Physical Models of Living Systems

Philip Nelson
University of Pennsylvania

with the assistance of Sarina Bromberg, Ann Hermundstad, and Jason Prentice
Brief Contents

Prolog: A breakthrough on HIV 1

PART I First Steps

Chapter 1 Virus Dynamics 9
Chapter 2 Physics and Biology 27

PART II Randomness in Biology

Chapter 3 Discrete Randomness 35
Chapter 4 Some Useful Discrete Distributions 69
Chapter 5 Continuous Distributions 97
Chapter 6 Model Selection and Parameter Estimation 123
Chapter 7 Poisson Processes 153
PART III Control in Cells

Chapter 8 Randomness in Cellular Processes 179
Chapter 9 Negative Feedback Control 203
Chapter 10 Genetic Switches in Cells 241
Chapter 11 Cellular Oscillators 277

Epilog 299

Appendix A Global List of Symbols 303
Appendix B Units and Dimensional Analysis 309
Appendix C Numerical Values 315

Acknowledgments 317
Credits 321
Bibliography 323
Index 333
Detailed Contents

Web Resources xvii
To the Student xix
To the Instructor xxiii

Prolog: A breakthrough on HIV 1

PART I First Steps

Chapter 1 Virus Dynamics 9
1.1 First Signpost 9
1.2 Modeling the Course of HIV Infection 10
 1.2.1 Biological background 10
 1.2.2 An appropriate graphical representation can bring out key features of data 12
 1.2.3 Physical modeling begins by identifying the key actors and their main interactions 12
 1.2.4 Mathematical analysis yields a family of predicted behaviors 14
 1.2.5 Most models must be fitted to data 15
 1.2.6 Overconstraint versus overfitting 17
1.3 Just a Few Words About Modeling 17
Key Formulas 19
Track 2 21
 1.2.4 Exit from the latency period 21
 1.2.6 a Informal criterion for a falsifiable prediction 21
Detailed Contents

1.2.6'b More realistic viral dynamics models 21
1.2.6'c Eradication of HIV 22
Problems 23

Chapter 2 Physics and Biology 27
2.1 Signpost 27
2.2 The Intersection 28
2.3 Dimensional Analysis 29
Key Formulas 30
Problems 31

PART II Randomness in Biology

Chapter 3 Discrete Randomness 35
3.1 Signpost 35
3.2 Avatars of Randomness 36
 3.2.1 Five iconic examples illustrate the concept of randomness 36
 3.2.2 Computer simulation of a random system 40
 3.2.3 Biological and biochemical examples 40
 3.2.4 False patterns: Clusters in epidemiology 41
3.3 Probability Distribution of a Discrete Random System 41
 3.3.1 A probability distribution describes to what extent a random system is, and is not, predictable 41
 3.3.2 A random variable has a sample space with numerical meaning 43
 3.3.3 The addition rule 44
 3.3.4 The negation rule 44
3.4 Conditional Probability 45
 3.4.1 Independent events and the product rule 45
 3.4.1.1 Crib death and the prosecutor’s fallacy 47
 3.4.1.2 The Geometric distribution describes the waiting times for success in a series of independent trials 47
 3.4.2 Joint distributions 48
 3.4.3 The proper interpretation of medical tests requires an understanding of conditional probability 50
 3.4.4 The Bayes formula streamlines calculations involving conditional probability 52
3.5 Expectations and Moments 53
 3.5.1 The expectation expresses the average of a random variable over many trials 53
 3.5.2 The variance of a random variable is one measure of its fluctuation 54
 3.5.3 The standard error of the mean improves with increasing sample size 57
Key Formulas 58
Track 2 60
Detailed Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1’a</td>
<td>Extended negation rule</td>
<td>60</td>
</tr>
<tr>
<td>3.4.1’b</td>
<td>Extended product rule</td>
<td>60</td>
</tr>
<tr>
<td>3.4.1’c</td>
<td>Extended independence property</td>
<td>60</td>
</tr>
<tr>
<td>3.4.4’</td>
<td>Generalized Bayes formula</td>
<td>60</td>
</tr>
<tr>
<td>3.5.2’a</td>
<td>Skewness and kurtosis</td>
<td>60</td>
</tr>
<tr>
<td>3.5.2’b</td>
<td>Correlation and covariance</td>
<td>61</td>
</tr>
<tr>
<td>3.5.2’c</td>
<td>Limitations of the correlation coefficient</td>
<td>62</td>
</tr>
</tbody>
</table>

