Physical Models of Living Systems
Probability, Simulation, Dynamics
Second edition

Philip Nelson
University of Pennsylvania
with the assistance of Sarina Bromberg,
Ann Hermundstad, Keith Kroma-Wiley,
and Jason Prentice
Brief contents

PART I First Steps
Chapter 1 | Virus Dynamics 6
Chapter 2 | Physics and Biology 25

PART II Randomness in Biology
Chapter 3 | Discrete Randomness 33
Chapter 4 | Some Useful Discrete Distributions 71
Chapter 5 | Continuous Distributions 105
Chapter 6 | Random Walks on an Energy Landscape 137
Chapter 7 | Model Selection and Parameter Estimation 165
Chapter 8 | Excursion: Single Particle Reconstruction in Cryo-electron Microscopy 199
Chapter 9 | Poisson Processes and Their Simulation 230
Chapter 10 | Randomness in Cellular Processes 259

PART III Feedback Control
Chapter 11 | Negative Feedback Control 293
Chapter 12 | Positive Feedback, Epidemics, and Genetic Switches 328
Chapter 13 | Cellular Oscillators 376
Web resources

The book’s Web site (www.physics.upenn.edu/biophys/PMLS2e/) contains links to the following resources in the Student section:

- **Datasets** contains datasets that are used in the problems. In the text, these are cited like this: Dataset 1, with numbers keyed to the list on the Web site.
- **Media** gives links to external media (graphics, audio, and video). In the text, these are cited like this: Media 1, with numbers keyed to the list on the Web site.
- **Errata** will appear as needed.

Detailed contents

Problems 1
To the student xvi
To the instructor xxi
Prologue: A breakthrough on HIV 1

PART I First Steps

Chapter 1 Virus Dynamics 6
1.1 First Signpost: Fitting 6
1.2 Modeling the Course of HIV Infection 7
 1.2.1 Biological background 7
 1.2.2 A semilog graph can disclose an exponential relation in data 8
 1.2.3 Physical modeling begins by identifying the key actors and their main interactions 10
 1.2.4 Mathematical analysis yields a family of predicted behaviors 11
 1.2.5 Most models must be fitted to data 13
 1.2.6 Overconstraint versus overfitting 14
1.3 Just a Few Words About Modeling 15

Big Picture 16
Key Formulas 17
Track 2 19
 1.2.4’ Exit from the latency period via proliferation of mutants 19
 1.2.6’a Informal criterion for a falsifiable prediction 19
 1.2.6’b More realistic viral dynamics models account for partially-effective drugs 19
Latently-infected cells make eradication of HIV difficult

1.2.6c

Problems

Chapter 2 Physics and Biology 25
2.1 Signpost: Inference 25
2.2 The Intersection 26
2.3 Dimensional Analysis 27
Big Picture 27
Key Formulas 28
Problems 29

PART II Randomness in Biology

Chapter 3 Discrete Randomness 33
3.1 Signpost: Distributions 33
3.2 Avatars of Randomness 33
 3.2.1 Five iconic examples illustrate the concept of randomness 33
 3.2.2 Computer simulation of a random system 38
 3.2.3 Biological and biochemical examples 38
 3.2.4 False patterns: Clusters in epidemiology 39
3.3 Probability Distribution of a Discrete Random System 39
 3.3.1 A probability distribution describes to what extent a random system is, and is not, predictable 39
 3.3.2 A random variable associates numerical values to points in sample space 41
 3.3.3 The addition rule 42
 3.3.4 The negation rule 43
3.4 Conditional Probability 43
 3.4.1 Conditional probability is the ratio of two probabilities 43
 3.4.2 Independent events and the product rule 44
 3.4.3 Crib death and the prosecutor’s fallacy 45
 3.4.4 The Geometric distribution describes the waiting times for success in a series of independent trials 46
 3.4.5 Joint distributions 47
 3.4.6 The proper interpretation of medical tests requires an understanding of conditional probability 49
 3.4.7 The Bayes formula streamlines calculations involving conditional probability 51
3.5 Expectation and Other Moments 52
 3.5.1 The expectation expresses the average of a random variable over many trials 53
 3.5.2 The variance of a random variable is one measure of its fluctuation 54
 3.5.3 The standard error of the mean improves with increasing sample size 56
 3.5.4 Correlation and covariance 57
Big Picture 59
Key Formulas 59
Track 2 61
 3.4.2a Negation rule extended to conditional probabilities 61
 3.4.2b Product rule subject to a condition 61
 3.4.2c Independence property subject to to a condition 61
 3.4.7 Bayes formula subject to a condition 61
 3.5.2a Skewness and kurtosis 62
 3.5.2b Limitations of the correlation coefficient 62
Problems 63
Chapter 4 | Some Useful Discrete Distributions 71

