Toward Noninvasive Characterization of Breast Cancer and Cancer Metabolism with Diffuse Optics

David R. Busch, PhDa,b,*, Regine Choe, Phdc, Turgut Durduran, Phdd, Arjun G. Yodh, PhDb

KEYWORDS
- Diffuse optical tomography • Diffuse optical spectroscopy • Metabolic imaging • Blood flow
- Breast cancer • Neoadjuvant chemotherapy

KEY POINTS
- Diffuse optical spectroscopies provide noninvasive, nonionizing, serial measurements of tissue blood flow, oxygenation, and concentration.
- These physiologic parameters provide a window into tissue metabolism without necessitating the use of ionizing radiation or transport to imaging suites.
- Current clinical investigations of diffuse optical mammography include applications of diffuse optical tomography and monitoring to neoadjuvant chemotherapy, contrast agent discovery, computer-aided detection, and measurement of breast oxygen metabolism.
- Diffuse optical measurements hold significant promise for commercialization and clinical integration.
CONTINUOUS, NONINVASIVE MONITORING OF BLOOD VOLUME, FLOW, AND OXYGENATION

Despite major advances in diagnosis and preventive medicine, breast cancer remains among the principal causes of death in women. In the United States, for example, in 2012 approximately 230,000 new cases of breast cancer were diagnosed and roughly 40,000 died of the disease.\(^1\) At present, clinical recommendations are focused on the early detection of cancer and risk stratification, with screening techniques ranging from breast self-examinations and clinical palpation, to serial x-ray mammographic imaging, to genetic testing. Ultrasonography and magnetic resonance (MR) imaging are frequently used in conjunction with the traditional techniques, for example, to confirm a diagnosis. Modern screening of breast cancer depends heavily on x-ray mammography, which is especially sensitive to microcalcifications. However, this structural imaging modality can suffer from low sensitivity and specificity, especially in younger women.\(^2\)

Ultrasonographic breast imaging is highly effective in identifying classes of cysts,\(^3,4\) but is not yet widely used for whole breast imaging. Contrast-enhanced MR imaging can be highly sensitive and some studies have reported high specificity, but it is generally applied only to high-risk populations because of its cost and limited availability.\(^5\)–\(^7\) Thus, the ideal screening modality has yet to be found, and multimodal approaches, including genetic testing, are gaining popularity.

This article is primarily concerned with the potential role of optics in clinical management of breast cancer and (possibly) screening based on the local tissue metabolism. Indeed, the enhanced glucose metabolism of cancer tissues is the basis for the success of \(^{18}\)F-fluorodeoxyglucose (FDG) Positron Emission Tomography (PET) cancer imaging which, in breast cancer, is primarily used to identify metastases and to stage disease.\(^8\) Measurements of the local metabolism provide insights into aggressiveness of the cancer and response to the treatments.

Significant recent research in breast cancer has been oriented toward identifying and using the potential of hemodynamic parameters such as blood flow; for example, as a means to access tissue metabolism. This reasoning is based on the fact that cancers are frequently hypermetabolic and have associated formation of angiogenic vessels, therefore local blood flow may provide a cancer contrast. Doppler-ultrasound imaging of blood flow in breast cancer has been extensively explored over the past three decades, both with and without contrast agents.\(^4\) In MR imaging, uptake and kinetics of gadolinium chelate contrast agent provide clinicians with information on perfusion of breast cancer, and is part of the current clinical standard of care.\(^5\) An alternative MR imaging method, arterial spin-labeling MR imaging (ASL-MRI), has proved to be very useful in probing brain blood flow without the injection of contrast agents. However, its use in the breast\(^9\) is hampered by the low absolute blood flow in the breast tissue. Of note, none of these techniques provides information about tumor blood oxygenation; this technical limitation makes it harder to gain insights about oxidative metabolism in cancer.

<table>
<thead>
<tr>
<th>Acronyms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASL-MRI</td>
<td>Arterial-Spin Labeling MRI</td>
</tr>
<tr>
<td>BF</td>
<td>Blood Flow</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Detection</td>
</tr>
<tr>
<td>CT (X-Ray)</td>
<td>Computed Tomography</td>
</tr>
<tr>
<td>DCS</td>
<td>Diffuse Correlation Spectroscopy</td>
</tr>
<tr>
<td>DCT</td>
<td>Diffuse Correlation Tomography</td>
</tr>
<tr>
<td>DOS</td>
<td>Diffuse Optical Spectroscopy</td>
</tr>
<tr>
<td>DOT</td>
<td>Diffuse Optical Tomography</td>
</tr>
<tr>
<td>DOT-CAD</td>
<td>Diffuse Optical Tomography - Computer Aided Detection</td>
</tr>
<tr>
<td>FDG-PET</td>
<td>Fluoro-deoxyglucose Positron Emission Tomography</td>
</tr>
<tr>
<td>Hb</td>
<td>Deoxygenated Hemoglobin Concentration</td>
</tr>
<tr>
<td>HbO(_2)</td>
<td>Oxygenated Hemoglobin Concentration</td>
</tr>
<tr>
<td>Hb(_t)</td>
<td>Total Hemoglobin Concentration</td>
</tr>
<tr>
<td>H(_2)O</td>
<td>Water Concentration</td>
</tr>
<tr>
<td>(l^*)</td>
<td>Photon Random Walk Step</td>
</tr>
<tr>
<td>(l_a)</td>
<td>Photon Absorption Length</td>
</tr>
<tr>
<td>Lipid</td>
<td>Lipid Concentration</td>
</tr>
<tr>
<td>(M)</td>
<td>Malignancy Parameter</td>
</tr>
<tr>
<td>(\mu_s)</td>
<td>Absorption Coefficient</td>
</tr>
<tr>
<td>(\mu_{\text{eff}})</td>
<td>Overall Optical Attenuation Coefficient</td>
</tr>
<tr>
<td>MMRO(_2)</td>
<td>Mammary Metabolic Rate of Oxygen consumption</td>
</tr>
<tr>
<td>(\mu_s')</td>
<td>Reduced Scattering Coefficient</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>NIR</td>
<td>Near Infra-Red Spectral Range, 650-950 nm</td>
</tr>
<tr>
<td>NIRS</td>
<td>Near Infra-Red Spectroscopy (a.k.a. DOS)</td>
</tr>
<tr>
<td>OEF</td>
<td>Oxygen Extraction Fraction</td>
</tr>
<tr>
<td>PET</td>
<td>Positron Emission Tomography</td>
</tr>
<tr>
<td>(P(M))</td>
<td>Probability of Malignancy</td>
</tr>
<tr>
<td>RBCs</td>
<td>Red Blood Cells</td>
</tr>
<tr>
<td>StO(_2)</td>
<td>Blood Oxygen Saturation</td>
</tr>
<tr>
<td>TOI</td>
<td>Tissue Optical Index</td>
</tr>
</tbody>
</table>
Diffuse optical measurements can probe blood flow, oxygenation, and concentration, permitting calculation of tissue oxygen delivery, and perhaps offering a method to complement PET. Measurement of these important physiologic parameters has been one of the driving reasons for the continued interest in diffuse optical mammography, despite its bumpy history dating from the 1920s. These methods were attractive because of their noninvasive nature, relative low cost, and other features. The photons used for clinical diffuse optical measurements are nonionizing (≈1.5 eV), permitting repeated measurements without significant risk to the subjects. Indeed, pulse-oximeters using similar wavelengths and light power are ubiquitous in hospital settings for long-term care.

