Preliminary Results of Interstitial Motexafin Lutetium-Mediated PDT for Prostate Cancer

K.L. Du, MD, PhD,1 R. Mick, MS,2 T.M. Busch, PhD,1 T.C. Zhu, PhD,1 J.C. Finlay, PhD,1 G. Yu, PhD,4 A.G. Yodh, PhD,4 S.B. Malkowicz, MD,3 D. Smith, BSN,1 R. Whittington, MD,1 D. Stripp, MD,1 and S.M. Hahn, MD1*

1Department of Radiation Oncology, Hospital of the University of Pennsylvania, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
2Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
3Department of Urology, Hospital of the University of Pennsylvania, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
4Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Background and Objectives: Interstitial photodynamic therapy (PDT) is an emerging modality for the treatment of solid organ disease. Our group at the University of Pennsylvania has performed extensive studies that demonstrate the feasibility of interstitial PDT for prostate cancer. Our preclinical and clinical experience is herein detailed.

Study Design/Materials and Methods: We have treated 16 canines in preclinical studies, and 16 human subjects in a Phase I study, using motexafin lutetium-mediated PDT for recurrent prostate adenocarcinoma. Dosimetry of light fluence, drug level and oxygen distribution for these patients were performed.

Results: We demonstrate the safe and comprehensive treatment of the prostate using PDT. However, there is significant variability in the dose distribution and the subsequent tissue necrosis throughout the prostate.

Conclusions: PDT is an attractive option for the treatment of prostate adenocarcinoma. However, the observed variation in PDT dose distribution translates into uncertain therapeutic reproducibility. Our future focus will be on the development of an integrated system that is able to both detect and compensate for dose variations in real-time, in order to deliver a consistent overall PDT dose distribution.

Key words: photodynamic therapy; prostate cancer; adenocarcinoma; motexafin lutetium

PDT

Photodynamic therapy (PDT) is a promising modality of treatment for a variety of malignant and pre-malignant lesions [1,2], and is currently in use for patients with Barrett’s esophagus with high grade dysplasia, obstructing esophageal cancers, and early and obstructing lung cancers. PDT activates a chemical photosensitizer by a specific light wavelength corresponding to the absorption characteristics of the photosensitizer, thereby leading to an oxygen-dependent photochemical reaction that leads to singlet oxygen production and subsequent cellular damage. Since the radius of interaction for singlet oxygen is < 0.2 μm and the half life is short, < 0.04 μseconds, [3] only cells that are proximal to the area of activated photosensitizer are damaged. This allows for a laser-directed, highly localized area of tissue destruction. There are clear advantages of PDT over other therapies for localized disease, such as surgery or radiation therapy. PDT does not utilize ionizing radiation, appears not to target DNA, and has not been demonstrated to have the risk of secondary malignancies or late tissue side effects. Therefore, it is likely that repeated PDT sessions could be given for increased efficacy or for treatment of recurrent disease, with a lower likelihood of long-term morbidities as one might observe with radiation therapy. PDT, if appropriately applied, also appears to specifically damage the glandular epithelium of target tissues, and therefore maintains the stromal architecture of the organ, again minimizing the risk of secondary morbidities [4,5]. With respect to cancer treatment, PDT is an attractive therapy as there is little cross-resistance with chemotherapy or radiation therapy mechanisms [6], and unlike chemotherapy or radiation therapy, the effects of PDT are not cell cycle dependent [7].

The use of PDT has primarily been restricted to diseases of superficial depths, due to the limited depth of laser light penetration. The development of photosensitizers activated by longer wavelengths of light and associated with deeper light penetration has facilitated the development of interstitial PDT. Extensive experience in the treatment of prostate cancer with interstitial brachytherapy makes this...
disease an excellent model for the study of interstitial light delivery using existing knowledge for placement of brachytherapy implants within solid organs. Additionally, the prostate is an attractive target for interstitial light PDT due to the small size of the organ, allowing comprehensive treatment of the entire organ; the tendency for patients to present with organ-contained prostate cancer, allowing treatment of localized disease [8,9]; and readily assessable morbidities of treatment that are directly related to preservation or destruction of the overall structure of the prostate gland.

