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What we face

Our Physics colleagues are still saying --  
• “That’s not really physics.”
• “That’s already offered in some other department.” 
• “We don’t have the resources for that.”
Our Biology colleagues are still not sending their students to our 
courses.
“Biology students cannot/will not do math.”
“Physics students get uncomfortable with biological physics -- there 
are too few `Tripos questions.’”

I’ll discuss those questions in the context of describing a course that works at 
U. Penn. If you don’t face these particular questions, you may still be interested 
in the choice of topics.



Why do we even have classes at all?
✴To tell them facts? 

No -- facts are now free in infinite quantity. 
✴To tell them the latest, most trustworthy facts?

No -- facts go out of date in the blink of an eye.

Well -- skills and habits still matter a lot. When you walk into a room with your toolbag 
and encounter a problem you’ve never seen, which tool should you pull out of your 
bag? Knowing where to begin is a difficult but learnable skill.

Students need to develop the right skills and habits for that, but many (most?) courses 
don’t really help. 

A class should help them do that -- in some specific context. Biological physics is an 
interesting context for that purpose, regardless whether a student goes on in that 
field.

The interesting questions in science are those where we shake our heads and ask, 
“How could anything like that possibly happen at all?” And biophysics is full of 
such questions.



   

The boffins speak

http://books.nap.edu/

Students have got 
to learn how to get 
computers to do 
useful things from 
scratch. They also 
need to get used to 
extracting useful 
information from 
big datasets.



A course that works at Penn
Physicists are pretty comfortable teaching about molecular biophysics. 

It’s a good fit -- we like to talk about entropy
It’s still an exciting, opening field.
A number of modern textbooks are now available.

But...

Maybe you’ve already got one of those.
Molecular biophysics is not so obviously connected to medicine, which many of our 
students plan to study.
Students are intrinsically interested in themselves, e.g., their own visual system.
Physicists have a lot to say about Systems, although we’re somehow ceding a lot of the 
high ground to mathematicians and computer scientists.

Let’s see how a Physics department could offer an useful course to a wide variety of 
students, including the more numerate Bio majors, and the burgeoning group of 
Engineering majors interested in bio applications.

Much inspiration from Bialek/Botstein 2004;  Wingreen/Botstein 2006.



Genetic switching

Monod 1949

Monod found something funny in the 
growth of bacteria in mixed medium. 
He asked, “how could that possibly 
happen at all?” And he ended up with 
the operon model.

Could bacteria somehow be 
implementing a two-state switch like 
the ones that changed human 
civilization in the mid-20th century?
(Ahem -- Why doesn’t this icon appear 
anywhere else in our Physics 
curriculum?)
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where one of the derivatives equals zero. You may prefer to draw a graph for which all
arrows are scaled to the same length, so you can see what’s happening right up near the
fixed points (below right).
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Switching, II
Students can write a model of two 
mutually repressing genes, make the 
phase-plane analysis, and find the 
region of bistability in Matlab.

Gene Regulation at the
Single-Cell Level

Nitzan Rosenfeld,1* Jonathan W. Young,3 Uri Alon,1

Peter S. Swain,2* Michael B. Elowitz3.

The quantitative relation between transcription factor concentrations and the
rate of protein production from downstream genes is central to the function
of genetic networks. Here we show that this relation, which we call the gene
regulation function (GRF), fluctuates dynamically in individual living cells,
thereby limiting the accuracy with which transcriptional genetic circuits can
transfer signals. Using fluorescent reporter genes and fusion proteins, we
characterized the bacteriophage lambda promoter PR in Escherichia coli. A
novel technique based on binomial errors in protein partitioning enabled
calibration of in vivo biochemical parameters in molecular units. We found
that protein production rates fluctuate over a time scale of about one cell
cycle, while intrinsic noise decays rapidly. Thus, biochemical parameters,
noise, and slowly varying cellular states together determine the effective
single-cell GRF. These results can form a basis for quantitative modeling of
natural gene circuits and for design of synthetic ones.