Diffuse optical spectroscopy (DOS) provides a localized measurement of optical properties. In the most basic form of imaging, an array of DOS measurements can be taken and the results projected onto a two-dimensional (2D) map of tissue properties. More sophisticated imaging strategies rely on tomographic reconstruction, in which volumetric three-dimensional (3D) maps of optical properties are reconstructed from light fluence measurements on the tissue surface. Human use of diffuse optical tomography (DOT) is most advanced in imaging of breast cancer, due in part to technical (low optical absorption and malleability of breast tissue) and logistical (public awareness of breast cancer, accessibility) factors. DOS is also sometimes referred to as near-infrared spectroscopy (NIRS).

To date, both DOS and DOT technologies have been applied to quantify the optical properties of healthy human breast tissue and its correlation with cancer risk prediction. Several reviews of DOT imaging of and contrast in breast cancer are also available; exogenous contrast agents can also be used and are discussed later in this article. DOT has been the focus of much effort in both academic and industrial settings. More details about the DOT reconstruction process may be found in the recent review by Arridge and Schotland.

Table 1 illustrates some of the broad characteristics of current imaging techniques and the niche which the authors believe diffuse optics can fill; for example, for provision of continuous metabolic measurements without the use of ionizing radiation.

One of the obvious applications of optical metabolic monitoring of tumors arises during therapy. This monitoring is of particular interest in the case of neoadjuvant chemotherapy, which is an increasingly popular treatment protocol for breast cancer. For neoadjuvant chemotherapy, drugs are administered before surgical excision to reduce the tumor size and eliminate or reduce micrometastases before the surgery. Fig. 1 delineates a potential timeline for DOS/DOT to assist in judging the efficacy of therapy planning. This sequence permits the early observation of the clinical effects of specific drug regimens which, in turn, could potentially permit early determination of the chemotherapy’s effectiveness and inform clinical decisions on continuing a particular therapy. Monitoring the efficacy of neoadjuvant chemotherapy is an active area of research in clinical medicine, including optical imaging and monitoring.

It is not the intention of this review to cover clinical applications of diffuse optics exhaustively; rather, the aim is to provide a snapshot of recent diffuse optics–based efforts to noninvasively quantify oxygen metabolism in breast tissue, with an emphasis (though not exclusively) on research from the authors’ laboratories. For more extensive discussion on these issues, the reader is encouraged to peruse the primary articles cited, as well as recent reviews about diffuse optical imaging/spectroscopy and diffuse correlation spectroscopy.

The review is organized as follows. The initial focus is on the use of statistical analysis of diffuse optical data to derive a probability of malignancy for cancer localization and therapy tracking. The promise of diffuse optical data in metabolic measurement

<table>
<thead>
<tr>
<th>Characteristics of several imaging modalities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Ionizing radiation</td>
</tr>
<tr>
<td>Tissue structure</td>
</tr>
<tr>
<td>Tissue metabolism</td>
</tr>
<tr>
<td>Clinician’s office</td>
</tr>
<tr>
<td>Frequent measurements</td>
</tr>
</tbody>
</table>

Note that diffuse optics permits convenient, nonionizing, and frequent measurement of tissue metabolism.
imaging is then examined. This is followed by a comparison study between endogenous DOT and FDG PET imaging, an all-optical metabolism measurement, and the use of external perturbations to probe tissue metabolism. Finally, the use of exogenous contrast agents in optical breast cancer imaging is reviewed.

