can be smoothly deformed without closing the energy gap. The
TKNN invariant is n = 0, but there is an additional invariant with two possible
values v = O or 1 [4]. The fact that there are two and only two topological
classes can be understood by appealing to the bulk-boundary correspondence.

5.2.2 Bulk Boundary Correspondence

In Fig. 11 we show plots analogous to Fig. 10(b) showing the electronic
states associated with the edge of a 7 invariant 2D insulator as a function
of the crystal momentum along the edge. Only half of the Brillouin zone
'y =0 < ky < Ty = m/a is shown because 7 symmetry requires that
the other half —m/a < k < 0 is a mirror image. As in Fig. 10(b), the shaded
regions depict the bulk conduction and valence bands separated by an energy
gap. Depending on the details of the Hamiltonian near the edge there may or
may not be states bound to the edge inside the gap. If they are present, however,
then Kramers’ theorem requires they be twofold degenerate at the 7 invariant
momenta ky, = 0 and k, = m/a (which is the same as —m/a). Away from
these special points, labeled I'; , in Fig. 11, a spin orbit interaction will split
the degeneracy. There are two ways the states at k, = 0 and k, = 7/a can
connect. In Fig. 11(a) they connect pairwise. In this case the edge states can be
eliminated by pushing all of the bound states out of the gap. Between k, = 0
and k, = 7 /a, the bands intersect Er an even number of times. In contrast, in
Fig. 11(b) the edge states cannot be eliminated. The bands intersect £ an odd
number of times.

‘Which of these alternatives occurs depends on the topological class of the
bulk band structure. Since each band intersecting E ¢ at k, has a Kramers partner
at —k,, the bulk-boundary correspondence relates the number Ng of Kramers
pairs of edge modes intersecting Er to the change in the Z, invariants across
the interface,

Ng = Av mod 2. (36)
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FIGURE 11  Electronic dispersion between two boundary Kramers degenerate points. In (a) the
number of surface states crossing the Fermi energy E is even, whereas in (b) it is odd. An odd
number of crossings leads to topologically protected metallic boundary states.
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We conclude that a 2D topological insulator has topologically protected edge
states. 3D topological insulators, discussed in Section 5.3, have protected
surface states.

As discussed in Section 5.1, the edge states form a unique 1D conductor,
which cannot be localized, even for strong disorder. Figure 11 provides a simple
way of seeing why this must be the case [42]. Consider a cylinder with a large
diameter, but treat the entire circumference as a single very large unit cell
a = 2x R. Then the role of the momentum in Fig. 11 is played by the magnetic
flux threading the cylinder, which gives a phase for the periodic boundary
condition. Flux ® = 0 corresponds to k£ = 0, while ® = ¢y/2 corresponds to
k = m/a.In aclean system there will be many level crossings for0 < k < 7/a
because the Brillouin zone has been folded back many times. However, in
the presence of disorder all-accidental degeneracies will be lifted. It is clear
that when the unit cell is doubled and accidental degeneracies are removed,
the folded Brillouin zone will keep its structure described in Fig. 11(a) and
(b). Thus, for a topological insulator cylinder with ¢ = 2% R, the spectrum
“switches partners” as a function of magnetic flux. The spectrum is thus
sensitive to the boundary conditions around the cylinder. This proves that every
eigenstate must be extended, because localized states are insensitive to boundary
conditions.

5.2.3 Physical Meaning of the Invariant

In Section 3.1, we interpreted the Chern number characterizing the integer
quantum Hall effect in terms of Laughlin’s argument and a 1D Thouless charge
pump. The Chern number describes the change in the electric polarization when
flux & = ¢ is adiabatically threaded through the cylinder. An equivalent
formulation is to deform the cylinder into a Corbino disk with a small hole
threaded by flux. Laughlin’s argument [33] then describes the binding of electric
charge to the flux threading the hole. It is clear that this formulation is more
general than the noninteracting electron framework that we have been using.
The Langhlin argument can equally be applied to an interacting system, since the
change in polarization is well defined in a many body setting. The Z; invariant
can be understood similarly [42].