Prostate cancer is the most common visceral cancer in men in the United States [10]. Current treatments for early stage prostate cancer are radical prostatectomy, external beam radiation therapy, or brachytherapy. Androgen deprivation therapy is also a treatment option. Morbidities from these therapies are significant, including urinary incontinence, bowel symptoms, and impotence [11,12]. For patients who have recurrence after radiation therapy, salvage options are limited and include radical prostatectomy [13], cryosurgery [14], or an additional course of radiation therapy. These salvage therapies carry an increased risk of morbidities [15–17], and therefore novel modalities for the treatment of recurrent prostate cancer would be of considerable benefit to expanding patient treatment options and increasing quality of life. Several principles are important to consider in the design and optimization of PDT for prostate cancer:

(1) Prostate cancer is a multifocal disease [18,19] and current imaging techniques cannot detect microscopic disease in the entire gland. Therefore, it is essential that any interstitial PDT approach provide comprehensive coverage throughout the entire gland.

(2) The PDT dose must be controlled so that there is dose delivery to the prostate epithelium but sparing of the underlying stroma, therefore maintaining the structural integrity of the prostate gland.

(3) Normal tissues, particularly the bladder, rectum, and neurovascular bundle must be spared significant damage from the PDT dose.

(4) A sole and minimally invasive approach for drug and light delivery must be established in order to consider repeated treatments.

The effectiveness of PDT depends on the spatial and temporal interactions between photosensitizer, light, and oxygen. These variables include photosensitizer type, concentration, and biodistribution [20–29]; the wavelength, total dose, fluence rate, fractionation, and drug-to-light interval of light delivered; tissue optical properties [30–34]; and the tumor oxygenation state [35,36]. We, and others, have shown substantial intra- and inter-patient heterogeneity in these variables in prostate glands from patients with prostate cancer [37,38], which points to the need for individual dosimetry. The optimization of these three variables is critical for the design of future PDT studies.

PRE-CLINICAL EXPERIENCE IN PROSTATE PDT

Our group performed a pre-clinical study of interstitial prostate PDT in a canine model using the second generation photosensitizer, motexafin lutetium [24]. Motexafin lutetium is a pentadentate aromatic metalloexaphyrin that has an absorption peak at 732 nm [39–41]. This longer activating light wavelength, extending into the far-red range, allows more optimal interstitial delivery due to greater depth of penetration, and less interference by hemoglobin. In this pre-clinical study, a laparotomy was performed for full exposure of the prostate gland. Placement of brachytherapy catheters was guided by a plexiglass template, and optical fibers were inserted into the catheters for light delivery to the gland. Fluence measurements taken with isotropic detectors demonstrated that the presence of the brachytherapy catheters did not interfere with light delivery to the tissues. The light fluence was prescribed by the power emitted from the fiber and not from the actual measured light dose detected in the prostate gland. A 3-hour drug-light interval was chosen because pre-clinical studies in other model systems demonstrated the greatest anti-tumor efficacy with this timing [40,42]. The primary endpoints of these studies were: (1) to determine the feasibility and toxicity of PDT to the prostate in this model, (2) to compare PDT delivered though an interstitial approach versus a transurethral approach, and (3) to develop a method to comprehensively treat the entire prostate gland.

In the initial study, four beagles were treated with motexafin lutetium 6 mg/kg IV followed 3 hours later by a light dose of 75 J/cm at 150 mW/cm. The goal of these initial experiments was to identify the tolerability of this dose of drug and light within a 2–3 week time frame and to evaluate the acute necrosis around both interstitial and transurethral treatment fibers. This study showed that the zone of tissue damage surrounding the interstitial fibers was irregular but approximately 1.2-cm in diameter. It was concluded that transurethral light delivery would not achieve the goal of comprehensive treatment of the prostate gland with PDT but might be an effective therapy for the treatment of periurethral glandular tissue. The diameter of the zone of necrosis, however, suggested that interstitial fiber spacing of 1 cm would allow for comprehensive treatment of the gland at this dose level of light.