THE PROPAGATION OF PHOTONS IN TISSUES

Physics of Diffuse Optics

Light in the Near Infra Red (NIR) spectral window (650–950 nm) is weakly absorbed but strongly scattered by tissue. Fig. 2 depicts this scenario in a model turbid medium. Fig. 2B shows the propagation of laser light through a clear, non-scattering medium (tap water). Note that the light propagates straight across the bath, with minimal dispersion of the columnated beam. Scatterers are then added to the medium; with a small amount of scattering agent, the beam is broadened in a manner akin to the visibility on a “foggy day” (see Fig. 2C), and with a large amount of scattering agent the photon transport is diffusive as is NIR light in tissue (see Fig. 2D). Two length scales are important: (1) a photon random walk step (l^*) and (2) a photon absorption length (l_a). The random walk step (l^*), or photon transport mean free path, corresponds to the typical distance traveled by a typical photon before its initial propagation direction becomes randomized ($l^* \sim 1$ mm). For example, most of the photons shown in Fig. 2D have had their initial direction randomized, and the directionality of the laser

Fig. 1. A proposed timeline for including diffuse optical spectroscopy (DOS) and diffuse optical tomography (DOT) in the planning of neoadjuvant chemotherapy (yellow box). DOS provides rapid measurements, integrable into each patient visit. More time-consuming volumetric imaging with DOT provides more detailed information. Together, these frequent measurements of tissue metabolic state may permit clinicians to more rapidly shift to more efficacious treatment regimens or even identify a complete response before completion of all scheduled doses.

Fig. 2. Illustration of photon migration in turbid media. (A) A schematic of the experiment. (B) Container filled with tap water, with minimal scattering from air bubbles and tank walls. The columnated laser beam propagates straight across the liquid bath. (C) Container filled with a low scattering liquid (a dilute mixture of soy emulsion and water). The light beam is somewhat dispersed. (D) Container filled with a high scattering liquid (a more concentrated soy emulsion mixture). These optical properties are similar to tissue in the near-infrared (NIR) spectral region. Note that the light spreads almost isotropically from the point where the beam enters the scattering medium. Photos are in false color. (Courtesy of Han Ban, MS, University of Pennsylvania, Philadelphia, PA.)
beam is lost; by contrast, in Fig. 2C many photons are still traveling in a straight line through the medium. A wavelength \((\lambda)\)-dependent reduced scattering coefficient \((\mu_s' (\lambda) = 1/\ell_s)\) denotes the reciprocal of this photon transport mean free path, and is often the term of choice to describe tissue scattering. The absorption length \((\ell_a)\) corresponds to the typical distance traveled by a photon before it is absorbed; it is also wavelength dependent. In the NIR range, this absorption length in tissue is typically much longer \((\sim 200 \text{ mm})\) than scattering length. Its reciprocal is denoted by the absorption coefficient \((\mu_a (\lambda))\).

The first incarnation of optical mammography in the 1920s\(^{10,73}\) simply relied on the transmission of lamp light through the breast and its observation in a dark room. Unfortunately, as the authors of the original articles admit, this technique was highly qualitative and unreliable. In the early 1980s the technique was revisited, this time using wide-beam transillumination; however, it was not successful clinically, due (in part) to limited projection information and lack of separation of tissue absorption from tissue-scattering effects.\(^{74–85}\)

The key to the reemergence of optical techniques for the imaging of breast cancer was the realization that light transport through tissue is a diffusive process and the subsequent development of accurate physical/mathematical models for photon propagation that separated tissue absorption from tissue-scattering effects. This mathematical approach enabled researchers to accurately quantify both tissue absorber (or chromophore) concentrations and tissue-scattering coefficients. By the mid-1990s the acceptance of this physical model, alongside the advances in the algorithms and technologies, reignited interest in the field.\(^ {86,87}\)

Once a paradigm was developed to separate tissue absorption from tissue scattering, the use of multiple optical wavelengths enabled experimenters to quantitatively determine the concentrations of various tissue chromophores (and contrast agents). For example, because oxyhemoglobin has an optical spectrum markedly different from that of deoxyhemoglobin (Hb) in the NIR (Fig. 3), it is readily possible to use absorption coefficient data at multiple wavelengths to recover absolute values of the concentrations of the hemoglobin species. Similar information about other chromophores, such as water and lipid content, and the scattering components of the tissue can be derived from the wavelength-dependent absorption and scattering data.

Fig. 4 illustrates two geometries frequently used in optical mammography. Parallel-plate transmission (left) and reemission (right) geometries for measurements are shown. Other geometries include rings, and combinations of transmission and reemission measurements. In all instruments, one or more light (e.g., laser) sources inject light into the tissue, and the light transmitted through

![Image](https://via.placeholder.com/150)

Fig. 3. Spectra of major tissue chromophores. (Top) the visible and NIR windows overlap somewhat; note the much lower absorption in the NIR. (Bottom) Expanded view of chromophores in the NIR spectral region at approximate concentrations found in human breast tissue.
the tissue is collected by one or more detectors. In Fig. 4, representations of the most probable trajectories of the detected photons are superimposed in gray scale; these trajectories are derived from analytical solutions of the photon diffusion equation in the relevant geometry.

PROBABILITY OF MALIGNANCY OPTICAL INDICES BASED ON DOT OF BREAST

Most current work in DOT focuses on the metabolically dependent physiologic variables, without explicitly calculating tissue metabolism. This section discusses DOT imaging of total hemoglobin concentration (Hb\textsubscript{t}), blood oxygen saturation (StO\textsubscript{2}), and tissue scattering (μ\textsubscript{s}'), and the subsequent development of malignancy indices. Several researchers have pushed diffuse optical methods to add additional specificity for diagnosis; in some cases, this research has led to the development of useful combinations of the measured physiologic parameters or composite indices that better distinguish malignant from benign lesions.13,35,51,88,89 Here the focus is on a recently developed computer-aided detection (CAD) technique that builds on ideas from the x-ray community to improve interpretation of radiologic data.90 These CAD techniques are quite versatile; for example, besides use of multidimensional optical data, they permit simultaneous use of multiparameter data; for example, combining FDG uptake measured with PET and Gd contrast agent kinetics with MR imaging.91

DOT offers a fertile testing ground to apply these ideas in detection, diagnosis, and therapy monitoring of cancer. In general, each of the detected optical parameters is sensitive to tissue physiology, but interpretation of multiple 3D images is challenging. CAD offers a simple paradigm to develop composite indices, taking into account all parameters and their heterogeneities while deriving a single “probability of malignancy” tomogram. To date, several groups have applied statistical analysis techniques to multiparameter optical measurements to derive risk factors. Applications have included arthritic joints,92 high-risk93 or high-mammographic-density23,24 breast tissue, and various “endoscopic” measurements or excised tissues.94 However, these data sets have limited spatial information and orders of magnitude fewer measurements per subject than, for example, the breast tomograms to be discussed herein. Other researchers have implemented automated DOT image analysis techniques to identify lesions in a particular subject95–97; however, this analysis neglects information about the common signatures of cancer across a population.