Problems 63

Chapter 4 Some Useful Discrete Distributions

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Signpost</td>
<td>69</td>
</tr>
<tr>
<td>4.2</td>
<td>Binomial Distribution</td>
<td>70</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Drawing a sample from solution can be modeled in terms of Bernoulli trials</td>
<td>70</td>
</tr>
<tr>
<td>4.2.2</td>
<td>The sum of several Bernoulli trials follows a Binomial distribution</td>
<td>71</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Expectation and variance</td>
<td>72</td>
</tr>
<tr>
<td>4.2.4</td>
<td>How to count the number of fluorescent molecules in a cell</td>
<td>72</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Computer simulation</td>
<td>73</td>
</tr>
<tr>
<td>4.3</td>
<td>Poisson Distribution</td>
<td>74</td>
</tr>
<tr>
<td>4.3.1</td>
<td>The Binomial distribution becomes simpler in the limit of sampling from an infinite reservoir</td>
<td>74</td>
</tr>
<tr>
<td>4.3.2</td>
<td>The sum of many Bernoulli trials, each with low probability, follows a Poisson distribution</td>
<td>75</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Computer simulation</td>
<td>78</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Determination of single ion-channel conductance</td>
<td>78</td>
</tr>
<tr>
<td>4.3.5</td>
<td>The Poisson distribution behaves simply under convolution</td>
<td>79</td>
</tr>
<tr>
<td>4.4</td>
<td>The Jackpot Distribution and Bacterial Genetics</td>
<td>81</td>
</tr>
<tr>
<td>4.4.1</td>
<td>It matters</td>
<td>81</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Unreproducible experimental data may nevertheless contain an important message</td>
<td>81</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Two models for the emergence of resistance</td>
<td>83</td>
</tr>
<tr>
<td>4.4.4</td>
<td>The Luria-Delbrück hypothesis makes testable predictions for the distribution of survivor counts</td>
<td>84</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Perspective</td>
<td>86</td>
</tr>
</tbody>
</table>

Key Formulas 87

Track 2 89

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.2’</td>
<td>On resistance</td>
<td>89</td>
</tr>
<tr>
<td>4.4.3’</td>
<td>More about the Luria-Delbrück experiment</td>
<td>89</td>
</tr>
<tr>
<td>4.4.5’a</td>
<td>Analytical approaches to the Luria-Delbrück calculation</td>
<td>89</td>
</tr>
<tr>
<td>4.4.5’b</td>
<td>Other genetic mechanisms</td>
<td>89</td>
</tr>
<tr>
<td>4.4.5’c</td>
<td>Non-genetic mechanisms</td>
<td>90</td>
</tr>
<tr>
<td>4.4.5’d</td>
<td>Direct confirmation of the Luria-Delbrück hypothesis</td>
<td>90</td>
</tr>
</tbody>
</table>

Problems 91
Chapter 5 Continuous Distributions 97
 5.1 Signpost 97
 5.2 Probability Density Function 98
 5.2.1 The definition of a probability distribution must be modified
 for the case of a continuous random variable 98
 5.2.2 Three key examples: Uniform, Gaussian, and Cauchy
 distributions 99
 5.2.3 Joint distributions of continuous random variables 101
 5.2.4 Expectation and variance of the example distributions 102
 5.2.5 Transformation of a probability density function 104
 5.2.6 Computer simulation 106
 5.3 More About the Gaussian Distribution 106
 5.3.1 The Gaussian distribution arises as a limit of Binomial 106
 5.3.2 The central limit theorem explains the ubiquity of Gaussian
 distributions 108
 5.3.3 When to use/not use a Gaussian 109
 5.4 More on Long-tail Distributions 110

Key Formulas 112
Track 2 114
 5.2.1’ Notation used in mathematical literature 114
 5.2.4’ Interquartile range 114
 5.4’a Terminology 115
 5.4’b The movements of stock prices 115