Based on these results, fibers were placed at 1-cm apart, the dose of light was escalated to 150 J/cm, 150 mW/cm, and the acute necrosis within the prostate was again evaluated. Three dogs were treated with a combination of interstitial and transurethral light delivery. Immediately after motexafin lutetium administration, all dogs experienced facial and paw edema, two dogs became hypotensive, however this resolved well with saline boluses. Immediately after treatment, the prostate was noted to be dark and necrotic, and several weeks after PDT, histological analysis of the prostate demonstrated comprehensive treatment of the entire gland.
Subsequently, long-term (3 months) clinical and histological effects of the combined interstitial and transurethral light delivery approach were evaluated using a motexafin lutetium dose of 6 mg/kg. Four dogs were treated with 1-cm fiber spacing, 150 J/cm. Two dogs received a light fluence rate of 75 mW/cm and two dogs received a rate of 150 mW/cm. As before, immediately after treatment, the prostate gland appeared dark and dusky. All four dogs developed peritonitis and either died or were euthanized 3–21 days after PDT. Complete, diffuse necrosis of the prostate was observed, in several cases with complete destruction of the urethra. Importantly, this dose of PDT was associated with destruction of stroma and epithelium and therefore, a loss of selectivity. It was concluded that motexafin lutetium at 6 mg/kg, 150 J/cm, was intolerable. Furthermore, as the first group of beagles demonstrated that transurethral light delivery alone allowed urethral recovery at these dose levels, combined transurethral and interstitial light delivery may have contributed to excessive urethral damage.

In order to reduce toxicity levels, a decreased dose of PDT, with motexafin lutetium at 2 mg/kg, light of 732 nm, 100 J/cm at 150 mW/cm was evaluated. One dog was treated with transurethral light delivery alone, two dogs were treated with interstitial light delivery alone, and two dogs were treated with a combination of interstitial and transurethral light. All dogs were euthanized at 3 months. No acute toxicities were observed. All dogs had evidence of inflammation to the prostatic urethra, as followed by endoscopy. All urethral abnormalities resolved except in two dogs; one dog had received interstitial light delivery alone and had mild residual urethral abnormalities, the other dog had received combination transurethral and interstitial light delivery and developed a urethral stricture. No gross damage was observed in the surrounding normal tissues. Histopathologic analysis revealed necrosis surrounding fiber implantation sites. However, skip lesions with areas of prostate sparing were observed, emphasizing the need for careful needle spacing. These data demonstrate that it is technically feasible and safe to deliver light via an interstitial approach to the prostate.

Light Dosimetry

Light deposition in tissues is a necessary component of PDT tissue destruction. Using spherical light detectors placed at fixed distances from the light source in our preclinical canine studies, significant heterogeneity in deposited light dose for any given prescribed laser output was found, which supports the need for in situ dosimetry system. We have shown that there is also significant heterogeneity of optical properties and light penetration depth in the human prostate [37,38]. Therefore, significant heterogeneity of light dose is likely to be present when treating prostate cancer patients with interstitial PDT. Given this heterogeneity, the measurement of actual light deposited is likely to be critical for the determination of tissue response and treatment toxicities in clinical trials of interstitial prostate PDT. Light measurements are required to determine the actual light dose deposited within the prostate gland, which includes both incident as well as scattered light. The accurate measurement of light fluence allows for the deposition of a consistent light dose in the prostate.

