Breaking the Electroweak Barrier: New Signatures at Hadron Colliders

Gustaaf Brooijmans

Outline

- The Standard Model: successes and problems
- The tools: colliders and detectors
- Gravity and hierarchy
- High p^T top quark reconstruction
 - Hadronic decays
 - Semileptonic decays
 - Di-top mass
- Conclusions

HEP in 2009

CKM elements:

In Words

- Matter is built of spin 1/2 particles that interact by exchanging 3 different kinds of spin 1 particles corresponding to 3 different (gauge) interactions
- There appear to be 3 generations of matter particles
- The 4 different matter particles in each generation carry different combinations of quantized charges characterizing their couplings to the interaction bosons
- The matter fermions and the weak bosons have "mass"
- Gravitation is presumably mediated by spin 2 gravitons
- Gravitation is extremely weak for typical particle masses
- There appear to be 3 macroscopic dimensions

About the Standard Model

- It's a theory of interactions:
 - Properties of fermions are inputs
 - Properties of interaction bosons in terms of couplings, propagations, masses are linked:
 - Measuring a few allows us to predict the rest, then measure and compare with expectation
- It's remarkably successful:
 - Predictions verified to be correct at sometimes incredible levels of precision
 - After ~30 years, still no serious cracks

Precision Results

	Measurement	Fit	$ O^{\text{meas}} - O^{\text{fit}} / \sigma^{\text{meas}}$ 0 1 2 3
$\Delta \alpha_{had}^{(5)}(m_z)$	0.02758 ± 0.00035	0.02768	
m _z [GeV]	91.1875 ± 0.0021	91.1875	
Γ_{z} [GeV]	2.4952 ± 0.0023	2.4957	-
σ_{had}^{0} [nb]	41.540 ± 0.037	41.477	
R	20.767 ± 0.025	20.744	
A ^{0,I} _{fb}	0.01714 ± 0.00095	0.01645	
A _I (P _τ)	0.1465 ± 0.0032	0.1481	-
R _b	0.21629 ± 0.00066	0.21586	
R _c	0.1721 ± 0.0030	0.1722	
A ^{0,b} _{fb}	0.0992 ± 0.0016	0.1038	
A ^{0,c} _{fb}	0.0707 ± 0.0035	0.0742	
A _b	$\textbf{0.923} \pm \textbf{0.020}$	0.935	
A _c	$\textbf{0.670} \pm \textbf{0.027}$	0.668	
A _I (SLD)	0.1513 ± 0.0021	0.1481	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314	
m _w [GeV]	80.398 ± 0.025	80.374	
Г _w [GeV]	$\textbf{2.140} \pm \textbf{0.060}$	2.091	
m _t [GeV]	170.9 ± 1.8	171.3	
			0 1 2 3

LEP, SLD & Tevatron

Gustaaf Brooijmans

Many Fundamental Questions

- What exactly *is* spin? Or color? Or electric charge? Why are they quantified?
- Are there only 3 generations? If so, why?
- Why are there e.g. no neutral, colored fermions?
- What is mass? Why are particles so light?
- Is there a link between particle and nucleon masses?
- How does all of this reconcile with gravitation? How many space-time dimensions are there really?

Vector Boson Scattering

- There is in fact one known problem with the standard model:
 - If we collide W's and Z's (not so easy...), the scattering cross-section grows with the center of mass energy, and gets out of control at about 1.7 TeV
- This is similar to "low" energy neutrino scattering:
 - If q² << (M_W)², looks like a "contact interaction", and cross-section grows with center of mass energy
 - But when $q^2 \approx (M_W)^2$, W-boson propagation becomes visible, and "cures" this problem

 ν_e

 $W^+(q)$

The Higgs Boson

- One way to solve this, is to introduce a massive, spinless particle (of mass < ~1 TeV)
 - Couplings to W and Z are fixed, quantum numbers are known...
 - to be those of the vacuum
 - Its mass is unknown, and its couplings to the fermions are unknown.... well, maybe
 - Fermions can acquire mass by coupling to this Higgs boson, so their couplings could be proportional to their masses. This is called the "standard model Higgs"

Precision Measurements

- In fact, we can say something about the standard model Higgs mass
 - If the fermions get their masses from the Higgs, we know all couplings and can infer the Higgs mass from precision measurements
 - Result is very sensitive to measured top quark, W boson masses
 - Really wants a "light" Higgs boson

Higgs Mass

- Higgs, in fact, also acquires mass from coupling to W's, fermions, and itself!
 - These "mass terms" are quadratically divergent
 - Drive mass to limit of validity of the theory

• So we expect the Higgs mass to be close to the scale where new physics comes in....

