Yunker et al. Reply: In the preceding Comment [1], Nicoli, Cuerno, and Castro raised an issue about one aspect of Ref. [2]. Briefly, the Letter [2] presented experimental observations of the growth of deposits at the edges of drying drops of suspensions of ellipsoids with different major-minor axis aspect ratios (ε). Three distinct growth regimes were observed, and the growth regime associated with highly anisotropic ellipsoids was noted to be consistent with the quenched Kardar-Parisi-Zhang (QKPZ) universality class as well as with the Matthew effect. We presented simulations of the Matthew effect to show that much of the growth of the highly anisotropic ellipsoids could be captured by this simple model. Nicoli et al. brought to our attention that our discussion about this issue in Ref. [2] gives a false impression that the Matthew effect is an example of the QKPZ class; conversely, the Matthew effect does not involve quenched disorder but induces anomalous roughening. We agree with their point and their argument about this point.

However, we would like to emphasize that the measurements presented in Ref. [2] are consistent with the QKPZ class, though they do not rule out all other models. The analysis in Ref. [1] presents an alternative interpretation of our data, noting that the results are also consistent with kinetic roughening, but it does not disallow the possibility of the QKPZ class. Further, as noted by Nicoli et al., quenched disorder is present in the experiments. In fact, our experiments provide evidence that quenched disorder, in the form of contact line roughness, influences the growth of deposits of highly anisotropic particles.

As noted in Ref. [1], the exponents for kinetic roughening are not universal but instead can vary with system parameters. In experiments with highly anisotropic ellipsoids, we observed that the roughening exponent α and growth exponent β do not change with particle aspect ratio or drop size [2]. While this observation does not rule out anomalous behavior, it does suggest that the growth process is not sensitive to microscopic details in this regime.

Further, quenched disorder in the form of contact line roughness appears to influence the growth of highly anisotropic particle deposits. The drop contact line is visible (Fig. 1). Local contact line roughness $w_{cl}(x)$ is quantified as the standard deviation of $y(x)$ over a range $x - 1.5$ to $x + 1.5 \mu m$ (the particle diameter is $\sim 1.5 \mu m$). w_{cl} varies laterally, with an average of $w_{cl} = 0.21 \mu m$. Next, we consider only locations where particles are deposited during the first ~ 1 s of evaporation. The average of w_{cl} for 11 particles deposited during this time is $w_{cl}(deposit) = 0.31 \mu m$ (standard error 0.05 μm). $w_{cl}(deposit)/w_{cl} = 1.5$, suggesting that particles preferentially deposit in regions with higher contact line curvature. This form of quenched disorder does not appear to affect slightly stretched particles ($\varepsilon = 1.2$) or spheres ($\varepsilon = 1.0$), which have $w_{cl}(deposit)/w_{cl} = 1.1$ and $w_{cl}(deposit)/w_{cl} = 1.0$, respectively.

More work is required to definitively ascertain whether the QKPZ class or kinetic roughening (suggested in Ref. [1]) drives growth in deposits of highly anisotropic particles. Experimental observations in Ref. [2] are consistent with the QKPZ class, and the results presented above suggest quenched disorder is influential at early times, but these results do not rule out all other models.

We gratefully acknowledge financial support from the National Science Foundation through DMR-0804881, and the MRSEC DMR11-20901, and from NASA NNX08AOOG. A.B. gratefully acknowledges financial support from NSF Grant No. DMS-1056390. T.S. acknowledges support from DAAD.

Peter J. Yunker,1,2 Matthew A. Lohr,1 Tim Still,1,3 Alexei Borodin,4 D. J. Durian,1 and A. G. Yodh1
1Department of Physics and Astronomy
University of Pennsylvania
Philadelphia, Pennsylvania 19104, USA
2School of Engineering and Applied Sciences
Harvard University
Cambridge, Massachusetts 02138, USA
3Complex Assemblies of Soft Matter
CNRS-Rhodia-University of Pennsylvania
UMI 3254 Bristol, Pennsylvania 19007, USA
4Department of Mathematics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139, USA

Received 24 September 2013; published 12 November 2013
DOI: 10.1103/PhysRevLett.111.209602
PACS numbers: 61.43.Fs, 64.70.kj, 64.70.pv, 82.70.Dd
<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
</tr>
</thead>
</table>