Here the authors present illustrative results drawn from work conducted at the University of Pennsylvania.35,66,98 The work is based on a set of 3D tomograms of total hemoglobin concentration (Hb\textsubscript{t}), blood oxygen saturation (StO\textsubscript{2}), and tissue scattering (μ\textsubscript{s}’) that were obtained from thirty five subjects with biopsy-confirmed lesions.34,35 This data set permitted exploration of the potential of DOT-CAD for both cancer localization and the monitoring of cancer therapy.

The CAD algorithm requires identification of a group of subjects with data from both the modality under consideration (DOT) and a gold-standard diagnosis. Essentially, training-set data from this group is used to derive a common malignancy signature, from the combination of optical parameters that best reproduces the gold-standard diagnosis. As a test, the signature is then examined in additional subjects (the test set), who were not included in developing the diagnostic signature. Finally, the diagnostic results from the test set are compared with the gold-standard diagnosis to evaluate the utility of the test.

Regarding diffuse optical properties of breast, the authors35 and others20,51,99 have observed that the intersubject variation of physiologic parameters (Hb\textsubscript{t}, StO\textsubscript{2}, μ\textsubscript{s}') can be quite large.
Therefore, the first technical strategy introduced was to adopt an intrasubject normalization scheme that reduces this intersubject variation. Specifically, all data are log-transformed, then the mean value of each parameter in healthy tissue for each subject is subtracted; finally, this result is divided by the standard deviation of the parameter in healthy tissue. Thus a “Z-score” normalized variable for each optical parameter is obtained. This intrasubject normalization spectacularly reduces the intersubject variation in all of the optically measured parameters, as shown in Fig. 5A.

With these new Z-score normalized tissue parameters one can sensibly combine the Hb_t, StO_2, and μ'_s data from the tissue volume elements (voxels) of multiple subjects (training set) to generate a single statistically derived malignancy parameter (M). M is a weighted linear combination of physiologic parameters from the training population of cancers. The weighting vectors, β, are optimized using data from each voxel of each patient and logistic regression. The extracted weighting factors (or weighting vector) is then applied to an additional subject (test set); thus the M of each voxel in the subject is computed and a probability of malignancy ($P(M)$) for each volume element in the breast can be assigned. A threshold probability is then used to define a binary mask for cancer location (see Fig. 5B). Example results are shown in Fig. 6. Note that the blood oxygen saturation (StO_2) images (see Fig. 6B) have the least lesion contrast; the weighting factor of StO_2 is significantly smaller than Hb_t and μ'_s. Of interest, one of the authors’ subjects with an in situ lesion (see Fig. 6, left column) exhibited a probability of malignancy that was significantly lower than the threshold cutoff obtained for malignant tissue. This observation suggests the potential for future versions of the metric to distinguish between types of lesions, as well as between healthy and malignant tissue.

The authors have recently extended the DOT-CAD results to monitor the efficacy of neoadjuvant chemotherapy. The $P(M)$ calculation brings together several physiologic parameters to identify changes. In contrast to the composite probability of malignancy signature, significant differences were not observed in the responses of both absolute and relative values of the individual physiologic parameters (Hb_t, StO_2, μ'_s). Although this pilot study was limited to three subjects, two of whom responded completely to chemotherapy and one who had a partial response, the dynamics of changes in $P(M)$ between these two groups were significantly different (Fig. 7). The observations shown in Figs. 6 and 7 demonstrate potential for extraction of a simple, clinically relevant metric for cancer staging and therapy monitoring from diffuse optical images. Promising early results suggest that these optical techniques
could be used to determine the efficacy of particular neoadjuvant chemotherapy regimens well before tumor changes are revealed by structural imaging.

Overall the results of this study are encouraging, suggesting that statistical analysis of the metabolically dependent, optically measured physiologic parameters of cancer tissue can yield a useful signature of cancer location and response to treatment. The study described here was derived from a limited population (thirty five subjects), and the chemotherapy monitoring is only at the pilot stage (three subjects). A more expansive study is now needed.

Fig. 6. Slices from three-dimensional (3D) images of two subjects, showing total hemoglobin concentration (A, \(\text{Hb}_t\)), blood oxygen saturation (B, \(\text{StO}_2\)), reduced scattering coefficient (C, \(\mu'\)), probability of malignancy (D, \(P(M)\)), and a binary cancer mask (E) using a cutoff of \(P(M) = 0.95\). The DCIS & LCIS (ductal and lobular carcinoma in situ) lesion in the left column provides an interesting case study, with the \(P(M)\) falling between the malignant lesions and the healthy regions. The invasive ductal carcinoma in the right column shows a typical result from invasive cancers. (From Busch DR. Computer-aided, multi-modal, and compression diffuse optical studies of breast tissue [PhD thesis]. University of Pennsylvania; 2011; with permission.)
TOWARD METABOLIC IMAGING

Endogenous DOT Versus PET Glucose Imaging

It is difficult to validate the hemodynamic parameters measured by DOT directly against other diagnostic modalities, because none is able to noninvasively measure all of the same parameters. However, correlation of parameters such as the total hemoglobin concentration measured by DOT with microvessel density measured by histopathology has been carried out.\(^54,63,100,101\) To date, two major approaches have been explored for direct correlation/comparison of DOT with other imaging modalities: (1) image correlation based on the stand-alone images taken independently, and (2) correlation based on concurrent image acquisition. The deformability of breast tissue makes the former approach challenging. Nonetheless, research along these lines has demonstrated that the high tumor-to-background ratio detected by DOT corresponds to the tumor locations identified by MR imaging\(^50,52,102\) and PET.\(^89\) These and other works have led to the development of advanced software suites that permit researchers to transform the volumetric information between imaging modalities.