4.1 Signpost: Simulation 71

4.2 Binomial Distribution 71
 4.2.1 Drawing a sample from a reservoir can be modeled via Bernoulli trials 71
 4.2.2 The sum of several Bernoulli trials follows a Binomial distribution 72
 4.2.3 Expectation and variance partially characterize a random variable 73
 4.2.4 How to count the number of fluorescent molecules in a cell 74
 4.2.5 Computer simulation 75

4.3 Poisson Distribution 76
 4.3.1 The Binomial distribution becomes simpler in the limit of sampling from an infinite reservoir 76
 4.3.2 The sum of many Bernoulli trials, each with low probability, follows a Poisson distribution 77
 4.3.3 Computer simulation 80
 4.3.4 Determination of single ion-channel conductance 80
 4.3.5 The Poisson distribution behaves simply under convolution 82

4.4 The Jackpot Distribution and Bacterial Genetics 83
 4.4.1 It matters 83
 4.4.2 Unreproducible experimental data may nevertheless contain an important message 84
 4.4.3 Two competing models for the emergence of resistance 86
 4.4.4 The Luria-Delbrück hypothesis makes testable predictions for the distribution of survivor counts 87
 4.4.5 Perspective 90

Big Picture 90

Key Formulas 91

Track 2 93
 4.2.4' Asymmetric cell division 93
 4.4.2’ No lysogenic state 93
 4.4.3’ More about the Luria-Delbrück experiment 93
 4.4.5’a Analytical approaches to the Luria-Delbrück calculation 93
 4.4.5’b Other genetic mechanisms 93
 4.4.5’c Epigenetic mechanisms 94
 4.4.5’d Direct confirmation of the Luria-Delbrück hypothesis 95

Problems 96

Chapter 5 | Continuous Distributions 105

5.1 Signpost: Long tails 105

5.2 Probability Density Function 105
 5.2.1 The definition of a probability distribution must be modified for a continuous random variable 105
 5.2.2 Three key examples: Uniform, Gaussian, and Cauchy distributions 107
 5.2.3 Joint distributions of continuous random variables 109
 5.2.4 Expectation and variance of the three example distributions 110
 5.2.5 Convolution and mixture distributions 112
 5.2.6 Transformation of a probability density function 114
 5.2.7 Computer simulation 116

5.3 More about Gaussian Distributions 116
 5.3.1 Gaussian distributions also arise as limits of Binomial 116
 5.3.2 The central limit theorem explains the ubiquity of Gaussian distributions 118
 5.3.3 When to use/not use a Gaussian 119
 5.3.4 The diffusion law 120

5.4 More About Long-Tail Distributions 122
 5.4.1 Many complex systems generate long-tail distributions 122
 5.4.2 A log-log graph can disclose a power-law relation in data 123
7.3.3 The credible interval expresses a range of parameter values consistent with the available data
7.3.4 Summary
7.4 Likelihood Analysis of the Luria-Delbrück Experiment
7.5 Localization microscopy
7.5.1 On seeing
7.5.2 Fluorescence imaging at one nanometer accuracy
7.5.3 Complete images: PALM/FPALM/STORM
7.6 An Extension of Maximum Likelihood Lets Us Infer Functional Relationships from Data
Big Picture
Key Formulas
Track 2

