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We study nonequilibrium edge state transport in the fractional quantum Hall regime at filling
g = 1/m. Tunneling of Laughlin quasiparticles between edges is shown to generate both current
and voltage shot noise with a universal ratio of noise amplitudes given by (ge?/h)%. In the weak
backscattering limit we predict a current shot noise satisfying Poisson statistics with charge ge, which
should enable a direct measurement of the fractional charge of the quasiparticle. On resonance the
quasiparticles tunnel in pairs and the effective charge entering the current shot noise becomes 2ge.

PACS numbers: 73.40.Hm, 72.10.Bg, 73.20.Dx

The suggestion by Laughlin [1] that the quasiparti-
cles in the fractional quantum Hall effect carry fractional
charge was one of the most striking predictions in con-
densed matter physics. Nevertheless, despite the over-
all success of Laughlin’s theory a direct and convincing
experimental measurement of fractional charge has re-
mained elusive [2]. The primary reason for this is that
conventional dc transport measurements are not sensitive
to the charge of the carrier. In contrast, nonequilibrium
noise measurements, such as shot noise, are dependent
on the absolute magnitude of the carrier’s charge. In
this Letter we develop a theory for nonequilibrium edge
state transport in the fractional quantum Hall regime,
focusing on fluctuations in the currents and voltages. In
addition to a prediction that the current and voltage shot
noise amplitudes should have a universal ratio, we find
that in the weak backscattering limit the magnitude of
the current shot noise depends directly on the fractional
charge of the quasiparticles. This should enable a direct
experimental measurement of its fractional charge.

In the past several years the Landauer approach to
quantum transport [3] has been generalized to include
a description of current fluctuations [4-6]. The central
result, valid for a single channel noninteracting electron
gas incident upon a barrier with transmission probability,
T, is that the magnitude of the current shot noise is given
by (e2/h)T(1 — T)u, where u is the drop in chemical
potential across the barrier. The classical theory of shot
noise, which describes the uncorrelated transmission of
discrete electrons, is thus valid only in the limit T < 1.
In the opposite limit, 1 =T < 1, however, this result may
be understood as classical “hole” shot noise, which is due
to the uncorrelated backscattering of discrete electrons.

In an incompressible quantum Hall state transport is
dominated by one-dimensional edge states, which sug-
gests that this might be an ideal arena for experimental
shot noise measurements [6]. Indeed, a suppression of
shot noise below the classical prediction has been ob-
served in the integer quantum Hall effect [7]. In the

fractional quantum Hall effect, however, the edge exci-
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tations are not Fermi liquids, and Landauer transport
theory may not be straightforwardly applied. As empha-
sized by Wen [8], the edge excitations of a v = 1/m frac-
tional quantum Hall state form a single channel chiral
Luttinger liquid, characterized by a dimensionless con-
ductance g = 1/m. We develop below a nonequilibrium
transport theory for interacting Luttinger liquids, and
apply it to the fractional quantum Hall effect to calcu-
late both current and voltage fluctuations.

The specific geometry we have in mind, depicted
schematically in Fig. 1, consists of a quantum Hall bar
with a gated constriction separating the source from the
drain. In the presence of a finite source drain voltage,
Vea, we assume that the top and bottom edges which are
incident from the drain and source are in thermal equi-
librium at chemical potentials separated by eVyq. This
can be checked in an unconstricted channel by verifying
that the excess current noise vanishes at low frequen-
cies. When the gate is constricted, though, there will be
nonequilibrium current and voltage fluctuations. Specifi-
cally, backscattering at the constriction will give rise both
to a “glitch” in the source drain current, I, and a glitch
in the dissipative voltage, V, across the weak link mea-
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FIG. 1. Schematic of quantum Hall bar with gated con-
striction (G) separating source from drain. Of interest are

nonequilibrium fluctuations in the current, I, and voltage, V,
in the presence of an applied source-to-drain voltage, Viq.
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sured between leads 1 and 2 in the figure. The central
point is that since the backscattered particles are Laugh-
lin quasiparticles consisting of a fraction g of an electron
bound to one vortex [9], the ratio of the current to volt-
age glitches is precisely ge?/h. This physics manifests
itself in a simple relationship between the low frequency
nonequilibrium noise characteristics of the current and
voltage, which we derive below. Moreover, in the weak
backscattering limit, the absolute magnitude of the cur-
rent fluctuations is predicted to take a classical shot noise
form with charge ge, enabling a direct measurement of
the quasiparticle’s fractional charge.

We characterize the nonequilibrium current and volt-
age fluctuations by correlation and response functions,

Caw) = 3 [dte(am, A0), @)

Ra@) = 3 [ dte4(A(), AQ), @)
where the operator A can be either I or V. In equilib-
rium at temperature © these are related by the fluctua-
tion dissipation theorem, C(w) = coth(fw/2kgO)R(w),
but no such general relation holds in the presence of a
nonequilibrium source-to-drain voltage.

Nevertheless, specializing to incompressible quantum
Hall states with ¢ = 1/m, so that each edge state is a
single branch chiral Luttinger liquid, we derive below a
general relation between the nonequilibrium current and
voltage fluctuations:

Cr(w) - coth(z,f“’e)mw) (%2)2 [cv(w) - coth(2,f“e)Rv(w)] 3)

In equilibrium both sides of this equation vanish but
in the presence of a nonzero Vi it has nontriv-
ial content. To see this consider the zero frequen-
cy limit, at small but nonzero temperatures. The re-
sponse functions can then be directly related to the differ-
ential current-voltage characteristics: lim,_,q coth(fw/
2kp©)Rr(w) = (2T/h)dI/dVyq and lim,_o(ge?/h)
x coth(hw/2kgO)Ry (w) = (2T /h)dV/dV4. Since both
dI/dVsq and dV/dVyq are finite for nonzero Vg4, in the
zero temperature limit Eq. (3) reduces to

Cr(w—0) = (g,i ) Cy(w —0), @

which relates directly the amplitude of the current and
voltage shot noise.

