Past Events

  • Math-Bio seminar: "Spatial statistics in bioimage analysis"

    318 Carolyn Lynch Laboratory

    Thibault Lagache, Columbia University

    New advances in fluorescence microscopy make possible the localization of thousands of molecules with nanometer resolution inside living cells. This calls for the development of new statistical tools in spatial analysis to characterize molecules' distribution, and the spatial coupling between different molecules in multi-color microscopy. We will present the tools that we have recently developed.

  • High Energy Seminar: "TBA"

    David Rittenhouse Laboratory, 2N36

    Thomas Faulkner (University of Illinois, Urbana Champaign)

  • Astro Seminar: "Kinetic Inductance Detectors for CMB Studies"

    David Rittenhouse Laboratory, A4

    Bradley Johnson (Columbia University)

    I will discuss recent results from our kinetic inductance detector development projects.  Kinetic inductance detectors are superconducting thin-film, GHz resonators that are designed to also be optimal photon absorbers.  This detector technology is particularly well-suited for the sub-kelvin, kilo-pixel detector arrays needed for CMB studies because each detector element can be dimensioned to have a unique resonant frequency, and the probe tones for hundreds to thousands of detectors can be carried into and out of the cryostat on a single pair of coaxial cables.

  • Math-Bio seminar: "Genetic manipulation of entire populations with CRISPR gene drives"

    318 Carolyn Lynch Laboratory

    Philipp Messer, Cornell University

    A functioning gene drive system could fundamentally change our strategies for the control of vector-borne diseases by facilitating rapid dissemination of transgenes that prevent pathogen transmission or reduce vector capacity. CRISPR/Cas9 gene drive promises such a mechanism, which works by converting cells that are heterozygous for a drive construct into homozygotes, thereby enabling super-Mendelian inheritance. Though CRISPR gene drive activity has already been demonstrated, a key obstacle for current systems is their propensity to generate resistance alleles.

  • Math-Bio seminar: "Linear payoff relationships in repeated games"

    Carolyn Lynch Laboratory, 318

    Alex McAvoy, Harvard University

    In 2012, the study of the repeated Prisoner’s Dilemma was revitalized by the discovery of a new class of strategies known as “zero-determinant” (ZD) strategies. Through coercion, for example, ZD strategies allow a player to extort the opponent and obtain an unfair share of the payoffs. More generally, a player can use ZD strategies to unilaterally enforce linear relationships on expected payoffs, capturing classical fair strategies like tit-for-tat as well as extortionate and generous counterparts.

  • High Energy Seminar: "TBA"


    Ruth Gregory (Durham University)

  • Math-Bio seminar: "Does antibiotic resistance evolve in hospitals?"

    318 Carolyn Lynch Laboratory

    Bernd Sturmfels, University of California, Berkeley

    We present a joint paper with Anna Seigal, Portia Mira and Miriam Barlow, aimed at addressing the question in the title. Nosocomial outbreaks of bacteria and the heavy usage of antibiotics suggest that resistance evolves in hospital environments. To test this assumption, we studied resistance phenotypes of bacteria collected from patient isolates at a community hospital. A graphical model analysis shows no association between resistance and patient information other than time of arrival. This allows us to focus on time course data.

  • Advances in Biomedical Optics: "Molecular Imaging of Breast Cancer: Clinical and Biologic Insights"

    Donner Auditorium, Basement, Donner Building, 3400 Spruce St.

    David Mankoff, Prof. of Radiology (UPenn)

    *These seminars are supported by the Biomedical Imaging and Spectroscopy Laboratory, the Center for Magnetic Resonance and Optical  Imaging, the Department of Radiology and the Department of Physics and Astronomy at the University of Pennsylvania.

    Organizers: Wesley Baker, Jeff Cochran, Bryan Chong, Tiffany Ko, and Arjun Yodh,

    Contact: Wesley Baker


    (Pizza will be served at 11:45 am)

  • Condensed Matter Seminar: "Physics of the Peacock’s Dance"

    David Rittenhouse Laboratory, A4

    Suzanne Amador Kane, Haverford College

    Peacocks are the textbook example of an elaborate mating display--and hence of sexual selection in evolution.  To seduce females, male peafowl perform a complicated dance in which they tilt, pivot and shake their elaborate, iridescent train feathers to present a dazzling visual display accompanied by mechanical sounds.  The eye-like ocelli that decorate these feathers are structurally-colored:  their vivid hues change with viewing angle because they arise from interference of light with photonic crystals of melanin nanorods.  Furthermore, like many birds, peacocks

  • Astro Seminar: "SciServer - A Collaborative Research Environment for Large-scale Data-driven Science"

    David Rittenhouse Laboratory, A4

    Gerard Lemson (Johns Hopkins)

    SciServer is a Big Data infrastructure project developed at Johns Hopkins University that provides a common environment for sharable, computationally-intensive research.