Regarding concurrent acquisition, it is challenging but possible to integrate DOT source and detector systems into other medical imaging modalities. This development has led to interesting multimodal imaging instrumentation, for example, DOT and MR imaging,\(^103–106\) DOT and tomosynthesis,\(^107,108\) and DOT and ultrasonographic imaging.\(^109–111\) The primary disadvantage of the multimodal approach is that hardware constraints limit the total number of DOT measurements to values less than typical for stand-alone DOT systems. Most efforts to date have focused on use of anatomic information from MR imaging, tomosynthesis, and ultrasonography to derive spatial priors for DOT reconstructions; this concept has been shown to improve DOT quantification. Furthermore, concurrent multimodal imaging offers a great opportunity for DOT validation. In this vein, the combination of PET and DOT (and/or diffuse correlation spectroscopy) is interesting for validation of mechanisms of oxidative metabolism, and for consideration of DOT as a surrogate to PET when frequent measurements are desirable.

Although concurrent PET and DOT have not yet been demonstrated in humans, the coregistration and correlation of nonconcurrent DOT and PET has been performed.\(^89\) **Fig. 8A** shows a qualitative correlation between FDG and DOT signals in axial, sagittal, and coronal views of patients' breasts. Note that PET imaged the whole body in this comparison, whereas DOT imaged a single breast. The dotted square in PET indicates the same breast imaged by DOT. Because image coregistration between breast images taken in supine and prone positions is difficult, each 3D image was analyzed independently for quantifying tumor-to-background ratio for each parameter. **Fig. 8B** shows a selected example from correlation between FDG and DOT-derived parameters. Positive correlations (P<.05) were found between FDG uptake and Hb\(_t\), and FDG uptake and \(\mu^*\). The positive correlation between FDG and Hb\(_t\) might be
expected, because increases in glucose metabolism of breast cancer require more blood for glucose and oxygen delivery which, in turn, is typically accompanied by an increased total hemoglobin concentration.

For three patients, PET imaging was performed using a dedicated breast-imaging PET scanner. Then, a coregistration algorithm based on rigid body motion (translation and rotation) and linear scaling was used to transform the DOT image space into the PET image space as DOT was measured with axial compression whereas PET was measured without compression. A caudal-cranial slice from a 3D DOT image encompassing the suspicious mass for each parameter (Hb, StO2, μs') is presented along with the FDG image slice in Fig. 9. Subject A had a ductal carcinoma in situ, subject B had a palpable mass that turned out to be a seroma caused by biopsy-induced hemorrhage in the center, and subject C had invasive ductal carcinoma. Increases in Hb and μs' contrast showed correspondence with similar high-FDG regions in the PET images. In sum, these results demonstrate that DOT is indeed sensitive to the local metabolism and may provide information complementary to PET.

Fig. 8. (A) Axial, sagittal, and coronal slices from the whole-body FDG PET and DOT images of overall optical attenuation coefficient: μeff. Note the whole-body PET image is of the whole torso with both breasts, whereas DOT shows the left breast only. The rectangular dotted box in each image denotes the breast corresponding to the DOT image. (B) Correlation between contrast ratios in FDG uptake and Hb for the 9 patients with tumors visible to both DOT and PET. (Adapted from Konecky SD, Choe R, Corlu A, et al. Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography. Med Phys 2008;35(2):446–55; with permission.)

Fig. 9. Images of the breasts of three women imaged with DOT and with a dedicated breast-imaging PET. A representative caudal-cranial slice taken from the 3D reconstruction of a breast is presented for each parameter and patient. The DOT images have been transformed, using a coregistration algorithm, to be in the same uncompressed state as PET. The rows correspond to each patient with suspicious lesions. The columns correspond to Hb, StO2, μs' measured by DOT, and FDG uptake measured by PET. The dashed white ellipses enclose regions with suspicious lesions. (Adapted from Konecky SD, Choe R, Corlu A, et al. Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography. Med Phys 2008;35(2):446–55; with permission.)
All-Optical Measurement of Oxygen Extraction Fraction and Metabolism

Another approach uses diffuse light to noninvasively measure microvascular, local blood flow (BF). The measurement uses a technique referred to as diffuse correlation spectroscopy (DCS) in the biomedical optics community. DCS uses coherent laser sources and the temporal statistics of light speckles emerging from tissue. These statistics reveal quantitative information about the motion of red blood cells (RBCs) in the interrogated tissues. BF is characterized by an index derived from the temporal decay rate of the diffusing light field temporal intensity autocorrelation function.

Optical mammography, or breast tumor monitoring, with DCS was first introduced in 2005. In that study, the investigators observed a significant increase of the DCS BF index in tumors in comparison with the normal tissue. Later, the investigators demonstrated that early changes in tumor physiology can also be discerned by DCS flow measurements and that the relative changes were comparable with relative changes measured by DOS/DOT. Most recently, these approaches have shown potential to differentiate responders from nonresponders among patients on neoadjuvant chemotherapy, and potential for use in drug-development schemes. For recent reviews, see Refs. 61, 68

DCS information can readily be combined with information from DOS/DOT to gain access to tissue oxygen metabolism. This combination is attractive for several reasons: (1) DCS and DOS/DOT probe very similar tissue volumes for the same source-detector positions, so the results are easily combined and compared; (2) the ability to collectively measure blood flow, blood volume, and blood oxygenation enables researchers to estimate the oxygen extraction fraction and the tissue metabolic rate of oxygen extraction.