The operation of transcriptional genetic cir-
cuits (1–5) is based on the control of pro-
moters by transcription factors. The GRF is
the relation between the concentration of
active transcription factors in a cell and the

rate at which their downstream gene products
are produced (expressed) through transcrip-
tion and translation. The GRF is typically
represented as a continuous graph, with the
active transcription factor concentration on
the x axis and the rate of production of its
target gene on the y axis (Fig. 1A). The shape
of this function, e.g., the characteristic level of
repressor that induces a given response, and
the sharpness, or nonlinearity, of this response
(1) determine key features of cellular behavior
such as lysogeny switching (2), developmen-
tal cell-fate decisions (6), and oscillation (7).
Its properties are also crucial for the design
of synthetic genetic networks (7–11). Cur-
rent models estimate GRFs from in vitro

data (12, 13). However, biochemical parame-
ters are generally unknown in vivo and could
depend on the environment (12) or cell history
(14, 15). Moreover, gene regulation may vary
from cell to cell or over time. Three funda-
mental aspects of the GRF specify the behav-
ior of transcriptional circuits at the single-cell
level: its mean shape (averaged over many
cells), the typical deviation from this mean,
and the time scale over which such fluctua-
tions persist. Although fast fluctuations should
average out quickly, slow ones may introduce
errors in the operation of genetic circuits and
may pose a fundamental limit on their ac-
curacy. In order to address all three aspects, it
is necessary to observe gene regulation in in-
dividual cells over time.

Therefore, we built Bl-cascade[ strains of
Escherichia coli, containing the l repressor
and a downstream gene, such that both the
amount of the repressor protein and the rate
of expression of its target gene could be
monitored simultaneously in individual cells
(Fig. 1B). These strains incorporate a yellow
fluorescent repressor fusion protein (cI-yfp)
and a chromosomally integrated target pro-
moter (PR) controlling cyan fluorescent pro-
tein (cfp). In order to systematically vary
repressor concentration over its functional
range (in logarithmic steps), we devised a
Bregulator dilution[ method. Repressor pro-
duction is switched off in a growing cell, so
that its concentration subsequently decreases
by dilution as the cell divides and grows into
a microcolony (Fig. 1C). We used fluores-
cence time-lapse microscopy (Fig. 1D; fig.
S1 and movies S1 and S2) and computational
image analysis to reconstruct the lineage tree
(family tree) of descent and sibling relations
among the cells in each microcolony (fig.
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Fig. 1. Measuring a
gene regulation func-
tion (GRF) in individual
E. coli cell lineages. (A)
The GRF is the depen-
dence of the produc-
tion rate of a target
promoter ( y axis) on
the concentration of
one (or more) tran-
scription factors (x ax-
is). (B) In the l-cascade
strains (16) of E. coli,
CI-YFP is expressed
from a tetracycline
promoter in a TetRþ
background and can
be induced by anhydro-
tetracycline (aTc). CI-
YFP represses produc-
tion of CFP from the PR
promoter. (C) The reg-
ulator dilution experi-
ment (schematic): Cells are transiently induced to express CI-YFP and then
observed in time-lapse microscopy as repressor dilutes out during cell growth
(red line). When CI-YFP levels decrease sufficiently, expression of the cfp target
gene begins (green line). (D) Snapshots of a typical regulator dilution

experiment using the OR2*–l-cascade strain (see fig. S3) (16). CI-YFP protein
is shown in red and CFP is shown in green. Times, in minutes, are indicated on
snapshots. (Insets) Selected cell lineage (outlined in white). Greater time
resolution is provided in fig. S1.
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It’s not speculation -- now the 
transfer functions of each element 
have been measured. The era of 
synthetic biology has arrived.

Rosenfeld et al 2005



Images based on x-ray crystallography data by David Goodsell.

Myosin is a molecular motor that walks on actin filaments:

Molecular machines

How can we get information about this invisibly 
small motor’s mechanism?
Here is where a little probability goes a long way. 
Students can test two hypotheses about the gait by 
analyzing the statistics of the motor’s steps:



Dwelling time distribution of the two 
stepping types of myosin X.
Red bars: Type 1;  Blue bars: Type 2.
Assuming the same stepping rates of the two 
heads of myosin X.
These distributions tell a story, if you know 
how to convert a hypothesis to a predicted 
distribution (curves).

Yujie Sun, Yale Goldman, et al.

CONVOLUTION

An exactly analogous 
figure appeared in 
Prof Gaub’s talk--it’s 
a very general idea.



[Subtext 1a]
Biophysical problems are an interesting road into probability theory with 
high-profile, current applications that can motivate students.

(Do your life-science students really understand it when they take their department’s 
statistics course?) 

Example: in the previous slide, how should we actually perform the fits to the 
expected distributions? Could jiggle till they look good... could hit the “fit” button on 
our canned sofware... or we could maximize the likelihood. A teachable moment.