CLINICAL EXPERIENCE WITH PDT FOR RECURRENT PROSTATE CANCER

The preclinical experiments provided the data necessary to perform a Phase I trial of motexafin lutetium-mediated PDT in patients with locally recurrent prostate adenocarcinoma who have previously been treated with definitive radiotherapy. This protocol was approved by the Institutional Review Board and Cancer Center Clinical Trials and Scientific Monitoring Committee of the University of Pennsylvania, as well as the Cancer Therapy Evaluation Program of the National Cancer Institute. The primary endpoint of this ongoing trial is to determine the maximally tolerated dose and dose-limiting toxicities of PDT using 732-nm light and motexafin lutetium in patients with locally recurrent prostate adenocarcinoma who have failed previous definitive radiotherapy. Secondary endpoints are: (1) to measure motexafin lutetium levels in needle biopsies of the prostate pre- and post-PDT; (2) to use optical methods to measure motexafin lutetium fluorescence in situ in the prostate pre- and post-PDT and to correlate these results with the direct tissue measurements made in biopsies with HPLC and tissue fluorescence. Optical methods will also be used to measure the optical properties and the absorption spectrum of the prostate pre- and post-PDT; (3) to calculate the percent change in motexafin lutetium after treatment; (4) to measure clinical outcome from time of PDT salvage therapy; including clinical response, progression-free survival, time to complete response, time to biochemical relapse, time to local progression, time to distant failure, overall survival, and disease specific survival after motexafin lutetium-mediated PDT in patients with recurrent prostate cancer; (5) to use a multimodality optical instrument to determine in vivo tissue optical properties, photosensitizer concentration, tissue blood oxygenation, and blood flow before, during, and after PDT.

Patient Information

Between October 2000 and January 2005, 17 patients have been enrolled in this Phase I trial. Each person gave informed consent and was given an evaluation that included an MRI of the prostate, bone scan, serum lab studies, PSA level, and a urological evaluation. The median age was 69 (range of 57–79 years). Patients included in this study had localized recurrent prostate adenocarcinoma. Nine patients had been previously treated with interstitial brachytherapy, and eight had been treated with external beam irradiation. At the time of recurrence, the median PSA was 7.4 ng/ml (range of 0.2–13.6 ng/ml) with Gleason scores of 6 in three patients, 7 in eight patients, 8 in two patients, 9 in three patients, and one patient whose biopsy specimen was too small to score. Patients with primary T3 or T4 tumors, a prostate gland volume > 50 cc, or PSA > 20 mg/ml were excluded from this study. One patient who was enrolled in this study was subsequently
excluded, prior to beginning treatment, based on extra-
capsular extension.

Prostate PDT

Two weeks prior to treatment with PDT, a transrectal ultrasound was obtained for treatment planning. Ultrasound slices were scanned 0.5-cm apart, with the same scanner to be used for treatment. An integrated plexiglass template, with a 0.5-cm grid, projected the placement of light source insertion relative to the prostate gland. A urologist (SBM) drew the total volume of the prostate on each section of ultrasound image. A treatment plan was created, using Multimedia Medical System software, to guide placement of illumination and detector fibers, with the goal of comprehensively covering the entire prostate gland with light delivery. Cylindrical diffusing fibers of varying lengths were used as light sources, spaced 1-cm apart, using uniform J/cm in all fibers, with planned placement to cover the entire length of the prostate at a particular position.

Within 24 hours prior to light delivery, 0.5–2 mg/kg motexafin lutetium (dose escalation according to Table 1) was administered intravenously, over 5–10 minutes, as a sterile, pyrogen-free 2 mM (2.3 mg/ml) solution in 5% mannitol/water. While a 3-hour drug-light interval was demonstrated in pre-clinical studies to be safe, a conservative 24-hour drug-light interval was selected to ensure safety in the initial human PDT subjects. We used an accelerated titration design in order to minimize the number of patients treated at these lower light doses.

Light delivery was performed in a surgical suite with precautions to prevent unplanned photosensitizer activation, including filtered OR lighting and covering the patient’s exposed skin. The patient was placed under general anesthesia to minimize patient movement during the procedure. An endorectal ultrasound probe was introduced and the base of the prostate identified. A standard brachytherapy transperineal implant template was fixed to the operating table and the ultrasound probe. Using sonographic guidance, with the same equipment used to perform pre-treatment planning, and a perineal template matched to the treatment plan 0.5-cm grid, 17-gauge plastic brachytherapy catheters were placed into the prostate with trochars at 1-cm intervals throughout the prostate gland, following the treatment plan. After removal of the trochars, illumination and detector fibers were placed into the brachytherapy catheters. Isotropic detectors, composed of optical fibers with a spherical TiO$_2$ scattering tip [43], were placed with brachytherapy catheters and trochars, via the perineal template. Four isotropic light detectors were placed in the catheters for measurement of light fluence, one in each equal prostate quadrant, and one detector was placed in the urethra. The detectors were placed approximately 0.5 cm from the light emitting fibers and connected to photodiodes. A 12-channel light dosimetry system [44] was utilized, consisting of three