Higgs Drawbacks

- In principle, with the addition of a Higgs boson around 150 GeV particle physics could be "complete", but fine-tuned (the hierarchy problem)
 - Like Mendeleev's table for chemistry
- But by itself, the Higgs is very unsatisfactory:
 - Why are the couplings to the fermions what they are?
 - Dumb luck (aka landscape)?
 - What is the link to gravity?
 - Why does the Higgs break the symmetry?
 - Why are there 3 generations, dimensions, ...?

- Hunting for answers:
 - Can study well-understood processes with high precision
 - Or probe at very high energy
 - High energy implies probing of short distances, and (maybe) production of other, massive particles

Hadron Colliders

- Incoming longitudinal momentum not known:
 - "Hard interaction" is between one of the quarks and/or gluons from each proton, other quarks/gluons are "spectators"
- Longitudinal boost "flattens" event to a pancake
- We usually work in the plane transverse to the beam

 Make best possible measurement of all particles coming out of collisions
 <u>A detector cross-section, showing particle paths</u>

Gustaaf Brooijmans

New Signatures at Hadron Colliders

Detecting Particles

Masses are in MeV

✓: Detect with high efficiency
 ✓: Detect by missing transverse energy
 ✓: Detect through decays: t→Wb,W/Z → leptons, ...

Gravity and Hierarchy

(or: Out of This World?)

Extra Dimensions

- A promising approach to quantum gravity consists in adding extra space dimensions: string theory
 - Additional space dimensions are hidden, presumably because they are compactified

- Radius of compactification usually assumed to close to the observed scale of gravity, i.e. ~10¹⁸ GeV
 - In '90 Antoniadis realized they may be much larger...

Phys.Lett.B246:377-384,1990

- "Large extra dimension" scenario
 (developed by Arkani-Hamed,
 Dimopoulos and Dvali):
 - Standard model fields are confined to a 3+1 dimensional subspace ("brane")
 - Gravity propagates in all dimensions
 - Gravity appears weak on the brane because only felt when graviton "goes through"

• True scale much lower! No hierarchy problem!

Warped Extra Dimensions

- "Simple" Randall-Sundrum model:
 - SM confined to a brane, and gravity propagating in an extra dimension
 - As opposed to the original ADD scenario, the metric in the extra dimension is "warped" by a factor $exp(-2kr_c\phi)$
 - (Requires 2 branes)

Graviton Excitations

- In RS, get a few massive graviton excitations
 - Widths depend on warp factor k
 - Mass separation = zeros of Bessel function

Dielectrons/Diphotons

• Single search: no attempt to distinguish electrons from photons...

Hierarchies

• Physics on a curved gravitational background:

• Scales depend on position along extra dimensions

- UV brane scale is $M_{PI_P} = -2 \times 10^{18} \text{GeV}$
- IR brane scale is $M_{Pl}^{M_{Pl}} e^{-kL} \sim 1 \operatorname{TeV}^{1} \operatorname{TeV}^{(\text{if } kL} \approx 30^{30})$
- If were to localize $\overrightarrow{\text{Higgs}} \approx \widetilde{\text{on IR}}$ brane, naturally get EW scale ~ 1 TeV (from geometry!)

Flavor

- Interesting RS variation has fermions located along the extra dimension
 - Fermion masses generated by geometry
 - Heavier fermions are closer to IR brane, and gauge boson excitations as well
 - Gauge boson excitations expected to have masses in the 2-4 TeV range (bounds from precision measurements)
 - Couple mainly to top/W/Z (!)
 - Flavor changing determined by overlap of fermion "wave function" in the ED
 - Nice suppression of FCNC etc.

Gauge Boson Excitations

- Excitations of the gauge bosons are very promising channels for discovery
 - Couplings to light fermions are small
 - Small production crosssections
 - Large coupling to top, W_L, Z_L
 - Look for tt, WW, ZZ resonances (that can be wide)

New Experimental Signature

- Possibility to produce (very) heavy resonances decaying to top quarks, W and Z bosons
 - Top/W/Z with momentum >> mass
 - Decay products collimated
 - For leptonic W/Z decays, not a big issue since we measure isolated tracks very well
 - But hadronic decays lead to jets, which are intrinsically wide

Top Quark Decays

- Simulated decays:
 - $dR = \sqrt{(\Delta \eta^2 + \Delta \phi^2)}$
 - Typical jet radius ~0.5
- For top $p^T > \sim 300 \text{ GeV}$
 - dR (q \overline{q} ' from W) < 2 R_{jet}
 - dR (bW) < 2 R_{jet}
 - (No isolated lepton!)
- But calorimeters have much finer granularity