Bacterial genetics

506 S. E. LUNA AND M. DELBRtfCK 

rate per bacterial generation is independent of the physiological state of the 

bacteria may be too simple. If the mutation rate is higher for actively growing 

bacteria than for bacteria near the saturation limit of the cultures, early muta- 

tions and big clone sizes will be favored, and therefore higher variations of the 

numbers of resistant bacteria can be expected. Second, the assumption of a 

sudden transition from sensitivity to resistance may also be too simple. It is 
conceivable that the character “resistance to virus” may not fully develop in 

the bacterial cell in which the mutation occurs, but only in its offspring, after 

one or more generations. However, if this were the case, cultures with only one 

or two resistant bacteria should be relatively rare. The last experiment listed 

in table 3, in which the entire cultures were plated, shows a rather high propor- 

tion of cultures with only one resistant bacterium. This seems to show that the 

cultures 
% 
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IO 

FIGURE z.-Experimental (Experiment No. 23) and calculated distributions of the numbers 

of resistpt bacteria in a series of similar cultures. Solid columns: experimental. Cross-hatched 

columns: calculated. 

character “resistance to virus” in general does come to expression in the bac- 

terial cell in which the corresponding mutation occurred, as assumed by the 

theory. 
Another way of comparing the experimental results with the theory is to 

compare the experimental distribution of resistant bacteria with the approxi- 

mate distribution calculated by the method outlined a t  the end of the theo- 

retical part. The theoretical distribution has to be calculated from the aver- 

age number of mutations per culture given by equation (5 ) .  Only experi- 

ments wheqe the whole culture is tested can therefore be used for such a 
comparison. This method tests the fitting of the expectations for small numbers 

of resistant bacteria, in contrast to the comparison of the standard deviations, 
which involves predominantly the cultures with high numbers of resistant 
bacteria. 

Figure 2 shows the experimental and calculated distributions for Experi- 

ment No. 23; the cultures with more than nine resistant bacteria are lumped 
together in one class, since the distribution has not been calculated for values 
higher than nine. 

It is seen that the fitting for small values is satisfactory. In  particular, the 

Luria & Delbruck, 1947

Luria and Delbruck noticed a statistical peculiarity in their data -- a huge “fat 
tail.” They came up with a “Mendel, not Lamarck” model for drug resistance, 
and detailed quantitative predictions for such distributions that distinguished 
their model from the alternative.
They had to work very, very hard. But now it’s trivial for students to simulate in 
Matlab.



Students can easily simulate the Luria--Delbruck model using Matlab:

Of 5000 simulated cultures, most have zero resistant mutants but a few have very many. This 
may be an ancient case history, but a lot of cutting-edge research is done on “fat-tail” 
distributions like this one. Biophysics is a good context for students to learn how to handle 
such things. In fact, many distributions arising in Biophysics have infinite variance.

Oh, also -- drug resistant bacteria are a very, very current problem.

And -- similar ideas are 
also illuminating when 
applied to retinoblastoma. 
A good physical model 
applies to problems 
beyond the one for which 
it was developed.



Random walks

a b

Simple walk: Sampled walk: Real Brownian motion:

Students can simulate a random walk, then run it again and again to grasp the generic 
similarity of these figures despite the fact that they’re always different in detail.
Then they can find the mean-square displacement to confirm the diffusive law.

P Nelson, Biological Physics, updated ed 2008.



Diffusion

We can show that the diffusive 
flux of oxygen to a bacterium is 
limited by its size. But that 
derivation is a bit abstract.  We 
don’t “see” the oxygen molecules 
themselves.
And anyway, a key result (Berg 
and Purcell) requires solving an 
electrostatics problem that most 
of our grad students can’t do!

Instead, students can simulate random walks in Matlab and find the diffusive flux to an 
absorbing sphere. They can then find the flux to a reflecting sphere with absorbing 
patches -- a calculation with big implications for cell receptors.



Genetic drift
Genetic drift is also a random walk -- with non-constant “diffusion 
constant.” Kimura had to work very, very hard to solve this model, but it 
led to the fundamental result that probability of fixation is proportional to 
1/(population). It’s incredibly important -- the basis of the molecular clock 
that gives us phylogenetic trees.
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Students can trivially simulate this 
system, and obtain the key result, 
using Matlab.



Proteomics

Noble et al FEBS 2005

If you’re looking at an unknown gene, and it 
resembles a lot of kinase genes, then maybe it’s a 
kinase.
But resemblance can be hard to spot. Nonlocal 
sequence homologies can be important.
Random walks on graphs can tease out those nonlocal 
aspects.

Diffusion on graphs is also the basis of the Google 
PageRank algorithm. A civilization-changing 
discovery.



[More subtext]

1b: Biophysical problems are an interesting road into statistical physics 
(including nonequilibrium) with a lot of high-profile, current 
applications that can motivate students. 