To illustrate this latter point, two composite “optical indices” are introduced, which indicate the tissue physiology. The tissue optical index (TOI) suggested by the Tromberg group at the University of California, Irvine is a multiparameter contrast function created to maximize both the contrast and the specificity of the optical measurement. TOI is defined as

$$\text{TOI} = \frac{\text{Hb} \cdot \text{H}_2\text{O}}{\text{Lipid}}.$$ \hspace{1cm} (1)

TOI is empirically constructed from the concentrations of deoxyhemoglobin (Hb), water (H$_2$O), and lipids (Lipid). Increased TOI has been found to reflect a higher chance of tumor malignancy, and TOI is also related to metabolic activity, because increases in deoxyhemoglobin are often a symptom of unmet metabolic demand.

Inclusion of DCS in the arsenal of diffuse optical tools for optical mammography enables one to derive a direct estimate of tissue oxygen metabolism by combining information about blood flow (delivery of oxygen) with the chromophore concentration information such as blood oxygen saturation (ie, oxygen availability). This approach has most often been employed in neurologic applications with hybrid diffuse optics, but these ideas are readily translated to other tissues, albeit without a robust validation. Here, a simple model and index is described, which offers a new means to define tumor contrast based on mammary metabolic rate of oxygen consumption (MMRO$_2$) following Zhou.

We define

$$\text{MMRO}_2 = \frac{\gamma \cdot \text{Hb} \cdot \text{BF}}{\text{Hb}}$$ \hspace{1cm} (2)

where $\gamma = \frac{\text{Hb}_{\text{D}}/\text{Hb}_{\text{N}}}{\text{Hb}_{\text{D}}/\text{Hb}_{\text{N}}}$, the ratio of deoxyhemoglobin (Hb) to total hemoglobin (Hb$_r$) in the venous compartment (v) compared with the ratio of deoxyhemoglobin to total hemoglobin in the total vasculature. Here, the relative rates of oxygen metabolism between tumor (“T”) and normal (“N”) breast tissues are defined as

$$\text{rMMRO}_{2(N)} = \frac{\text{MMRO}_{2(T)} / \text{MMRO}_{2(N)}}{\text{BF}_{(T/N)}}$$

$$= \frac{\gamma_T \cdot \text{Hb}_{(T/N)} \cdot \left(\frac{\text{Hb}_{(T/N)}}{\text{Hb}_{(N)}}\right)^{-1} \cdot \text{BF}_{(T/N)}}{\gamma_N \cdot \text{rBF}_{(T/N)} \cdot \left(\frac{\text{Hb}_{(T/N)}}{\text{Hb}_{(N)}}\right)^{-1} \cdot \text{BF}_{(T/N)}}$$ \hspace{1cm} (3)

In Eqn. 4, the relative values of a parameter between tumor and normal tissue are abbreviated as $rX_{(T/N)} = X_T/X_N$. If it is assumed that the ratio of γ_T/γ_N is unity and constant over time, Eqn. 4 reduces to

$$\text{rMMRO}_{2(T/N)} = \frac{\text{rHb}_{(T/N)} \cdot \text{rBF}_{(T/N)}}{\text{rHb}_{(T/N)} \cdot \text{BF}_{(T/N)}}$$ \hspace{1cm} (5)

or alternatively

$$\text{rMMRO}_{2(T/N)} = \frac{1 - \text{StO}_2(T/N)}{1 - \text{StO}_2(N)} \cdot \text{rBF}_{(T/N)}$$ \hspace{1cm} (6)

where StO$_2$ is the tissue oxygen saturation.
extraction of oxygen derived from the local oxygen metabolism. $r_{MMRO_{2}(T/N)}$ is an attempt to quantify the tumor oxygen metabolism with respect to the healthy surrounding tissue.

Fig. 10 shows how one can use these data and these new indices in monitoring cancer therapy. The data shown in **Fig. 10** indicate the richness of the parameters measurable with the hybrid diffuse optical instrumentation. Both hemodynamic and structural information about the tumor are assessed over time. These parameters all show varying degrees of change as the therapy progresses at a very early stage, that is, as early as three days after the start of the therapy. In particular, BF measured with DCS increased initially on day three after the start of therapy, and then decreased sharply and in a sustained manner during days four, five, and seven. This type of behavior, in response to therapy, was found again in later studies and was suggested to indicate therapy response.61

Fig. 10 shows the evolution of the two composite indices $r_{MMRO_{2}(T/N)}$ and $r_{TOI(T/N)}$ ($r_{TOI(T/N)} = TOI_{T}/TOI_{N}$). Note that they have diverged from one another by day three, wherein $r_{TOI(T/N)}$ showed an initial drop and $r_{MMRO_{2}(T/N)}$ showed an initial increase. After day four, both metabolic indices dropped significantly and then stabilized until the end of the monitoring period. The authors of this work have speculated that although both $r_{TOI(T/N)}$ and $r_{MMRO_{2}(T/N)}$ are related to tumor metabolic responses, $r_{TOI(T/N)}$ provides information about tumor cellular metabolic activities, whereas $r_{MMRO_{2}(T/N)}$ provides information about tumor oxygen metabolic changes. At this time it is too early to say whether these composite parameters will prove to be useful in therapy monitoring or diagnostics in optical mammography, but they do provide a new approach to direct probing of the tissue physiology.

In principle, DCS can be used to carry out tomographic optical mammography of blood flow, that is, diffuse correlation tomography (DCT). At this time, however, DCT has only been demonstrated in tissue phantoms and in rat brain.118 The authors expect that with increased parallelization and improved technologies, DCT might soon be used for breast imaging. In fact, some spectroscopic results in the transmission geometry have been published,119 which suggest that with a better dynamic range it should be possible to construct a stand-alone breast DCT system.