Cross-validation
Objective priors
Binning data reduces its information content
Odds
The role of idealized distribution functions
Improved estimator
Credible interval for the expectation of Gaussian-distributed data
Confidence intervals in classical statistics
Asymmetric and multivariate credible intervals
More about FIONA
More about superresolution
What to do when data points are correlated

Problems

Chapter 8 | Excursion: Single Particle Reconstruction in Cryo-electron Microscopy
8.1 Signpost: Alignment
8.2 A Powerful New Tool
8.2.1 The coronavirus spike protein is a key therapeutic target
8.2.2 Many macromolecules of interest cannot be crystallized
8.3 Extracting a Signal from Very Noisy Data
8.4 Cross-Correlation
8.4.1 A peak in cross-correlation identifies the best match of two signals
8.4.2 Numerical implementation
8.5 Approach to 1D Alignment via Cross-correlation
8.6 Improved Approach via Maximum Posterior
8.6.1 To extract an image, marginalize latent shift variables
8.6.2 The cross-correlation again enters, this time in a weighting function
8.6.3 Numerical implementation of convolution
8.6.4 Iterative construction of the inferred image
8.6.5 Summary and results in 1D
8.7 Approach to the 2D Problem Via Cross-Correlation
8.8 Improved Approach Via Maximum Posterior, 2D
8.8.1 To extract a 2D image, marginalize latent shift and rotation variables
8.8.2 Summary and results in 2D
Big Picture
Key Formulas
Track 2

Other aspects of the cryo-EM revolution
10.4.2 mRNA is produced in bursts of transcription 271
10.4.3 Perspective 274
10.4.4 Vista: Randomness in protein production 275

10.5 Intracellular Mechanics 275
10.5.1 Kinetochore form catchbonds to microtubules 275
10.5.2 Kinesin stepping depends on applied load and supplied ATP 276

Big Picture 278
Key Formulas 278
Track 2 280

10.3.4 a The master equation 280
10.3.4 b Time development of the mean 282
10.3.4 c Steady-state distribution 282
10.3.4 d A caveat 283
10.4 More about gene expression 283
10.4.2 a The role of cell division 283
10.4.2 b Stochastic simulation of a transcriptional bursting experiment 284
10.4.2 c Analytical results on the bursting process 285
10.4.3 a Mechanism of bursting 286
10.4.3 b From single cells to single genes 286

Problems 287

PART III Feedback Control

Chapter 11 Negative Feedback Control 293

11.1 Signpost: Fixed points 293
11.2 Mechanical Feedback and Phase Portraits 294
11.2.1 The problem of cellular homeostasis 294
11.2.2 Negative feedback can bring a system to a stable setpoint and hold it there 294
11.3 Wetware Available in Cells 296
11.3.1 Many cellular state variables can be regarded as inventories 296
11.3.2 The birth-death process includes a simple form of feedback 297
11.3.3 Cells can control enzyme activities via allosteric modulation 297
11.3.4 Transcription factors can control a gene’s activity 298
11.3.5 Artificial control modules can be installed in more complex organisms 301
11.4 Dynamics of Molecular Inventories 302
11.4.1 Transcription factors stick to DNA by the collective effect of many weak interactions 302
11.4.2 The probability of binding is controlled by two rate constants 303
11.4.3 The repressor binding curve can be summarized by its equilibrium constant and cooperativity parameter 304
11.4.4 The gene regulation function quantifies the response of a gene to a transcription factor 307
11.4.5 Dilution and clearance oppose gene transcription 308
11.5 Synthetic Biology 309
11.5.1 Network diagrams 309
11.5.2 Negative feedback can stabilize a molecule inventory, mitigating cellular randomness 310
11.5.3 A quantitative comparison of regulated- and unregulated-gene homeostasis 312
11.6 The trp Operon is a Natural Example of Negative Feedback Control 315
11.7 Some Systems Overshoot on the Way to Their Stable Fixed Point 316
11.7.1 Two-dimensional phase portraits 317