(Are your life-science students really likely to take your Physics department’s 
regular stat mech course?)

Some other subtexts are points that may strike us as so obvious that we need not 
speak them aloud -- but they’re not so obvious to many life-science students, and we 
do need to say them:

2a: Somehow a good physical model (in this case random walks) can apply to 
widely disparate problems. 



Eyes
Eyes are an ancient 
invention: Here is 
Trilobite, half a billion 
years old.

That design was successful: Here is a 
modern aphid.

But if you can afford to carry more 
weight around, here is a better design:



False sense of security
The human eye also has a lens-based focusing system, again like a camera. It seems 
to make sense in terms of Snell’s Law, a consequence of the wave theory of light.

A key realization is that the finite size of our pupils limits the resolution we can get 
at the retina, due to diffraction. There’s no point having a pixel size smaller than this 
resolution limit, and remarkably, our photoreceptor cells really are about this size.

Looks like the wave theory of light explains everything.



Uh-oh

We can detect very dim light with a photomultiplier tube, or a photodiode. Either way, light 
causes discrete clicks in the detector.  Dimmer light gives equally big clicks, just less frequent. You 
might imagine a mechanism something like this:

But that mechanism would give uniformly spaced clicks. Instead the clicks are as random as 
possible -- they are a “Poisson process.” Something about light is intrinsically random.

click for uniform clicks audio click for shot noise

Moreover, when we shine dim light on several photodetectors, they never respond in unison: Each 
click comes from just one detector, even if the beam of light is spread out to cover them all.

But what happens next? What happens in those photoreceptor cells that translates light into 
nerve impulses?



[Still more subtext]

2b: By the way, somehow a good physical model (in this case the Poisson process) 
can apply to widely disparate problems. 



Both digital and film cameras also expose one pixel at a time, at random:

Images Albert Rose



Even classic diffraction effects turned out to be particulate in character.

33 msec 1 second 100 seconds

Einstein found he could only understand phenomena such as the photoelectric effect and 
thermal radiation by postulating that light consists of tiny lumps -- the “photon hypothesis.”



[Aside -- how they see us]

All this way-out stuff about quanta sounds a good tale, but what’s it to do with 
Life? Students could be forgiven the suspicion that, like Calvin, we are taking a 
fundamental idea and found a naive/irrelevant application for it.

But on the contrary: If your competitor/threatening predator/prey has better 
night vision than you, that could be a problem. That’s the mother of invention, 
big time. If there’s a fundamental limit to vision, you want to be there.



Human vision

Data from S. Hecht et al

Hecht et al measured the probability of seeing a flash vs intensity. They found a simple 
physical model predicting the form of this “probability of seeing curve.” 
Then they were led from this information to the conclusion that single photons can excite 
rod cells, and that a quorum of  simultaneous rod-cell firings is registered consciously.

“What’s all that theoretical stuff got 
to do with vision, a real biological 
process? Surely vision is a terribly 
complex system, impossibly difficult 
to understand?”



%% pcn 10/07  hecht.m
% hecht experiment
% data from hecht et al page 835 table V 4th column
p=[0,0,0.12,0.44,0.94,1]; nphoton=[23.5,37,59,93,149,239];lnphoton=log10(nphoton);
plot(lnphoton,p,'o');
xlabel('log10 nbar','FontSize',16);ylabel('P_{see}','FontSize',16);title('probability of 
seeing','FontSize',16)
%%
figure
plot(lnphoton,p,'--');hold on
for mstar=1:2:12,
    q=0.12;
for j=1:46,
    photons=20+5*j;
    mbar=q*photons;
    total=0;
    for i=mstar:50
        total=total+exp(-mbar)*(mbar^i)/factorial(i);end
    ptheory(j)=total;lphotontheory(j)=log10(photons);end
plot(lphotontheory,ptheory,'r');
end
xlabel('log10 nbar','FontSize',16);ylabel('P_{see}','FontSize',16);title('probability of seeing, 
q=.12, various mstar','FontSize',16)
%%
figure; plot(lnphoton,p,'--');hold on
for q=.04:.01:.10,
    mstar=7;
for j=1:46,
    photons=20+5*j;
    mbar=q*photons;
    total=0;
    for i=mstar:50
        total=total+exp(-mbar)*(mbar^i)/factorial(i);end
    ptheory(j)=total;lphotontheory(j)=log10(photons);end
plot(lphotontheory,ptheory,'r')
end
xlabel('log10 nbar','FontSize',16);ylabel('P_{see}','FontSize',16);title('probability of seeing, 
mstar=7, various q','FontSize',16)

Above: threshold=7 fits the data well.