ATLAS Calorimeters

- Jets deposit almost 50% of their energy in EM calorimeters
 - ATLAS has most finely segmented EM calorimeter in any hadron collider experiment!
 - (CMS has 0.0175 x 0.0175 but only one layer)
- Hadron ("tile") calorimeter has 0.1 x 0.1 segmentation

ATLAS Study: Goals & Datasets

- Can we distinguish hadronic & semileptonic decays of high p^T top quarks from light/b jets?
 - Develop tools and evaluate efficiency/rejection
- Use fully simulated samples of:
 - $Z' \rightarrow t\bar{t}$ events with m(Z') = 2 and 3 TeV
 - Yields top quarks with 500 GeV $< p^{T} < 1500$ GeV
 - (Not many in "transition region": 200-600 GeV)
 - QCD multijet events with $280 \text{ GeV} < p^T < 2240 \text{ GeV}$
 - Generated in 3 bins of p^T

Fully Hadronic Decays

- Decay hadrons reconstructed as a single jet
 - But even if it looks like a single jet, it originates from a massive particle decaying to three hard partons, not one
- If I measured each of the partons in the jet perfectly, I would be able to:
 - Reconstruct the "originator's" invariant mass
 - Reconstruct the direct daughter partons
- But
 - Quarks hadronize \rightarrow cross-talk
 - My detector can't resolve all individual hadrons

Drawing by F. Krauss

- Jet mass: invariant mass of all jet constituents
 - In principle, \geq top quark mass

- Jet mass is not sensitive to structure
 - Can't tell whether a jet is isotropic or not
- Expect "blobs" with higher concentration of energy for jets from top/W/Z decays

- Multiple ways of exploiting this....
 - This study: k_{\perp} splitting scales

J. M. Butterworth, B. E. Cox, and J. R. Forshaw, Phys. Rev. D65 (2002) 096014

k_ Splitting States

- k⊥ jet algorithm is much better suited to understand jet substructure than cone:
 - Cone maximizes energy in an $\eta x \phi$ cone
 - k_{\perp} is a "nearest neighbor" clusterer

$$y_{2} = \min\left(E_{a}^{2}, E_{b}^{2}\right) \cdot \theta_{ab}^{2} / p_{T(jet)}^{2}$$
$$Y \text{ scale } = \sqrt{p_{T(jet)}^{2} \cdot y_{2}}$$

- Can use the k_{\perp} algorithm on jet constituents and get the (y-)scale at which one switches from $1 \rightarrow 2$ ($\rightarrow 3$ etc.) jets
 - Scale is related to mass of the decaying particle

 k_{\perp}

• Applied to high p^T WW scattering:

Variables

• Observations:

- Variables show slow dependence on top (jet) p^T
- Only weakly correlated

For light jets, all the variables drop off exponentially
 Combine into a likelihood

Hadronic Decays: Result

Semileptonic Decays: Muons

- Require a good muon, $p^T > 20$ GeV, $|\eta| < 2.5$, and a $p^T > 200$ GeV jet within $\Delta R=0.6$ (call it "*b*-jet")
- Reduce "fakes" from b/c-decays (or other decays in flight):
 - Isolation not useful (signal muon close to *b* from top decay)
 - Two new variables (better than increase in muon p^T cut):
 - $x_{\mu} \equiv 1 m_b^2 / m_{visible}^2$ fraction of visible top mass carried by muon*
 - $y_{\mu} \equiv p_{\mu \perp b} \times \Delta R(\mu, b)$ relative p^T of muon wrt jet
 - (We do **not** use *b*-tagging: we assume the jet close to the lepton comes from a *b* quark so call it that)

^{*}J. Thaler and L.-T. Wang, *JHEP* 07 (2008) 092, arXiv:0806.0023 [hep-ph].