Dynamic Imaging of Physiologic Perturbations

This section highlights a different approach to optical mammography, which uses physiologic perturbations to generate contrast in human breast tissue.119–125 For example, internal or external applied pressure can alter tissue optical properties in a predictable manner, and thus provide the experimenter with additional metabolic/hemodynamic tissue information and contrast. Specifically, Carp and colleagues126 have used mild cyclical perturbations of the applied load to derive an estimate for the baseline metabolism of breast tissue. Their experiment consisted of placing the breast between two parallel plates, similar to the geometry of an axial mammogram. Then frequency-domain optical data (DOS) was collected in the remission geometry from the inferior plate as a stepper motor applied force (up to 6 lb/2.7 kg) to the superior plate for ninety seconds (repeating the cycle three times). The underlying idea of this approach is that the changes in total hemoglobin concentration in response to partial
vessel occlusion serve as a proxy for net, bulk blood flow. This notion is essentially borrowed from other areas such as venous cuff-occlusion photoplethysmography. The derived flow information is combined with measured changes in tissue oxygen saturation, in a manner similar to the aforementioned MMRO$_2$, to calculate the bulk tissue oxygen consumption. When compared with values reported in the literature (Table 2), their measurements appear to underestimate these quantities. However, in the remission geometry one might also expect the measurements to be much more sensitive to the outer fatty region of breast rather than the central fibroglandular region. Thus, the underestimation may be due to low blood flow and oxygen consumption in the fatty region. Despite this limitation, this approach represents a step forward regarding extraction of absolute numbers for oxygen consumption and blood flow.

Similarly, while not explicitly extracting metabolic parameters, other scientists have used compression schemes to create differential images based on the variation of the compressibility and/or the vascular resistance of the tumors by comparison with surrounding healthy tissue. Xu and colleagues have developed a hand-held pressure modulation device, and Dixit and colleagues have used inhaled gasses to generate vascular contrast. Overall, these dynamic methods demonstrate the versatility of the diffuse optical techniques in seeking different physiologic contrasts.

EXOGENOUS CONTRAST AGENTS

Like other conventional imaging modalities, the capabilities of diffuse optics can be enhanced with the use of exogenous contrast agents. With the increase in contrast by use of a contrast agent, image resolution and fidelity can be improved. In a different vein and perhaps more interestingly, DOT could be used to access numerous parameters related to tumor pathology (e.g. pH, tumor-specific receptors, glucose metabolism) with optimized tumor-targeting optical contrast agents. Such agents are commonly used in animal models, and are expected to become more widely available for human use in the near future.

At present, the metabolic sensitivity and the spatial resolution of DOT are analogous to that of PET before the advent of PET/computed tomography (CT) systems. As noted earlier, several research groups are exploring potential multimodal combinations of DOT with other techniques that are sensitive to tissue structure. This multimodal approach, analogous to that of PET/CT, could open a new chapter for the field. An interesting advantage to DOT, for example, in comparison with some modalities is its potential for simultaneous imaging of multiple contrast agents. This capability provides opportunities for simultaneous monitoring of several tumor characteristics.

Indocyanine green (ICG, sold under the brand name Cardio-Green) is currently the only agent approved by the Food and Drug Administration for use as an absorption-enhancing or a fluorescence agent in the NIR spectral region. In this case, the absorption/excitation (peak ~800 nm) and emission (peak ~820 nm) wavelengths have low absorption in tissue, permitting highly sensitive detection. ICG is used routinely in the clinic for measurement of cardiac output, in hepatology for evaluation of liver function, in ophthalmology for choroidal angiography, and in neurology for detection of cerebral artery infarction. In plasma, rapid binding of ICG to macromolecules such as lipoproteins and albumin causes ICG to act as a blood-pooling agent. ICG is eliminated by the liver with a half-life of a few minutes. In malignant tumors, new blood vessels tend to be hyperpermeable, enabling large molecules such as albumin to extravasate into the interstitium. Thus, there is a good probability that ICG bound to macromolecules could leak out of vasculature and therefore serve as a marker for vascular permeability.

<table>
<thead>
<tr>
<th>Method</th>
<th>Breast</th>
<th>N</th>
<th>Oxygen Consumption (µmol/100 mL/min)</th>
<th>Blood Flow (mL/100 mL/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET, 15O inhalation 127</td>
<td>Normal</td>
<td>9</td>
<td>19.8</td>
<td>3.96</td>
</tr>
<tr>
<td>PET, 15O inhalation 128</td>
<td>Normal</td>
<td>20</td>
<td>N/A</td>
<td>5.6 ± 1.4</td>
</tr>
<tr>
<td>DOS 126</td>
<td>Healthy</td>
<td>28</td>
<td>1.9 ± 1.3</td>
<td>2.8 ± 1.7</td>
</tr>
</tbody>
</table>

PET literature included both tumor and normal breast values, but only normal values are presented in this table for comparison.
The first uses of ICG in diffuse optics were as an absorption and fluorescence contrast agent for optical mammography. With a concurrent MR imaging/DOT device, absorption enhancement due to ICG at 830 nm was used to highlight different degrees of enhancement in three cases: one with an invasive ductal carcinoma, one with fibroadenoma, and another with no disease.\(^{103}\) The highest tumor-to-normal contrast was found in the invasive ductal carcinoma in 2D DOT, and its location was confirmed with simultaneous MR imaging.