Students can fit Hecht et al.’s data in 
Matlab and find the critical quorum size.



[Subtext 3]

Sometimes you can roll up your sleeves, scribble down some symbols or key in some 
code, and extract new knowledge from an experiment that wasn’t going to divulge 
that knowledge to your unaided eye. Those scribbles, or that code, often embody some 
physical model.



Direct measurements on single rod cells confirm 
that they can respond to single photons, and 
confirm the inherent randomness of the 
response.
An individual rod or cone cell’s response can be 
measured by gently sucking its outer segment 
into a pipette electrode and stimulating it with 
500 nm light (green). 
Scale: outer diameter of pipette about 6 
micrometers.

cell’s synaptic terminal [see Fig. 3(a)], a part of the cell

specialized for communicating the rod signals to other

cells in the retina. Light incident on the outer segment

activates the photopigment rhodopsin, leading to closure

of some of the channels in the outer segment and a de-

crease in the circulating current [Fig. 3(c)]. The reduc-

tion in current causes a change in the voltage across the

rod’s surface membrane. This voltage change quickly

spreads to the synaptic terminal, where it alters the rate

of release of chemical transmitter, thus informing other

neurons in the retina about the amount of light falling

on the outer segment.

The light-sensitive current can be recorded by draw-

ing the outer segment into a tight-fitting glass electrode

filled with the same solution bathing the outside of the

cell [Fig. 4(a)]. The rod continues to operate as before,

but the electrode collects the current flowing into the

outer segment and allows light-evoked changes in the

current to be monitored. Figure 4(b) shows the path of

the electrical current for this recording configuration.

Figure 4(c) shows superimposed responses to a series of

brief light flashes recorded from a toad rod; each trace is

the average of 4–5 individual responses. Prior to the

flash there was an inward current of about 18 pA which

decreased transiently in response to the flash. The small-

est response was evoked by a flash producing an average

of about one absorbed photon per trial and each succes-

sive flash was four times brighter. The brightest flashes

closed all the channels in the outer segment membrane

and completely shut off the current for several seconds.

Dim flashes produced responses that rose slowly and

lasted about 5 seconds. The sluggishness is due in part to

the low temperature at which amphibian rods operate

(20 °C in this experiment), but even in mammalian rods

at 37 °C the dim flash response lasts 300 msec. The re-

sponses shorten considerably in the presence of steady

background light, and cone photoreceptors generate

much briefer light responses than rods. Because the ki-

netics of the photoreceptor responses limit the temporal

sensitivity of the visual system, changes in the response

kinetics can be demonstrated by observing the temporal

frequency at which a sinusoidally modulated light ap-

pears constant rather than time varying. This ‘‘flicker-

fusion’’ frequency is 3 Hz for dark-adapted human rod

vision, but increases to 10 Hz for rod vision in the pres-

ence of steady light and rises to 50–60 Hz for cone vision

in bright background light (Hecht and Verrijp, 1933).

The largest responses in Fig. 4(c) are like those our

rods would generate in response to an intense camera

flash in the middle of the night. Most of rod vision in-

volves responses to much dimmer lights, such as those

producing the very smallest responses in Fig. 4(c). The

individual responses to these dim flashes are quantized,

corresponding to the effective absorption of 0, 1, or 2

photons [Fig. 4(d)]. Indeed the number of responses in

each group can be explained by the Poisson statistics of

photon absorption (see Sec. VI). The responses to these

very dim flashes exhibit two properties that are critical

for reliable photon counting [Fig. 4(d)]: (1) the baseline

is relatively stable so that the light responses can be

clearly resolved (see Sec. V); and (2) the individual

single-photon responses have reproducible amplitudes

and shapes, allowing 1 absorbed photon to be clearly

distinguished from 0 and 2 (see Sec. VI).

Good photon detection also requires that the rods

harvest incident photons avidly and convert them into

electrical signals with high efficiency. A blue-green pho-

ton traveling along the long axis of a 20 �m long human

rod outer segment has a 50% chance of being absorbed.

This high probability results from the very high density

of rhodopsin molecules in the outer segment as well as

the fact that the rhodopsin molecule itself absorbs very

strongly. Furthermore, photon absorption activates the

rhodopsin molecule (see below) and triggers an electri-

cal response with a probability of 2/3.

FIG. 4. Suction electrode recording of light-sensitive current.