<table>
<thead>
<tr>
<th>Patient</th>
<th>Motexafin lutetium prescribed (mg/kg)</th>
<th>Light fluence prescribed (J/cm2)</th>
<th>Drug-light interval (hours)</th>
<th>Pre-PDT motexafin lutetium level (ng/mg)</th>
<th>Post-PDT motexafin lutetium level (ng/mg)</th>
<th>Post/Pre-PDT ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>25</td>
<td>24</td>
<td>0.279</td>
<td>0.164</td>
<td>0.587</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>25</td>
<td>24</td>
<td>0.341</td>
<td>0.222</td>
<td>0.651</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>25</td>
<td>24</td>
<td>0.423</td>
<td>0.339</td>
<td>0.800</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>25</td>
<td>24</td>
<td>0.767</td>
<td>0.400</td>
<td>0.522</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>25</td>
<td>24</td>
<td>0.649</td>
<td>0.346</td>
<td>0.533</td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
<td>25</td>
<td>24</td>
<td>0.522</td>
<td>0.934</td>
<td>1.791</td>
</tr>
<tr>
<td>7</td>
<td>1.0</td>
<td>25</td>
<td>6</td>
<td>0.466</td>
<td>0.520</td>
<td>1.115</td>
</tr>
<tr>
<td>8</td>
<td>2.0</td>
<td>25</td>
<td>6</td>
<td>3.028</td>
<td>1.937</td>
<td>0.640</td>
</tr>
<tr>
<td>9</td>
<td>2.0</td>
<td>50</td>
<td>6</td>
<td>2.323</td>
<td>3.249</td>
<td>1.398</td>
</tr>
<tr>
<td>10</td>
<td>2.0</td>
<td>100</td>
<td>6</td>
<td>4.645</td>
<td>2.476</td>
<td>0.533 Apex base</td>
</tr>
<tr>
<td>11</td>
<td>2.0</td>
<td>25</td>
<td>3</td>
<td>3.264</td>
<td>5.717</td>
<td>1.752 Apex base</td>
</tr>
<tr>
<td>12</td>
<td>2.0</td>
<td>50</td>
<td>3</td>
<td>6.027</td>
<td>3.361</td>
<td>0.558</td>
</tr>
<tr>
<td>13</td>
<td>2.0</td>
<td>100</td>
<td>3</td>
<td>3.589</td>
<td>4.171</td>
<td>1.162 Apex base</td>
</tr>
<tr>
<td>14</td>
<td>2.0</td>
<td>100</td>
<td>3</td>
<td>3.508</td>
<td>3.778</td>
<td>1.077</td>
</tr>
<tr>
<td>15</td>
<td>2.0</td>
<td>100</td>
<td>3</td>
<td>6.734</td>
<td>1.892</td>
<td>0.281</td>
</tr>
<tr>
<td>16</td>
<td>2.0</td>
<td>150</td>
<td>3</td>
<td>7.828</td>
<td>7.457</td>
<td>0.953</td>
</tr>
<tr>
<td>17</td>
<td>2.0</td>
<td>150</td>
<td>3</td>
<td>1.713</td>
<td>2.666</td>
<td>1.556</td>
</tr>
</tbody>
</table>