Consider again a cylinder with a finite radius, so that the eigenstates
associated with the ends are discrete. When this system is viewed as a 1D
system, we wish to ask whether there is a Kramers degeneracy in the ground
state associated with the ends. This would be the case if, for instance, there
was an unpaired spin at the end. When there is time reversal symmetry, the
existence of a Kramers degeneracy is a yes/no question. It is determined by
whether the number of electrons is locally even or odd. We refer to this Zy
quantity as the “time reversal polarization,” or the “local fermion parity.” Like
the polarization in Laughlin’s argument, the time reversal polarization can be
defined in an interacting system.
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FIGURE 12 (a) When flux ¢ /2 is threaded through a cylinder, the “time reversal polarization
changes.” (b) shows the evolution of the many body energy levels as a function of flux. When
d = ¢ /2 the ground state is Kramers degenerate.

The Z, topological invariant characterizes the change in the time reversal
polarization when the flux ® is changed from 0 to ¢ /2. In the spin conserving
case, the change in the Kramers degeneracy is easy to see because the ¢g/2
flux insertion transfers “half™ a spin up to the left and “half” a spin down to the
right. Thus the eigenvalue of S, associated with the end changes by /2, and
due to Kramers’ theorem, the degeneracy changes. Relaxing the S, conservation
(while preserving time reversal) prevents us from labeling the states with S,
but the change in time reversal polarization remains well defined. The presence
of Kramers degeneracy depends on whether the number of electrons is locally
even or odd. Threading flux ¢o/2 through the cylinder acts as a “pump” for
fermion parity.

Itis instructive to compare this interpretation with the edge state pictures in
Fig. 11. If we view the cylinder as consisting of a single large unit cell in the
azimuthal direction, then Fig. 11 describes the discrete end state spectrum as a
function of flux, with & = I'y = 0 corresponding to ® =0 and k =Ty = 7 /a
corresponding to ® = ¢ /2. Suppose at ¢ = 0 there are no partially occupied
Kramers pairs, so that the many body ground state is nondegenerate. Then at
® = ¢ there will be a single half-filled Kramers pair, which gives a Kramers
degenerate many body state, when the Z; invariant is nontrivial (see Fig. 12).

If we flatten the cylinder into a Corbino disk, then a flux ¢¢/2 piercing a
topological insulator is associated with an odd fermion parity, but no net charge.
This is an example of fractionalization, where the spin and charge of the electron
decouple.

5.2.4 Formulas for the Zy Invariant
There are several mathematical formulations of the Z; invariant [4,7, 10,42—-47]
v. One approach [42] is to define a unitary matrix

W (K) = (um (K)|Ofu, (—K)) (37
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built from the occupied Bloch functions |uy, (k)). Since © is anti-unitary and
©? = —1,w? (k) = —w(—Kk). There are four special points A, in the bulk
2D Brillouin zone where k and —k coincide, so w(A,) is antisymmetric. The
determinant of an antisymmetric matrix is the square of its pfaffian, which
allows us to define

8, = Pflw(AL)]/vDetlw(Ag)] = £1. (38)

Provided |1, (K)) is chosen continuously throughout the Brillouin zone (which
is always possible), the branch of the square root can be specified globally, and
the Z, invariant is

4
1’ =14 (39)
a=1

This formulation can be generalized to 3D topological insulators, and involves
the eight special points in the 3D Brillouin zone.

The calculation of v is considerably simpler if the crystal has extra symmetry.
For instance, if the 2D system conserves the perpendicular spin S, then the up
and down spins have independent Chern integers n4,n. 7 symmetry requires
ns +ny = 0, but the difference ny = (ny —ny)/2 defines a quantized spin
Hall conductivity [52]. The Z; invariant is then simply

v = ny mod 2. 40)

While n4,n, lose their meaning when S, nonconserving terms (which are
inevitably present) are added, v retains its identity.