The first 3D reconstruction of ICG fluorescence in human breast has since been demonstrated in three subjects with malignant breast tumors.\(^{138}\) High ICG concentration was found in the same region, exhibiting high endogenous contrast (ie, \(\mu_s^0\)); the fluorescence concentration contrast even for this blood-pool agent was significantly higher than endogenous contrast based on absorption/scattering. Of note, the contrast enhancement attributable to ICG was even more dramatic in the heterogeneously dense breast than in the entirely fatty breast. In addition to static imaging, some attempts at differentiating benign from malignant tumors have been performed, based on the different pharmacokinetics of ICG-based absorption contrast. These results have been mixed and to date have only been investigated in a limited number of subjects.\(^{139-142}\) The mixed results could be attributed to the fact that these measurements were taken within 10 minutes after bolus ICG injection when the signal was dominated by ICG contained in the blood, but not by ICG in the extravascular space.

Researchers at Physikalisch-Technische Bundesanstalt (PTB) and Charité Hospital in Berlin have imaged ICG in vascular and extravascular phases using a combination of ICG bolus injection and continuous infusion (Fig. 11).\(^{143}\) The fluorescence-to-absorption ratio image taken during the extravascular phase showed enhancement corresponding to the location of an invasive ductal carcinoma. This lesion was detected using contrast-enhanced MR imaging but was not detected in an x-ray mammogram. In the case of fibroadenoma, fluorescence-to-absorption ratio images were similar to those of surrounding healthy tissue. Charité has extended this study to twenty women with twenty one breast lesions (eight benign and thirteen malignant lesions) yielding mean sensitivity of 92% and specificity of 75%. Compared with the approximately 100% sensitivity and 25% specificity of conventional mammography alone, this fluorescence technique demonstrated improvement in specificity.\(^{144}\)

Recently, Bayer Schering Healthcare (Berlin, Germany) has attempted to translate a new NIR fluorescent optical contrast agent, Omocianine, to human use. Omocianine is an ICG derivative with a plasma half-life of approximately fifteen hours in humans and with superior quantum efficiency compared with ICG (ie, higher florescence). However, absorption and fluorescence measurements did not differentiate between benign and malignant tumors with this particular agent.\(^{135,145}\)

In summary, several research groups have demonstrated that quantification of in vivo fluorescent dye concentration in breast is feasible in humans. One can simply enhance vascular contrast for DOT with bolus ICG during the vascular phase and/or access an additional parameter, vascular leakiness, with a carefully designed ICG injection protocol in the extravascular phase. The latter parameter may be an especially powerful tool to differentiate benign and malignant lesions. Although Omocianine failed to show improvement over ICG in imaging of breast cancer, other researchers have found multiple applications for ICG fluorescent imaging in translational research.\(^{146}\) When new fluorescent dyes with higher quantum efficiency than ICG, or moieties targeting particular cellular markers, finally are transitioned into the clinic, the arsenal of optically available tumor characteristics will increase, and optical imaging and monitoring should emerge as a powerful tool.

SUMMARY AND OUTLOOK

This article discusses the recent trends in optical mammography as the field moves toward metabolic imaging and monitoring. The discussion is oriented toward diffuse optics technologies, with attention to composite signatures of malignancy, metabolic information from blood flow and hemoglobin concentration parameters, exogenous contrast agents, and dynamic contrast. Indeed, the American Cancer Society 2003 guidelines for the screening of breast cancer recognized diffuse optical mammography as a promising technology, worthy of future study.\(^{147}\) Since these guidelines were published a decade ago the field has advanced significantly, with several studies incorporating larger patient populations.\(^{20,33,148-150}\) Researchers have focused on niche applications, for example, monitoring of neoadjuvant chemotherapy with perhaps the most exciting recent development, in terms of its translation to routine clinical use, being an ongoing trial sponsored by the American College of Radiology Imaging Network (ACRIN), in which patients on neoadjuvant chemotherapy are enrolled in a seven-site trial with identical instrumentation (ACRIN 6691).
In addition to the deep-tissue applications of diffuse optics, there has been considerable effort focused on intraoperative measurements of cancer margins and biopsy samples.152–160 Fluorescence planar imaging through thin tissue for sentinel lymph nodes may also offer an alternative to radio-scintigraphy.161–163 Other notable recent developments not reviewed here include novel multimodal instrumentation combining diffuse optics with ultrasonography (photoacoustic tomography), taking advantage of hemoglobin absorption to selectively induce photothermal expansion. This rapid expansion produces a pressure wave detectable with ultrasound transducers,164 a technique that has been demonstrated in the breast.165–167

It is hoped that the reader is able to discern that the diffuse optical technologies offer potential applications over a wide range of areas in the screening, detection, staging, and therapy monitoring of breast cancer. Indeed, in many ways

\textbf{Fig. 11.} (\textit{Upper panel}) Time course of molar indocyanine green (ICG) concentration in arterial blood, recorded by transcutaneous pulse densitometry. Optical mammogram measurements were performed during the native phase (ie, before ICG injection, \textit{gray shading}), vascular phase (ie, after ICG bolus injection followed by continuous infusion, \textit{light salmon shading}), and extravascular phase (ie, more than 20 minutes after termination of infusion, \textit{blue shading}). (\textit{Lower panels}) Images of an invasive ductal carcinoma (malignant lesion, \textit{center column}) and a fibroadenoma (benign lesion, \textit{right column}). In the fluorescent/absorption ratio images, the malignant lesion lacks contrast in the vascular phase (\textit{top row}), but is clearly visible in the extravascular phase (\textit{second row}), whereas the benign lesion is much less distinct at both time points. Gadolinium-enhanced MR imaging (\textit{third row}) shows the malignant lesion clearly, although this lesion is difficult to locate in the x-ray mammogram (\textit{bottom row}).
the present stage of DOT development parallels the early stages of PET. More advances need time for demonstration, but the outlook is exciting.

ACKNOWLEDGMENTS

This research would not have been possible without the generosity of the research subjects who participated in the authors’ studies.

REFERENCES

21. Srinivasan S, Pogue BW, Carpenter C, et al. Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral...

Characterization of Breast Cancer with Diffuse Optics

