The Ratio Problem in Nanotube Fluorescence Spectroscopy

E. J. Mele & C. L. Kane
Department of Physics
Laboratory for Research
On the Structure of Matter

What is the ratio problem? (previous talk & next slide)

What causes the ratio problem? (e-h interaction in excited state)
Plot of Ratios of Absorption/Emission Frequencies

![Graph showing plot of ratios of absorption/emission frequencies with inverse tube diameter (nm⁻¹) on the x-axis and E₂₂/E₁₁ on the y-axis. The graph indicates a trend for large R.](image-url)
One particle excitations on NT’s:
 • quantized subbands \(m \)
 • conserved crystal momentum \(q \)
 • \(E_m(q) \)

Interacting e-h’s on NT’s:
 • Intraband scattering:
 only \textit{total} crystal momentum is conserved
 \((q_e - q_h = 0) \)
 • Intersubband scattering:
 \(m \) is not conserved & higher subband
 e-h’s \textit{resonate}
 • Mix e-h \(\otimes \) 2e-2h configurations

\textit{This is Ratio Problem}
Intraband scattering

binds e-h pair

$$\psi(z) = \frac{1}{\sqrt{\xi}} \exp\left(-\frac{|z|}{\xi}\right)$$

with scaling rules

$$\xi n \propto \frac{1}{n} \quad \Delta E \propto n$$
Interband Scattering

Intrinsic Width (Resonant Exciton)
Hybridization of e-h and 2e-2h excitations
Exciton Lineshape

\[\varepsilon = \frac{ER}{\hbar v_F} \]
Exciton Lineshape Expressed in Natural Units

\[\varepsilon = \frac{E_R}{\hbar \nu} \quad \tilde{\alpha} = \frac{e^2}{2\pi \kappa \hbar \nu} \]

\[G(\varepsilon) = \frac{1}{\varepsilon - \varepsilon_0 + iA\tilde{\alpha}^2 + \frac{B^2\tilde{\alpha}^4}{\sqrt{\varepsilon_0^2 - \varepsilon^2}}} \]

\[\Delta \varepsilon = -\frac{3^{1/3}}{2} B^{4/3} \tilde{\alpha}^{8/3} \quad \gamma = A\tilde{\alpha}^2 \]

Line shifts and broadens
Nanotube Fluorescence Spectroscopy
Correlations of `Mod 3` Gap Deviations

(from Structure Assigned Optical Spectra of Single Wall Carbon Nanotubes,
S. Bachilo et al., Science 298, 2361 (2002))
Nonlinear Scaling of 1st and 2nd Subband Deviations Due to Coulomb & Trigonal Warping

\[\Delta_1 (\text{cm}^{-1}) \]

\[\Delta_2 (\text{cm}^{-1}) \]

- \textit{bare trig. warping}
- \textit{with interactions}
Summary

• FS reveals electronic gap structure outside the conventional band model.

• The “ratio problem”

 Gap Ratio < 2 (asymptote for large diameter tubes)

 Hybridize e-h and 2e-2h excitations

 1D + degeneracy from tube wrapping.

• “Mod 3” gap deviations

 They are very large… with ± asymmetry

 Curvature, Trig. Warping + Coul. Anisotropy (distinguished by scaling with R, n)

 Nonlinear Scaling in Data gives Coul. Anis. ⊗
 Trig. Warping