(a) Isolated toad rod, which has been drawn by suction into a

tight-fitting glass electrode. The electrode collects the current

entering the outer segment and allows changes in this current

to be measured. The cell is viewed under infrared light (�850

nm) and stimulated with 500-nm light. (b) Current path in suc-

tion electrode recording. As is the case without the suction

electrode, current carried by the movement of ions in solution

flows into the outer segment and out of the inner segment. The

suction electrode, however, provides a resistive barrier which

prevents the current loop from being completed in the solution

just outside the cell; instead current flows through an electrode

placed in the bath, through a current-measuring amplifier, and

into the suction electrode through another electrode. Thus

changes in the outer-segment current can be directly mea-

sured. (c) Family of current changes to a brief flash recorded as

in (a); the flash was given at t�0, as indicated by the timing

bar. Averaged responses (4–5 trials) have been superimposed.

The smallest response is to a flash producing an average of

about one photon absorption; each successive flash is four

times brighter. The flat tops of the responses to the brightest

flashes are caused by closure of all the channels in the outer-

segment membrane. (d) Current responses to repeated presen-

tations of a dim, fixed flash given at the times indicated. The

individual responses to this dim flash are quantized, corre-

sponding to the effective absorption of 0, 1, or 2 photons.
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“OK, so light comes in tiny lumps. Is that all?”

And yet, I mentioned earlier that light also shows many other properties long thought 
to be slam-dunk evidence of wavelike behavior, much of it critically important for the 
design of visual organs. How could any of that possibly happen at all in the particle 
picture? Einstein didn’t know.

Now, in physics we often put a box around a set of issues and say, “We can't 
understand that today,” and move on. But this is an intolerable contradiction. It's too 
big to put a box around it. We have to understand it before we have any business 
moving on.

Generally professors say, “You’re not ready for that. You’ll understand that some day.” 

(They really mean, “Shut up.”)

Is that really an adequate response? Students would have to wait till they were halfway 
through a PhD in high-energy particle physics (which they’re not going to do anyway) 
before we’d get around to telling them. 

Can’t we tell them something we actually believe is true? Can’t we have them do a 
calculation for themselves that illuminates this apparent paradox?

Intolerable



Get serious
Again: How can little bullets display the diffraction and refraction needed to explain physiology (and 
much more)?

Photon hypothesis, continued:

 The probability to observe a photon is the length-squared of a certain complex number ψ. 

 If there are multiple routes (or processes) by which a photon could make the trip, and we 
don’t directly observe which one was taken, then they all make additive contributions to the 
total amplitude. These contributions are all complex numbers with equal lengths, but different 
angles, so they may reinforce or cancel.

 The angle (phase) of any one contribution equals the angular frequency of the light (related 
to its color) times the transit time for the path. In vacuum, light travels at the fixed speed c, so 
transit time may be written as (path length)/c. 

 In a transparent material, it gets complicated by all those electrons, but for some purposes 
it’s a good approximation to say that in water, etc. the speed is reduced to c/n, where n is the 
“index of refraction.”

That’s it. See Feynman, QED



So how does that help?
It’s incredible, but with that additional info we can reproduce all of the familiar classical optics 
results, including focusing by the lens of the eye. And you don’t need to trust some authority figure 
on that -- students can do the calculations for themselves.
The key question is, Why does light (usually) (seem to) go on (pretty) straight lines?
After all, a penny held in the sunlight casts a sharp shadow. And yet our photon hypothesis says that photons 
take all possible paths between source and detector!
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A similar integral whose range of integration 
contains no stationary-phase point will have a 
small total value:
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To answer that question, students can approximate the integrals in Matlab as sums, drawing little 
arrows to represent each term in the sum. The full integral (red arrow) is the vector from one end of the 
chain to the other end, times dx.

Again: Near x = 0 the arrows point mainly to the right and 
they add up to something significant. If the range of 
integration contains that stationary-phase point, we’ll get a 
large total (long red arrow). Otherwise, we won’t.



The concept we found -- “stationary phase” -- 
explains why we sometimes get sharp edges, other 
times not. Students can approximate the integrals in 
Matlab, then see the phenomena themselves with a 
laser.

Left: wide slit, sharp edges.
Lower left: medium slit, medium edges.
Lower right: narrow slit, fuzzy edges.

That gives us the “diffraction limit” on resolution 
(how well we can see) of an optical system. You 
can now understand other optical phenomena 
(like focusing) with similar principles.



[Sorry to be so repetitive]

Subtext 1c: Biophysical problems are an interesting road into quantum 
physics with a lot of high-profile, current applications that can motivate 
students.

(Are your life-science students really likely to sit your department’s regular quantum 
mechanics course?) 

2c: By the way, somehow a good physical model (in this case the sum over 
trajectories) can apply to widely disparate problems. 