If the crystal has inversion symmetry there is another shortcut [10] to
computing v. At the special points A, the Bloch states u,,, (A) are also parity
eigenstates with eigenvalue &, (A,) = %1. The Z invariant then simply follows
from (39) with

8:1 = Hém(Aa)y (41)

where the product is over the Kramers pairs of occupied bands. This has proven
useful for identifying topological insulators from band structure calculations
[10,48-511.

For crystals without inversion symmetry determining the Z; invariant is
more difficult to implement numerically because (39) requires a continuous
gauge, which is not provided by the computer. Efficient algorithms for
numerically computing the Z, invariant numerically have, however, been
developed [53].

5.3 Topological Insulators in Three Dimensions

3D topological insulators will be discussed in detail in the following chapter.
Here we will discuss them briefly in a manner that makes contact with our
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FIGURE 13 Fermi circles in the surface Brillouin zone for (a) a weak topological insulator and
(b) a strong topological insulator. (c) In the simplest strong topological insulator the Fermi circle
encloses a single Dirac point.

discussion of the quantum spin Hall insulator. A 3D topological insulator is
characterized by four Z, topological invariants (vg; vivav3) [7-9]. They can
be most easily understood by appealing to the bulk-boundary correspondence,
discussed in Section 5.2.2. The surface states of a 3D crystal can be labeled with
a 2D crystal momentum. There are four 7 invariant points I'y 3 3 4 in the surface
Brillouin zone, where surface states, if present, must be Kramers degenerate
(Fig. 13(a,b)). Away from these special points, the spin orbit interaction will
lift the degeneracy. These Kramers degenerate points therefore form 2D Dirac
points in the surface band structure (Fig. 13(c)). The interesting question is
how the Dirac points at the different 7 invariant points connect to each other.
Between any pair I, and T'p, the surface state structure will resemble either
Fig. 11(a) or (b). This determines whether the surface Fermi surface intersects
a line joining I'y, to I'y an even or an odd number of times. If it is odd, then
the surface states are topologically protected. Which of these two alternatives
occurs is determined by the four bulk Z, invariants.

5.3.1 Weak Topological Insulator

The simplest nontrivial 3D topological insulators may be constructed by
stacking layers of the 2D quantum spin Hall insulator. This is analogous to
a similar construction for 3D integer quantum Hall states [54]. Consider a stack
of weakly coupled layers of v = n integer quantum Hall states. Each layer will
have Hall conductivity e?/h, leading to a 3D conductivity tensor,

&2

Oy = %E/LU)\.G)\A (42)

where G = (27 /d)ni is a reciprocal lattice vector associated with the layers
with separation d perpendicular to fi. The edge states on each layer will form
a chiral surface sheath. It is clear that when coupling between the layers is
introduced the Hall conductivity and the surface states will remain, provided
the bulk gap remains finite. The reciprocal lattice vector G is then specified by
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three integer Chern numbers, which characterize the three independent planes
in momentum space.

Consider now a stack of weakly coupled 2D quantum spin Hall insulator
layers. The helical edge states of the layers now become anisotropic surface
states. A possible surface Fermi surface for weakly coupled layers stacked
along the y direction is sketched in Fig. 13(a). In this figure a single surface
band intersects the Fermi energy between I'y and I'y and between I'3 and Iy,
leading to the nontrivial connectivity in Fig. 11(b). This layered state is referred
to as a weak topological insulator, and has vy = 0. The indices (viv2v3) can be
interpreted as Miller indices describing the “mod 2” reciprocal lattice vector

G’ = v by + by + v3bs. “3)

Here b; are primitive reciprocal lattice vectors, and GV, which characterizes the
layers, is defined modulo twice a reciprocal lattice vector.