Due to small sample size all four intra-prostate quadrant samples were combined for pre- and post-PDT drug quantification. In cases where sample sizes permitted, apical and base of prostate quadrants were analyzed separately. In one case (Patient 13), the pre-PDT sample size was inadequate for analysis.
major components: (1) isotropic detectors, photodiodes, and pre-amplifiers, (2) an analog-to-digital converter, and (3) computer control software. This system monitored real-time fluence rates and integrated fluence measurements (Fig. 1). The isotropic light detectors allowed measurement of both incident and scattered light. Optical properties and absorption spectra of each of the four quadrants of the prostate tissue (scattering and absorption coefficients) were determined pre- and post-light delivery; fluorescence measurements were made through the detector in each quadrant using a single optical fiber acting as both a light source and detector. The fiber emitted 460-nm light and collected fluorescence light above 700 nm at right angles from the optical axis of a beveled fiber tip. These values were used to determine light delivery time for each quadrant, as well as to determine oxygenation and hemoglobin levels in the prostate. One course of 732-nm light was administered (Laser Model 730, 15-W diode, Diomed, Ltd., Cambridge, UK) at a fluence rate of 150 mW/cm², with light fluence from 25 to 200 J/cm², and drug-light interval of 3–24 hours, again following a careful dose escalation plan (Table 1). The light source and detectors were controlled using two-step motors driven by control software developed to integrate the movement of the step motor with data acquisition of the light detectors. Each prostate quadrant was treated sequentially until the entire prostate volume was comprehensively treated. The light fluence rate distributions were measured along the length of each catheter.

Pre- and post-light administration, two tissue samples were obtained by transrectal ultrasound guided transperineal biopsy from each of four locations within the prostate, for motexafin lutetium tissue level determination. Concentrations of motexafin lutetium, extracted from homogenized biopsy tissue from each quadrant, were determined by fluorescence measurements against standards of known drug concentrations.

Following PDT, patients had a Foley catheter inserted and all patients were observed overnight as inpatients. The following day the catheter was removed—if the patient was unable to void, the catheter was replaced for as long as clinically indicated. In most cases the catheter was removed the day after PDT. Patients were discharged with additional instructions to avoid direct sun exposure for 2 days following drug administration. Patients were seen 2 weeks after discharge to assess and treat any PDT-related toxicities, and then followed routinely 1, 2, and 3 months after discharge, then every 3 months for 2 years. Only mild, Grade I, urinary PDT-related toxicities have been observed, with four patients experiencing temporary urinary retention after the procedure. The most common urinary toxicity to date has been mild urgency which typically lasts several days after the procedure. There were no rectal or gastrointestinal toxicities reported. Four patients experienced photosensitivity—typically a tingling sensation associated with sun-exposed areas of skin.

PSA levels were followed at each patient visit. In patients at the lowest PDT dose levels, there was no apparent impact on PSA levels. However, at higher dose levels, PSA levels transiently increased immediately following treatment (Fig. 2). This was typically followed by a rapid return of elevated PSA to pre-PDT levels within 1–2 months, followed by a maintenance phase of stable PSA measurements or very gradually increasing PSA values. To date, at all PDT dose levels, patients experienced biochemical failure within 2 years of PDT.

Optical Properties

Optical properties have been measured in 14 of the patients treated [37,38,45]. Light delivery to one quadrant of the prostate was found to result in delivery of a measurable fluence to other quadrants as well. The dominant absorbers in the wavelength range of measurements are oxygenated and deoxygenated hemoglobin, motexafin lutetium, and water. At 732 nm, the absorption coefficient (μₐ) varied from 0.07 to 1.62 per cm (mean 0.41 ± 0.24 per cm) and the reduced scattering coefficient (μₛ) varied from 1.1 to 44 per cm (mean 14 ± 11 per cm). μₐ ranged from 0.91 to 6.7 per cm (mean 2.9 ± 0.7 per cm), corresponding to an optical penetration depth of 0.1–1.1 cm (mean 0.4 ± 0.1 cm). The maximum variation of optical properties within the same patient was larger than the standard variation of the mean in all patients. The variations within a single patient were as large as 300% for μₐ and 1,000% for μₛ. Therefore, the optical penetration
depth varied by 290% within a single patient’s prostate. Clearly, there is a significant heterogeneity of optical properties through the prostate gland, at this wavelength which can contribute to variable fluence rates at any given location. Modeling systems for treatment planning should take this variation into account and, in theory, should correct for it in real-time.