I guess I believe that this photon hypothesis is possible. So OK, we learned about the true character of 
light, we reconciled its wave and particle aspects... Is that all? Is this just wiggling out of some paradox, or 
can we learn something new about biophysics?”
Yes. Somehow or other, the reception of a single photon gets converted to a neural impulse. By the time 
that impulse reaches the optic nerve, it has become a spike.
Spiking neurons, e.g. in the optic nerve, have limited dynamic range. They represent their signal by the 
times of individual spikes, each of which is exactly like any other. There are upper and lower bounds on 
this rate. The eye must make the best possible use of this limited range of representing the intensity of light 
at each pixel.
And the problem is even more acute than that: you have 108 photoreceptors, but only 106 optic nerve fibers!

“OK, OK... but”



At high illumination, truncation to 1-bit depth destroys a 
lot of detail (top right). But we can do much better than 
this, at the same high level of compression.
To do so, students can apply a filter (bottom). The filter is 
called “center/surround”; it is the difference of two 
concentric Gaussians. And by the way, it’s a convolution 
-- an idea we met in a very different context in the start of 
the course.

Truncating in this way vastly reduces the image size, or 
the bandwidth needed to transmit it in a given amount 
of time. (In this case we went from 8 bits per pixel to 
just one.)



If you fixate on one intersection, other intersections appear gray, darker than the streets.

“Well, cool, but... Do our eyes really do that?” First look at psychophysical clues. 



... Spare us the psychophysics. Is there some objective data on this?”
Meet Limulus:
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The ideal experimental test of these qualitative predictions would be to 

record simultaneously the discharge of impulses from a great number of recep- 

tor units in many different positions with respect to a fixed pat tern of illumina- 

tion on the receptor mosaic. Such a procedure is impractical, so we measured, 

instead, the discharge of impulses from only one receptor unit near the center 

of the eye, and shifted the pat tern of illumination between measurements so 

that  this one receptor unit assumed successively a number of different positions 

with respect to the pattern. 

The pat tern of illumination was provided by focussing on the eye the demag- 

nified image of a transilluminated photographic plate on which the desired 

I ^ - - - . . ^ - ^  

5.C 

Ii1 ~-,  

c~ 

2.0 

1.0 I I 

0.5 ram. at  the eye 

3.0 

2.0 

÷I.0 

0.0 

-1.0 

-2.0 

-3.0 

-4.0 

-5.0 

FIG. 4. The discharge of impulses from a single receptor unit in response to a simple 

"step" pattern of illumination in various positions on the retinal mosaic. The pattern 

of illumination was rectangular, covering an area 1.65 mm. X 1.65 ram. on the eye. 

I t  was obtained by projecting the denmgnified image of a photographic plate on the 

surface of the eye. The insert shows the relative density of the plate along its length 

as measured, prior to the experiment, by means of a photomultiplier tube in the 

image plane where the eye was to be placed. The density of the plate was uniform 

across its entire width at every point. The measurements illustrated were made over 

the central 1.5 ram. of the image on the eye. 
The upper (rectilinear) graph shows the frequency of discharge of the test receptor, 

when the illumination was occluded from the rest of the eye by a mask with a small 

aperture, minus the frequency of discharge elicited by a small "control" spot of light 

of constant intensity also confined to the facet of the test receptor. Scale of ordinate 

on the right. 
The lower (curvilinear) graph is the frequency of discharge from the same test 

receptor, when the mask was removed and the entire pattern of illumination was 

projected on the eye in various positions, minus the frequency of discharge elicited 
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“Oh, please...



Students can find a simple solution 
to this model, on a grid of just 8 
points:

a=0.7; b=a^4; c=a^9;
M1=[a b c 0 0 0 0 0 0 0;...
    b a b c 0 0 0 0 0 0;...
    c b a b c 0 0 0 0 0;...
    0 c b a b c 0 0 0 0;...
    0 0 c b a b c 0 0 0;...
    0 0 0 c b a b c 0 0;...
    0 0 0 0 c b a b c 0;...
    0 0 0 0 0 c b a b c;...
    0 0 0 0 0 0 c b a b;...
    0 0 0 0 0 0 0 c b a     ];
E=[0 0 0 0 0 1 1 1 1 1 ]';
F=(eye(10) + .5*M1)\E;

Hartline and Ratliff’s model was a bit more elaborate 
than that -- but not a lot more. We have exploited an 
analogy to a physics subject: antiferromagnetism.



At low illumination we have a lot of Poisson noise 
(top left), but we can still see detail. Truncation to 
1-bit depth again destroys detail (top right), but this 
time it's even worse if preceded by the same filter 
that was so helpful before (bottom).