Unlike the 2D helical edge states of a single layer, 7 symmetry does not
protect these surface states. Though the surface states must be present for a
clean surface, by breaking the translational symmetry, it is possible to eliminate
the surface states without closing the bulk gap. The simplest way to see this is
to imagine adding a dimerization (analogous to the SSH model, Fig. 4), which
strongly couples pairs of layers, which results in a stack of trivial insulators,

Interestingly, however, there remain robust topological features associated
with weak topological insulators. A line dislocation in a weak topological
insulator is associated with protected 1D helical edge states [55]. This is easy
to understand for weakly coupled layers in the case of an edge dislocation,
where the dislocation involves a layer that ends on the dislocation line, and is
associated with a helical edge state. Clearly, when the coupling between the
layers is increased the edge state cannot disappear.

In addition, there has been interesting recent work characterizing the surface
states of weak topological insulators in the presence of disorder [56-58]. The
key point is that opening a gap by dimerization requires breaking the discrete
lattice translation symmetry, which is not expected to occur in a macroscopic
system. The surface of a weak topological insulator is thus expected to remain
metallic, even for strong disorder.

5.3.2 Strong Topological Insulator

vo = 1 identifies a distinct phase, called a strong topological insulator, which
cannot be interpreted as a descendant of the 2D quantum spin Hall insulator. vy
determines whether an even or an odd number of Kramers points is enclosed by
the surface Fermi circle. In a strong topological insulator the surface Fermi circle
encloses an odd number of Kramers degenerate Dirac points. The simplest case,
with a single Dirac point (Fig. 13(b,c)), can be described by the Hamiltonian,

Houtace = —iAVFG - V, (44)
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where & characterizes the spin. (For a surface with a mirror plane, symmetry
requires S o Z x &.) The surface electronic structure of a topological insulator
is similar to graphene, except rather than having four Dirac points (2 valley x
2 spin) there is just a single Dirac point.

The surface states of a strong topological insulator form a unique 2D
topological metal [9,10] that is essentially half an ordinary metal. Unlike an
ordinary metal, which has up and down spins at every point on the Fermi surface,
the surface states are not spin degenerate. Since 7 symmetry requires that states
at momenta k and —k have opposite spin, the spin must rotate with k around the
Fermi surface, as indicated in Fig. 13(b). This leads to a nontrivial Berry phase
acquired by an electron going around the Fermi circle. 7 symmetry requires
that this phase be O or 7. When an electron circles a Dirac point, its spin rotates
by 27, which leads to a = Berry phase.

The Berry phase has important consequences for the behavior in a magnetic
field and for the effects of disorder. In particular, in an ordinary 2D electron gas
the electrical conductivity decreases with decreasing temperature, reflecting
the tendency toward Anderson localization in the presence of disorder [59].
The = Berry phase changes the sign of the weak localization correction to the
conductivity leading to weak antilocalization [60].

In fact, the electrons at the surface of a strong topological insulator cannot
be localized even for strong disorder, as long as the bulk energy gap remains
intact. The argument at the end of Section 5.2.2 can easily be generalized to 3D
[61]. Consider a 3D topological insulator with periodic boundary conditions in
two directions, but open boundary conditions in the third direction. This has the
topology of a thickened torus with inside and outside surfaces, which was called
a “Corbino doughnut” in Ref. [10], in analogy with the Corbino disk. There are
now two independent fluxes associated with the two periodic directions, and
the system has time reversal symmetry if these fluxes are either 0 or ¢p/2. If
we view the entire surface as a single unit cell, then the fluxes play the role
of the two components of momentum in Fig. 13(b). This leads to sensitivity to
boundary conditions described by Fig. 11. For the strong topological insulator,
the odd number of crossings depicted in Fig. 13(b) persists when the unit cell
is doubled. Therefore, the surface states of the topological insulator must be
sensitive to the periodic boundary conditions, so they can not be localized.