Big Picture 319
Key Formulas 319
Track 2 321
 11.3.1’a Contrast to electronic circuits 321
 11.3.1’b Permeability 321
 11.3.3’ Other control mechanisms 321
 11.3.4’a More about transcription in bacteria 322
 11.3.4’b More about activators 322
 11.3.5’t Gene regulation in eukaryotes 323
 11.4.4’a More general gene regulation functions 323
 11.4.4’b Cell cycle effects 323
 11.5.1’a Simplifying approximations 324
 11.5.1’b The Systems Biology Graphical Notation 324
 11.5.3’t Exact solution 324
 11.7.1’t Taxonomy of fixed points 325

Problems 326

Chapter 12 Positive Feedback, Epidemics, and Genetic Switches 328
 12.1 Signpost: Watersheds 328
 12.2 Positive Feedback 328
 12.2.1 Runaway growth 328
 12.2.2 Limited resources: the chemostat 329
 12.2.3 Nondimensionalization can reduce clutter in complicated equations 331
 12.2.4 Perspective 334
 12.3 The Spread of Epidemics 334
 12.3.1 No immunity: The SI model 334
 12.3.2 Permanent immunity: The SIR model 336
 12.3.3 Temporary immunity: The SIRS model 338
 12.4 Bacteria Have Behavior 339
 12.4.1 Cells can sense their internal state and generate switch-like responses 339
 12.4.2 Cells can sense their external environment and integrate it with internal state information 341
 12.4.3 Novick and Weiner characterized induction at the single-cell level 341
 12.4.4 Quantitative prediction for Novick-Weiner experiment 344
 12.5 Positive Feedback Can Lead to Bistability 348
 12.5.1 Mechanical toggle 348
 12.5.2 Electrical toggles and neural excitability 350
 12.5.3 A 2D phase portrait can be partitioned by a separatrix 351
 12.6 A Synthetic Toggle Switch Network in E. coli 352
 12.6.1 Two mutually repressing genes can create a toggle 352
 12.6.2 The toggle can be reset by pushing it through a bifurcation 354
 12.6.3 Perspective 356
 12.7 Natural Examples of Switches 357
 12.7.1 The lac switch 357
 12.7.2 The lambda switch 361

Big Picture 362

Key Formulas 363

Track 2 365
 12.3.3’t Other epidemic models 365
 12.4.3’t More details about the Novick-Weiner experiments 365
 12.4.4’t Mosaicism 365
 12.6.1’a A compound operator can implement more complex logic 366
 12.6.1’b A single-gene toggle 367
15.3.2 The competence network has a single, stable fixed point in the continuous, deterministic approximation 415
15.3.3 Random molecular fluctuations initiate a stereotyped program 419
15.3.4 The ComK/ComS model makes testable predictions 421

15.4 Vistas 422
Big Picture 422
Key Formulas 422
Problems 424

Epilogue 426

Appendix A | Global List of Symbols 429
A.1 Mathematical Notation 429
A.2 Graphical Notation 430
 A.2.1 Phase portraits 430
 A.2.2 Network diagrams 430
A.3 Named Quantities 431

Appendix B | Units and Dimensional Analysis 435
B.1 Base Units 436
B.2 Dimensions Versus Units 436
B.3 Dimensionless Quantities 438
B.4 About Graphs 438
 B.4.1 Arbitrary units 439
B.5 About Angles 439
B.6 Payoff 439

Appendix C | Numerical Values 441
C.1 Fundamental Constants 441

Acknowledgments 442

Credits 445

Bibliography 447
Index 460