Problems 118

Chapter 6 Model Selection and Parameter Estimation 123
 6.1 Signpost 123
 6.2 Maximum Likelihood 124
 6.2.1 How good is your model? 124
 6.2.2 Decisions in an uncertain world 125
 6.2.3 The Bayes formula gives a consistent approach to updating our
 degree of belief in the light of new data 126
 6.2.4 A pragmatic approach to likelihood 127
 6.3 Parameter Estimation 128
 6.3.1 Intuition 129
 6.3.2 The maximally likely value for a model parameter can be
 computed on the basis of a finite dataset 129
 6.3.3 The credible interval expresses a range of parameter values
 consistent with the available data 130
 6.3.4 Summary 132
 6.4 Biological Applications 133
 6.4.1 Likelihood analysis of the Luria-Delbrück experiment 133
 6.4.2 Superresolution microscopy 133
 6.4.2.1 On seeing 133
 6.4.2.2 Fluorescence imaging at one nanometer
 accuracy 133
Detailed Contents

6.4.2.3 Localization microscopy: PALM/FPALM/STORM 136

6.5 An Extension of Maximum Likelihood Lets Us Infer Functional Relationships from Data 137

Key Formulas 141

Track 2 142

- 6.2.1’ Cross-validation 142
- 6.2.4’a Binning data reduces its information content 142
- 6.2.4’b Odds 143
- 6.3.2’a The role of idealized distribution functions 143
- 6.3.2’b Improved estimator 144
- 6.3.3’a Credible interval for the expectation of Gaussian-distributed data 144
- 6.3.3’b Confidence intervals in classical statistics 145
- 6.3.3’c Asymmetric and multivariate credible intervals 146
- 6.4.2.2’ More about FIONA 146
- 6.4.2.3’ More about superresolution 147
- 6.5’ What to do when data points are correlated 147

Problems 149

Chapter 7 Poisson Processes 153

7.1 Signpost 153

7.2 The Kinetics of a Single-Molecule Machine 153

7.3 Random Processes 155

- 7.3.1 Geometric distribution revisited 156
- 7.3.2 A Poisson process can be defined as a continuous-time limit of repeated Bernoulli trials 157
 - 7.3.2.1 Continuous waiting times are Exponentially distributed 158
 - 7.3.2.2 Distribution of counts 160
- 7.3.3 Useful Properties of Poisson processes 161
 - 7.3.3.1 Thinning property 161
 - 7.3.3.2 Merging property 161
 - 7.3.3.3 Significance of thinning and merging properties 163

7.4 More Examples 164

- 7.4.1 Enzyme turnover at low concentration 164
- 7.4.2 Neurotransmitter release 164

7.5 Convolution and Multistage Processes 165

- 7.5.1 Myosin-V is a processive molecular motor whose stepping times display a dual character 165
- 7.5.2 The randomness parameter can be used to reveal substeps in a kinetic scheme 168

7.6 Computer Simulation 168

- 7.6.1 Simple Poisson process 168
- 7.6.2 Poisson processes with multiple event types 168
PART III Control in Cells

Chapter 8 Randomness in Cellular Processes 179

8.1 Signpost 179
8.2 Random Walks and Beyond 180
 8.2.1 Situations studied so far 180
 8.2.1.1 Periodic stepping in random directions 180
 8.2.1.2 Irregularly timed, unidirectional steps 180
 8.2.2 A more realistic model of Brownian motion includes both random step times and random step directions 180
8.3 Molecular Population Dynamics as a Markov Process 181
 8.3.1 The birth-death process describes population fluctuations of a chemical species in a cell 182
 8.3.2 In the continuous, deterministic approximation, a birth-death process approaches a steady population level 184
 8.3.3 The Gillespie algorithm 185
 8.3.4 The birth-death process undergoes fluctuations in its steady state 186
8.4 Gene Expression 187
 8.4.1 Exact mRNA populations can be monitored in living cells 187
 8.4.2 mRNA is produced in bursts of transcription 189
 8.4.3 Perspective 193
 8.4.4 Vista: Randomness in protein production 193

Key Formulas 194
Track 2 195
 8.3.4' The master equation 195
 8.4' More about gene expression 197
 8.4.2'a The role of cell division 197
 8.4.2'b Stochastic simulation of a transcriptional bursting experiment 198
 8.4.2'c Analytical results on the bursting process 199

Problems 200

Chapter 9 Negative Feedback Control 203

9.1 Signpost 203
9.2 Mechanical Feedback and Phase Portraits 204
 9.2.1 The problem of cellular homeostasis 204
9.2.2 Negative feedback can bring a system to a stable setpoint and hold it there 204