6 RELATED TOPICS

We close by briefly mentioning some further applications of topological band
theory. Some of these topics will be discussed in detail in later chapters.

6.1 Topological Crystalline Insulators

Spatial symmetries can modify and enhance the topological structure of band
theory. The simplest example of this occurred in the SSH model, discussed in
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Section 3.2, where the presence of inversion symmetry led to the topological
distinction between the two dimerization patterns, which in the absence of
inversion symmetry are topologically equivalent. A second example is the weak
topological insulator, where translation symmetry plays an essential role. This
leads to a broader class of topological band structures that are “less topological”
than topological insulators (because disorder breaks all spatial symmetries), but
nonetheless lead to interesting consequences.

A completely general classification of band structures with space group
symmetries is a challenging math problem. Most progress to date has focused
on specific examples. One class of topological invariants, which can exist when
a system has mirror symmetry, is the “mirror Chern number” [48,62,63].
Consider the graphene model discussed in Section 5.1. This model has a
mirror symmetry under z-—> —z. It follows that eigenstates can be labeled
with eigenvalues of that mirror operation. Importantly, since a mirror can be
expressed as inversion times a 180° rotation, the eigenvalues of the mirror
operator for spin 1/2 particles are =i, which means that the mirror operator
is odd under time reversal. It is therefore possible to define Chern numbers
n; Tor the states with mirror eigenvalue +i. Time reversal symmetry dictates
that ny; + n—; = 0, but the difference nM = (n; —n_;)/2 defines a crystal
symmetry protected integer topological invariant. For graphene, the Z invariant
is simply (—1)"M.

The mirror Chern number can also be applied to 3D insulators [48,62,63].
In this case, mirror invariant planes in momentum space can be characterized
by a mirror Chern number. This leads to consequences for the structure of the
surface states. On surfaces that are perpendicular to a mirror plane (so that the
surface retains the mirror symmetry) the surface must have gapless modes. A
gap can be opened, however, if the mirror symmetry is broken. The situation is
quite similar to a weak topological insulator, where the gapless surface states are
protected by a discrete translation symmetry. In both cases, if disorder breaks
the symmetry locally, but the symmetry is not macroscopically broken, then
one expects the surface to remain conducting even in the presence of disorder.
This is an interesting situation that warrants further exploration.

6.2 Topological Nodal Semimetals

Materials that are not insulators can also have topological aspects to their band
structure [24]. One case of interest are nodal semimetals [64-66], in which
the conduction band and valence band touch each other at points, leading to
a Dirac-type low energy electronic structure. In 3D, the point touching of two
nondegenerate bands, known as a Weyl point, is topologically protected. This is
easy to understand by expanding the Hamiltonian around the degeneracy point.
To linear order, for suitable coordinates k;, the Hamiltonian can be written
H (k) = v;jo;k;. Importantly, in 3D, all three Pauli matrices are used, so that
any perturbation, which may be written uo/ + i - &, will only shift the location
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of the Weyl point and cannot open a gap. This topological protection can also
be understood in terms of the Chern number n = sgn(det[v;;]) characterizing
H (k) on a sphere surrounding the Weyl point.

Time reversal symmetry requires Weyl points to come in pairs at +K, with
opposite Chern numbers, while inversion symmetry requires pairs at £K with
the same Chern number. Thus, the presence of isolated Weyl points in a band
structure requires breaking time reversal and/or inversion symmetry. The time
reversal broken state exhibits an interesting anomalous Hall conductivity. In
both cases, the surface exhibits interesting Fermi arcs that terminate on the
projected Weyl points. Candidate materials and structures for Weyl semimetals
have been proposed [64—66]. It will be interesting to observed these effects
experimentally.

It is also possible to have nodal semimetals that are protected by point group
symmetries. Dirac semimetals have fourfold degenerate band crossings at the
Fermi level [67]. These are not topologically protected in the way Weyl points
are, but can be protected by crystal symmetries which enforce the degeneracy.
Such Dirac points occurred in a model system based on a diamond lattice, and
candidate materials have been proposed.