(In these pictures the whitest pixels are taken to 
contain just 30 absorbed photons.)

Effect of randomness



Rescue
The problem is a familiar one in statistics: “The 
difference of two noisy variables is itself a very 
noisy variable.”

We can gain back some detail by using a filter with 
slightly wider center and much wider surround, 
which averages out some of the noise.

Looks like lateral inhibition is not such a good idea after all, 
if we want to see in dim light. But an engineer might say, 
“Simply turn it on only at high illumination.”

Can our eyes do that?

Why, yes. Even fruitflies can do that.

Students can do this demonstration 
too, and play with different center/
surround options.
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prominent feature in that figure is the transition from band-pass to low-pass filtering 
as I, is lowered. A similar transition is also observed as the temporal frequency of 
stimulation is increased for a given spatial frequency. 

If a retinal filter at high luminance is Fourier transformed back into space, it 

looks like the curve in figure 5. This is a onedimensional slice in a twodimensional 
rotationally invariant spatial profile, and it shows the familiar centre-surround orga- 
nization of ganglion cell RF: The cell effectively receives excitatory input (+) from 
the photoreceptors in a small region around its RF centre and inhibitory input (-) 
from the surround region. These cells are known as on-centre cells. The other class 
of spatially opponent cells found in the retina have an inhibitory centre and an ex- 
citatory surround and are known as off-centre cells. A similar organization exists in 
the temporal domain. 

Figure 5. Retinal kernel at high adaptalion level showing the opponent spatial organi- 

zation 01 a ganglion cell's w. 

In retinas of species that possess colour vision, such as most primates and shallow- 
water fish, RFS of ganglion cells possess a more complicated centre-surround organ- 
ization. In thcse retinas, there are several types of photoreceptors that possess 
different photosensitive pigments. Functionally, the mrious pigments are identical 
except they differ in the location of their peak spectral sensitivity. In humans for 
example, the three types of pigments referred to as B, G and R for blue, green, 
and red respectively (or alternatively known as S, M and L for short, medium and 
long spectral wavelength respectively) best absorb light of spectral wavelength around 
419 nm, 530 nm and 558 nm respectively. 

Below left, the center-surround structure of fly visual field (solid curves) changes with changing S/N 
ratio: At high signal the most inhibition is at 2.5 degrees, whereas at lower signal it moves out to 3 
degrees.
Below right, at high illumination (top curves) there’s a peak in sensitivity (circles) at 5 cycles/degree. At 
lower illumination this peak moves to lower spatial frequency (wider center), until at very low 
illumination there’s no peak at all.

Fly PrimateMammal



Is that all?

Oh, yes. Perhaps you are tired of the diffraction limit? Perhaps you want to image things 
smaller than the wavelength of light? Perhaps you want to invent a method that gets named 
“Method of the year” by Nature Methods?

Understanding the statistical character of light has led to subdiffraction microscopy methods 
like PALM, STORM, FIONA... Now we can see. 

In fact, every few months somebody comes up with a new mode of microscopy, which then 
reveals something important. One might have expected this to be rather dull engineering, but 
on the contrary many of these are based on truly deep physics ideas. 

Is anything new going on?”



[Subtext 4]
Besides superresolution, there is 2-photon microscopy... You cannot play that game if you 
don't have the right physical model of light. 

(By the way, some students are already using such instruments in their research. They get 
excited when we help them to understand those black boxes.)

And once you’ve understood photons, you can 
move on to fluorescence... then Brainbows... 
then to FRET... then to the photosynthetic 
antenna complex...



Last word

There is a cohort of students who are very interested in Physics, but who don’t pursue it. 
They (or their parents) think of “physicist” as something akin to “professional poet.” What 
would you do with that??? They feel they must study something like Biochemistry or 
Medicine if they want to be employed some day.

✴If we can meet these students halfway, show them a bit of what’s happening in Biological 
Physics, everyone can win. For example, we can use biophysical ideas to introduce 
statistical physics, or even quantum physics. Keep the biophysics in Physics.

✴But we shouldn’t be ashamed of, or downplay, fundamental physical ideas. Those ideas 
really matter in the latest biomedical research. Keep the physics in Biophysics.

✴What’s more, physical models are often weirdly, unreasonably effective in stripping away 
the inessential from a biological system -- and in displaying connections between things 
that seemed not obviously connected to our untrained imagination.

It turned out we could not understand vision at all without some top-drawer ideas from 
fundamental physics (like quantum theory). Other cool ideas entered too (stationary-phase, 
antiferromagnetism...).

Now let’s step back from those specifics.
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