Physics 622, Introduction to Elementary Particle Physics, will be offered in Fall 2002. This course is recommended for both theory and experimental students in particle physics. The course will involve a thorough exploration of the structure of the standard model, the associated phenomenology, the field-theoretic calculational techniques, and some discussion of beyond the standard model possibilities.

Classes will be held on Mondays and Fridays from 11:00-12:30, starting Friday Sept. 6 through Monday, Dec. 9. They will be held in Towne 319, which is a specialized classroom with video-conferencing facilities. Students at Fermilab will be able to participate remotely from the CDF video-conferencing facility, reserved MF from 10:00-11:30. There may also be a Princeton link. Walt Kononenko (215-898-7572, wk@upenn5.hep.upenn.edu) will coordinate the videoconferencing.

The major topics will be

- Review of perturbative field theory
- Lie groups and algebras
- Nonabelian gauge theories
- Quantum Chromodynamics
- The standard electroweak theory
- Beyond the standard model (e.g. supersymmetry, grand unification)

Each section will include relevant formalism, phenomenology, and experimental results. A more detailed syllabus is given below.

The course will loosely follow chapters 5-10 of the book *Electroweak Interactions* by Peter Renton.

There are no formal prerequisites. However, a working knowledge of Feynman diagrams for fermions, photons, and scalars will be assumed, equivalent to chapters 3 and 4 of Renton. Elementary background in particle physics and other topics equivalent to chapter 1 and the first four sections of chapter 2 will also be assumed.
Syllabus

The tentative syllabus is given. It may be necessary to eliminate some topics.

• Review of perturbative field theory
 - Lagrangians, propagators, and Feynman rules for real and complex scalars, fermions, and massless and massive vector fields
 - Cross section and decay width formulae
 - Tree level examples from ϕ^3, ϕ^4, πN (without isospin), scalar and fermion electrodynamics, eP with form factors, hyperon decays, weak νe processes
 - Loop effects
 - QED overview

• Lie groups and algebras
 - Basic concepts
 - $SU(2)$ and $SU(3)$
 - Global symmetries in field theory
 - Explicit and spontaneous breaking; the Goldstone theorem

• Nonabelian gauge theories
 - Abelian gauge symmetries
 - Structure of non-abelian gauge symmetries
 - Feynman rules without spontaneous breaking

• Quantum Chromodynamics
 - Lagrangian and rules
 - Asymptotic freedom and infrared slavery
 - Short distance physics
 * $e^+e^- \rightarrow$ hadrons
 * Deep inelastic scattering
 * High p_T hadron scattering
 - Long distance physics
 * Confinement
 * The flavor symmetries $SU(2)$, $SU(3)$
 * Chiral symmetry
• The standard electroweak theory
 - The Fermi and IVB theories
 - Weak processes: μ decay, β decay, $\pi_{l2,3}$ decays, strangeness, Cabibbo theory
 - Discrete symmetries P, C, CP, T
 - The $SU(2) \times U(1)$ model
 * Basic structure
 * The Higgs mechanism
 * The Lagrangian after SSB
 - Consequences and tests
 * Gauge interactions of fermions, weak neutral current
 * Gauge bosons and their self-interactions
 * The Higgs sector
 * The CKM matrix
 * K and B physics, penguins, heavy quark expansion, CP violation
 - Neutrino mass and implications
 * Neutrino mass mechanisms
 * Neutrino oscillations
 * Neutrinoless double beta decay
 * The neutrino spectrum

• Beyond the standard model
 - Motivations
 - Unification or compositeness
 - Extended gauge groups and exotics
 - Grand Unification
 - Supersymmetry (qualitative)
 - Strings (qualitative)
Bibliography

- Supplementary materials on web

- Recommended books (on reserve)

- Other recommended books