6.3 Topological Superconductivity

Topological superconductivity is a beautiful subject that will be treated in detail
elsewhere. Here we will just mention that considerations of topological band
theory can also be used to classify superconductors. The Bardeen, Cooper, and
Schrieffer (BCS) mean field theory of superconductivity is a noninteracting
theory, which in addition to the usual terms includes anomalous terms of the
form AyTyT. These can be analyzed in terms of a one body Hamiltonian
if the one body Hilbert space is artificially doubled to include both positive
and negative energy states. This results in a Bloch-Bogoliubov de Gennes
Hamiltonian H (k) that is just like a Bloch Hamiltonian, except that it has
an intrinsic particle-hole symmetry

H(k)=—-EH(-k)E™, (45)
where E is an antiunitary operator. This has a structure similar to time
reversal symmetry in Hq. (35). Like time reversal symmetry it modifies
the topological classifications of gapped Hamiltonians, leading to classes of
topological superconductors. The bulk-boundary correspondence in topological
superconductors leads to topologically protected boundary modes. The
redundancy that was introduced by doubling the one body Hilbert space makes
these boundary modes Majorana fermion modes.

Allowing for both time reversal and particle-hole symmetry leads to an
elegant generalization of topological band theory [24,68-71]. There are 10
symmetry classes, which depend on the presence or absence of 7 symmetry
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(with ®2 = +1) and/or particle-hole symmetry (with 2 = =:1). The topolog-
ical classifications, given by Z, Z,, or 0, show a regular pattern as a function
of symmetry class and dimensionality, dubbed the *10-fold way.”

6.4 Topological Defects

Finally, we note that topological band theory can classify and characterize
topological defects that carry protected gapless modes [72]. Let us illustrate this
with a simple example. Consider a three-dimensional quantum Hall state, which
can be viewed as a stack of layers of 2D quantum Hall states. For simplicity first
consider the weakly coupled limit where the layers are independent. Consider
now an edge dislocation, shown in Fig. 14, which occurs when one of the layers
is terminated along a line. It is clear that line will be associated with achiral edge
state. Now imagine that coupling between the layers is turned on, but the bulk
gap remains finite. The chiral edge state has nowhere to go and must remain.
Its presence is guaranteed topologically in the same way the edge states in the
2D quantum Hall effect are guaranteed.

We thus have a topologically protected “boundary mode.” For the 3D
structure, what is the analog of the bulk? To analyze this it is useful to consider
a large circle surrounding the dislocation line in real space. Far away from the
dislocation the Hamiltonian varies slowly with position s along the circle. We
thus have a one parameter family of bandstructures H (k, 5), where s is defined
on the circle. A circle that encloses a chiral edge state must be topologically
distinct from a circle that does not enclose a chiral edge state. We are thus
led to topologically classify families of gapped bandstructures H (K, s). Such
a four parameter family of Hamiltonians is classified by an integer topological
invariant called the second Chern number. In the layered quantum Hall state
the second Chern number can be computed [72] and is given by n = G - B/2m,

FIGURE 14 A dislocation line, with Burgers vector B in a layered 3D quantum Hall state, is
associated with a gapless 1D chiral fermion mode.
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where B is the Burgers vector characterizing the dislocation and G, defined in
(42), characterizes the quantum Hall state.

It is clear that this method of analysis is more general than this specific
example. For example, a similar analysis explains the helical modes associated
with a dislocation in a weak topological insulator. The analysis of D parameter
families of Hamiltonians in d dimensions (H (k,r) with k € T4 and r € §9)
with or without time reversal symmetry leads to a generalization of the
bulk-boundary correspondence that applies generally to the protected modes
associated with d — D — 1 dimensional topological defects. When combined
with the theory of topological superconductivity it leads to a generalization of
the “ten-fold way” classification of insulators and superconductors.
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