9.3 Wetware Available in Cells 206
9.3.1 Many cellular state variables can be regarded as inventories 206
9.3.2 The birth-death process includes a simple form of feedback 207
9.3.3 Cells can control enzyme activities via allosteric modulation 207
9.3.4 Transcription factors can control a gene’s activity 208
9.3.5 Artificial control modules can be installed in more complex organisms 211

9.4 Dynamics of Molecular Inventories 212
9.4.1 Transcription factors stick to DNA by the collective effect of many weak interactions 212
9.4.2 The probability of binding is controlled by two rate constants 213
9.4.3 The repressor binding curve can be summarized by its equilibrium constant and cooperativity parameter 214
9.4.4 The gene regulation function quantifies the response of a gene to a transcription factor 217
9.4.5 Dilution and clearance oppose gene transcription 218

9.5 Synthetic Biology 219
9.5.1 Network diagrams 219
9.5.2 Negative feedback can stabilize a molecule inventory, mitigating cellular randomness 220
9.5.3 A quantitative comparison of regulated- and unregulated-gene homeostasis 221

9.6 A Natural Example: The trp Operon 224

9.7 Some Systems Overshoot on Their Way to Their Stable Fixed Point 224
9.7.1 Two-dimensional phase portraits 226
9.7.2 The chemostat 227
9.7.3 Perspective 231

Key Formulas 232

Track 2 234
9.3.1’a Contrast to electronic circuits 234
9.3.1’b Permeability 234
9.3.3’ Other control mechanisms 234
9.3.4’a More about transcription in bacteria 235
9.3.4’b More about activators 235
9.3.5’ Gene regulation in eukaryotes 235
9.4.4’a More general gene regulation functions 236
9.4.4’b Cell cycle effects 236
9.5.1’a Simplifying approximations 236
9.5.1’b The Systems Biology Graphical Notation 236
9.5.3’ Exact solution 236
9.7.1’ Taxonomy of fixed points 237

Problems 238
Chapter 10 Genetic Switches in Cells

10.1 Signpost 241
10.2 Bacteria Have Behavior 242
 10.2.1 Cells can sense their internal state and generate switch-like responses 242
 10.2.2 Cells can sense their external environment and integrate it with internal state information 243
 10.2.3 Novick and Weiner characterized induction at the single-cell level 243
 10.2.3.1 The all-or-none hypothesis 243
 10.2.3.2 Quantitative prediction for Novick-Weiner experiment 246
 10.2.3.3 Direct evidence for the all-or-none hypothesis 248
 10.2.3.4 Summary 249
10.3 Positive Feedback Can Lead to Bistability 250
 10.3.1 Mechanical toggle 250
 10.3.2 Electrical toggles 252
 10.3.2.1 Positive feedback leads to neural excitability 252
 10.3.2.2 The latch circuit 252
 10.3.3 A 2D phase portrait can be partitioned by a separatrix 252
10.4 A Synthetic Toggle Switch Network in E. coli 253
 10.4.1 Two mutually repressing genes can create a toggle 253
 10.4.2 The toggle can be reset by pushing it through a bifurcation 256
 10.4.3 Perspective 257
10.5 Natural Examples of Switches 259
 10.5.1 The lac switch 259
 10.5.2 The lambda switch 263

Key Formulas 264
Track 2 266
 10.2.3.1 More details about the Novick-Weiner experiments 266
 10.2.3.3a Epigenetic effects 266
 10.2.3.3b Mosaicism 266
 10.4.1a A compound operator can implement more complex logic 266
 10.4.1b A single-gene toggle 268
 10.4.2 Adiabatic approximation 272
 10.5.1 DNA looping 273
 10.5.2 Randomness in cellular networks 273

Problems 275

Chapter 11 Cellular Oscillators

11.1 Signpost 277
11.2 Some Single Cells Have Diurnal or Mitotic Clocks 277
11.3 Synthetic Oscillators in Cells 278
 11.3.1 Negative feedback with delay can give oscillatory behavior 278
Web Resources

The book's Web site (http://www.macmillanhighered.com/physicalmodels1e) contains links to the following resources:

- The Student's Guide contains an introduction to some computer math systems, and some guided computer laboratory exercises.
- Datasets contains datasets that are used in the problems. In the text, these are cited like this: Dataset 1, with numbers keyed to the list on the Web site.
- Media gives links to external media (graphics, audio, and video). In the text, these are cited like this: Media 2, with numbers keyed to the list on the Web site.
- Finally, Errata is self-explanatory.