Past Events

  • Condensed Matter Seminar: "Controlling Strong Light Matter Coupling with Photonic Crystals"

    David Rittenhouse Laboratory, A4

    Hui Deng (University of Michigan)

    Microcavity exciton-polaritons provide a unique photonic platform that manifests non-equilibrium quantum orders. It combines strong nonlinearity and rich many-body physics of matter with robust coherence and ready accessibility of light, allowing diverse quantum phenomena at high temperature, on a photonic chip. To go beyond 2D condensation physics, it becomes important to control the fundamental properties of polaritons without destroying the quantum orders.

  • Astro Seminar: "The Milky Way's Dust in Three Dimensions"

    David Rittenhouse Laboratory, A4

    Edward Schlafly (Lawrence Berkeley National Laboratory)

    Most observations of the Milky Way's gas and dust are limited to two dimensions; their angular distribution is precisely measured, but their distribution in distance is much more uncertain.  Large surveys of stars can be used to resolve this uncertainty.  Because light from stars is absorbed and scattered by intervening material before observation on earth, the Galaxy's stars can be used as a dense network of lighthouses to illuminate the structure and properties of the Milky Way's interstellar medium.

  • High Energy Theory Seminar: "Bit Threads in Space and Time"

    David Rittenhouse Laboratory, 2N36

    Matt Headrick (Brandeis University)

    Bit threads are a reformulation of the Ryu-Takayanagi holographic entanglement entropy formula that offer several conceptual advantages over the standard minimal-surface formulation.

  • Condensed Matter Seminar: "Soft matter physics in the gut"

    David Rittenhouse Laboratory, A4

    Sujit S. Datta (Princeton University)

    The gut governs digestion and nutrient absorption, is a promising target for drug delivery, and teems with micro-organisms that can have remarkably strong effects on host health. Despite its importance, however, little is known about how the structure and function of the gut are influenced by many of the soft materials that transit through it regularly.

  • **CANCELLED** Astro Seminar: (TBA)

    David Rittenhouse Laboratory, A4


  • High Energy Theory Seminar: "Naturally Stabilizing the Weak Scale without Partners"

    David Rittenhouse Laboratory, 2N36

    Devin Walker (Dartmouth College)

    We generalize and adapt Veltman's condition to create a framework which naturally addresses the little hierarchy problem.  The resulting class of models is economical and ensures a minimum amount of fine-tuning for the bare Standard Model Higgs mass.  To demonstrate this framework, we provide a model with an extended Higgs sector and a top Yukawa coupling that is no longer unity.  The latter alleviates the largest radiative corrections to the Higgs mass.  The former features significant dimension-full coupl

  • Condensed Matter Seminar: "Mechanical Cell Biology of Microbes"

    David Rittenhouse Laboratory, A4

    Enrique Rojas (Stanford University)

    Research in microbial physiology has traditionally focused on understanding biochemical pathways and, more recently, on elucidating the surprisingly complex structure of microbial cytoplasm.  On the other hand, the whether mechanical forces also play a role in controlling sub-cellular processes in microbes has been overlooked. I will highlight several novel paradigms by which microbes use mechanical (and electrical) factors as signals to control cell growth, division, and survival, and highlight how the remarkable mechanical properties of the cells are critical for these p

  • **CANCELLED** Astro Seminar: "The Twisted Universe: The Cosmic Quest to Reveal Which End is Up"

    David Rittenhouse Laboratory, A4

    Brian Keating (UCSD)

    The cosmic microwave background (CMB) has spectacularly advanced our understanding of the origin, composition, and evolution of our universe. Yet there is still much to glean from this, the oldest light in the universe. Powerful telescopes are plying the skies in a quest to discover new physics. This talk concentrates on measurements by cutting-edge CMB telescopes which offer a glimpse into an exhilarating, and largely unexplored branch of astrophysics: the search for unique signatures in the polarization of the CMB.

  • Condensed Matter Seminar: "Topological protection of photons"

    David Rittenhouse Laboratory, A4

    Mikael Rechtsman (Penn State University)

    Topological insulators are solid-state materials whose transport properties are immune to defects and disorder due to underlying topological order.  Perhaps the first such phenomenon was the quantum Hall effect, wherein the Hall conductivity is quantized and hence extremely robust.  In this talk, I will present the experimental observation of the topological protection of the transport of photons (rather than electrons in the solid state) in complex dielectric structures.  I will then present the obser

  • HET & HEE Joint Seminar: (TBA)

    Center for Particle Cosmology

    Josh Ruderman (NYU)