Photosensitizer Biodistribution

Motexafin lutetium levels in prostate biopsies were measured by fluorescence spectroscopy. In general, drug levels increased with increasing injected drug dose or decreasing drug/light interval (Table 1). Again, variability was apparent between patients at the same drug dose level, and between biopsy locations in the same prostate. There was an overall decrease in post-PDT drug levels, perhaps due to treatment-related photobleaching. When comparing in situ optical measurements of motexafin lutetium with direct tissue spectroscopy measurements, a linear relationship was noted between the absorption coefficient and the drug concentration in the prostate [38].

Another interesting feature is that motexafin lutetium levels varied by as much as fivefold within a single prostate. The degree of intra-prostate variation may be, at least in part, as a result of the heterogeneity of tissue sampling, which does not distinguish between normal prostate and foci of cancer. There is also possibly a vascular component, with variations in vascular density or perfusion that may limit the delivery of blood and photosensitizer to regions of the gland.

Tumor Oxygenation and Blood Flow

Tissue oxygen concentrations during PDT are influenced by blood flow, blood oxygenation, and photobleaching. The destruction of tumor vasculature by PDT leads to oxygen and nutrient deprivation of tumor cells. However, vascular occlusion during PDT may also lead to tumor hypoxia during treatment, resulting in decreased efficacy [46]. In a murine fibrosarcoma explant model, both blood flow and oxygen saturation have demonstrated prognostic significance for PDT [47,48]. Monitoring of blood flow and oxygenation status during PDT is therefore of interest in our clinical trial. Our group has developed a near-infrared diffuse optical instrument combining Diffuse Reflectance Spectroscopy (DRS), for the measurement of blood flow oxygenation, with Diffuse Correlation Spectroscopy, for measurement of tissue blood flow [48-53]. We used this instrument to measure hemodynamic responses to PDT in three of our Phase I patients [54]. A fiber-optic probe containing a source and detector was placed into a brachytherapy catheter in the center of each quadrant of the prostate gland, and remained in place throughout the treatment. All three patients demonstrated similar blood flow responses. Average post-PDT blood flow and total hemoglobin both decreased, and blood oxygen saturation remained relatively constant. The decrease in blood flow and total hemoglobin concentration indicates a perfusion decrease, likely due to vascular destruction mediated by PDT. Intriguingly, the relatively unchanged hemoglobin oxygen saturation suggests that either PDT oxygen utilization was minimal or that tissue oxygen consumption, due to PDT-mediated cell death, had decreased. Further study will be done to relate hemodynamic responses to clinical outcome.

CONCLUSIONS

Interstitial PDT holds an enormous potential for treating locally confined prostate cancer. Especially attractive is the
potential to treat repeatedly with only mild additional morbidities. Our initial clinical studies with motexafin lutetium demonstrate the potential to safely deliver PDT to the prostate gland.

Overall, the results from the pre-clinical and the ongoing clinical Phase I study presented herein have been encouraging. While the human clinical trial is ongoing, it is clear that photosensitizer and light are successfully delivered, with only mild and transient toxicities. The transient rise in PSA, immediately following PDT, suggests that levels of photosensitizer and light are at sufficient doses to induce cell death within the prostate. It remains to be seen, however, whether comprehensive treatment of the gland is clinically achievable and, of course, whether long-term biochemical (PSA) responses are possible.

A significant finding of these studies is the intra-patient and inter-patient heterogeneity in light, photosensitizer, oxygen, and tissue optical properties within the prostate. This heterogeneity is not surprising and has been observed in other human studies of PDT that we have performed [37,38,55,56]. The heterogeneity underscores the need for continued detailed study of the parameters that affect PDT response. Ideally, PDT will be administered via a real-time system (Fig. 1) that accounts for variations in intraprostate conditions and optimizes light delivery to specific areas of the gland.

Furthermore, there are significant concerns that needle placement in any one individual may not be optimal and may lead to “skip” areas within the prostate gland. Given the set-up error associated with any interstitial approach, it may be necessary to deliver more than one application of PDT to the gland. Further studies will be needed to address the conditions necessary to optimally treat the entire prostate volume.

REFERENCES