- "Muonic top" efficiency after preselection (i.e. a good muon was found close to a high-p^T jet)
 - We find *a* muon in 88% of events where the W from top decay yielded a muon of 20 GeV p^T or more

Semileptonic Decays: Electrons

- Trickier, since electron is embedded in the jet, but candidates can be reconstructed with good efficiency thanks to fine calorimeter granularity
 - 57% of events with top \rightarrow e have a well-reconstructed electron
- So, require a good electron ($p^T > 20 \text{ GeV}$, $|\eta| < 2.5$, excluding cracks), + $p^T > 300 \text{ GeV}$ jet within $\Delta R=0.6$ (also require jet's first k_{\perp} splitting scale > 10 GeV, i.e. electron component of jet)
 - Subtract the electron 4-momentum from the jet to obtain the "*b*-jet" and define x_e and y_e as in muon case
 - Also define $y'_e \equiv p_{e\perp j} \times \Delta R(e, j)$ (i.e. y_e but without subtracting electron 4-momentum from jet), require that $y'_e > 1$

- For electrons, combinatoric background not an issue
 - Harder to see electrons from *b* decays
- Efficiencies after preselection:

• Of course, preselection has very large impact on multijet background!

Z'Mass Reconstruction

- W mass constraint to determine neutrino p_z (take smallest value, or real part of imaginary solution)
 - Require $\Delta R(v, \ell) < 1.0$
- Apply "local" out-of-cone energy correction:
 - Use cone 0.7 "topocluster" jets
 - Add topoclusters in 0.7 < R < 1.2 to jet
 - Reasonable? Look for energy deposits (in a cone of radius 0.4) far away from top candidates
 - 30% of the time, no topoclusters, rest of the time, energy substantially lower than the local out-of-cone correction.

• Correction helps peak, but does not improve tails!

• As expected if tails come from bad $p_z(v)$

Z'Mass Resolution

• SSM Z' at this mass narrower than detector/method resolution, but not negligibly so:

Also still have a substantial offset! \Rightarrow work to do!

Overall Selection Efficiency

- For multijet background, rate determined by factorizing leptonic and hadronic rejection
 - (Limited MC statistics)

 Number of events in mass windows [1800,2100] ([2700,3100]) GeV for 2 (3) TeV Z'

Signal Efficiencies

	$y_L > 0.6$	$y_L > 0.9$	$y_L > 1.2$
$l+\text{jets} Z' \to t\bar{t} \ (2 \text{ TeV})$	0.094 ± 0.002	0.063 ± 0.002	0.016 ± 0.001
$l + \text{jets } Z' \to t\bar{t} \ (3 \text{ TeV})$	0.136 ± 0.002	0.101 ± 0.002	0.034 ± 0.001

Backgrounds, I fb⁻¹

m = 2 TeV	$y_L > 0.6$	$y_L > 0.9$	$y_L > 1.2$	
QCD multijet $(J5 + J6 + J7)$	1.9 ± 0.5	0.7 ± 0.2	0.16 ± 0.04	
${ m SM}~tar{t}$	$17.1 \pm 0.8 \pm 2.6$	$11.1 \pm 0.7 \pm 1.7$	$3.1 \pm 0.4 \pm 0.5$	
Total	19 ± 2.8	11.8 ± 1.9	3.3 ± 0.6	
m = 3 TeV	$y_L > 0.6$	$y_L > 0.9$	$y_L > 1.2$	
QCD multijet $(J5 + J6 + J7)$	0.5 ± 0.2	0.2 ± 0.1	0.07 ± 0.03	
SM $t\bar{t}$	$2.3 \pm 0.1 \pm 0.3$	$1.4 \pm 0.1 \pm 0.2$	$0.52 \pm 0.07 \pm 0.08$	
Total	2.8 ± 0.4	1.6 ± 0.2	0.6 ± 0.1	

(W+jets shown to be much smaller than top)

Gustaaf Brooijmans

Limits

- Set limits for 1 fb⁻¹ of data
 - 15% uncertainty on signal acceptance
 - 10% on luminosity
 - 15% on $t\bar{t}$ background
- 95% CL upper limits on signal cross-section using Bayesian technique

95% C.L. limits on $\sigma \ge BR(t\bar{t})$ (fb)	$y_L > 0.6$	$y_L > 0.9$	$y_L > 1.2$
m = 2 TeV	550	650	1400
m = 3 TeV	160	180	450

Observations

- For di-top resonances in *l*+jets, after applying tools described, irreducible background is dominant (as for Z'→ *ll*!)
 - Mass resolution becomes key to improvement
- Variety of other techniques on the market
 - E.g. use of Cambridge-Aachen algorithm to search for hard "cores"
 - Tested on RPV SUSY
 - Jet "pruning" arXiv:0903.5081

Conclusions

- Measurement of final states with high p^T top quarks may be crucial to search for new physics
- Tested technique based on k_{\perp} algorithm with promising results for di-top resonances
- Of course, many other scenarios (W'→tb, T_H→tA_H, ...), and for those more sophisticated techniques may be necessary
 - And ... "transition region"!
- Lots of very interesting work to do!