The striking result (4) is a direct consequence of the
binding of charge to vortices [9]. A Laughlin quasiparticle
consists of one vortex bound to a gth of an electron. Tun-
neling of quasiparticles between edges should thus lead to
a current shot noise which is a factor g2 smaller than the
voltage shot noise, when expressed in units of e and h/e.
The binding of charge to vortices can be demonstrated
even more convincingly by considering the fluctuations
in the quantity I — (ge2/h)V. We find that

hw
Tﬁ’“” th(sze)

Thus in the dc limit as the temperature is taken to zero all
fluctuations in I — gV vanish completely. The nonequilib-
rium current and voltage fluctuations are locked together.
This is in contrast to what is expected in a normal re-
sistor in which thermal dephasing effects can give rise to
nontrivial fluctuations in I — gV, for example, of a 1/f
form, which may be interpreted as temporal fluctuations
in the value of the conductance itself. In the quantum
Hall effect, however, the conductance is a topological in-
variant and the flucutations are given explicitly by (5),

Cr_gv(w) = (5)

reflecting the binding of charge and flux.

Before describing how we derive the general expres-
sions (3) and (5), we consider the limit of very weak
and very strong backscattering where one expects to re-
cover classical shot noise. We find that in the limit of
strong backscattering where the constriction is almost
completely pinched off, Veq — (V') <« V44, the current fluc-
tuations satisfy a classical (Poissonian) shot noise form,

CI(w—>O)—ecoth(2kV9)(I)+ (6)

which is due to uncorrelated tunneling of electrons
through the constriction from source to drain. This form
is identical to that for noninteracting electrons (i.e., a
Fermi liquid) [6], and shows that in this limit succes-
sive electrons tunnel so infrequently that the electron-
electron interactions are unimportant. The coth factor
in (6) comes from the uncorrelated “upstream” tunnel-
ing of electrons, which costs an energy eVq.

In the opposite limit of weak backscattering where the
deviations from perfectly quantized source-to-drain con-
ductance are small, (V) <« Vg4, the dominant backscat-
tering channel is the tunneling of single Laughlin quasi-
particles. This is valid at low temperatures for g = 1/3
because the single quasiparticle backscattering operator
is the only one whose amplitude does not vanish in the
low temperature limit [10,11]. Provided the temperature
is high enough that the single quasiparticle backscatter-
ing has not grown too large, the tunneling of Laughlin
quasiparticles between edges will still be infrequent and
should be described by a similar Poissonian distribution.
Indeed, in this limit we find voltage fluctuations which
satisfy a classical shot noise form:

geVad

C’v(w—>0)—ﬁcoth(2k G))(V)-4-~-- (7)

The coefficient h/e can be understood by noting that
725
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when a Laughlin quasiparticle, which consists of a vortex
(bound to gth of an electron), tunnels between edges it
causes a voltage glitch with integrated strength [V dt =
h/e.

Since each Laughlin quasiparticle carries fractional
charge, in the weak backscattering limit we expect the
current noise should satisfy a classical shot noise expres-
sion with charge ge. This can be obtained upon com-
bining (4) and (7) with an expression which relates the
average current to average voltage,

2
ge
(1) = 5= (Vea = (V)), (8)
yielding for the current shot noise at zero temperature
Cr(w — 0) = (g€)(Imax — (I)) + -+, (9)

where the maximum current is Inax = (ge?/h)Viq.
Equation (9) is valid in the weak backscattering limit,
Imax — {(I) < Imax, and reduces to the known result for
noninteracting electrons [6] when g = 1. Physically it
arises from discrete uncorrelated backscattering of charge
ge quasiparticles. Observation of current shot noise in
this regime would thus yield a direct measurement of
fractional charge.

How is the shot noise modified near a resonance? In
the above analysis we have assumed that the dominant
tunneling channel is single Laughlin quasiparticles. How-
ever, in a configuration where the incident current passes
through two constrictions in series, it is possible (e.g.,
by varying a gate voltage) to achieve a destructive in-
terference for backscattering, so that the amplitude for
tunneling single quasiparticles vanishes [10,11]. At the
resulting resonance the dominant tunneling process will
be pairs of quasiparticles. We then find that on resonance
Eq. (7) becomes

(10)

res _ h 2gev;d
Cy¥(w—0) = 26 coth( ) )(V) +

Thus in this weak backscattering regime, upon tuning
through a resonance, we expect the voltage shot noise
amplitude, when scaled by the voltage, to double in mag-
nitude. Of course the voltage drop itself will decrease on
resonance. Likewise, on resonance Eq. (9) becomes

Cr*(w — 0) = (2g€)(Imax — (1)) + -, (11)

a classical shot noise form with charge 2ge.

We now briefly describe the formalism which enables
us to establish the above results. We first note that
for the ¢ = 1/m quantum Hall state the right and
left moving edge states (at the bottom and top, respec-
tively, of the Hall bar in Fig. 1) form a Luttinger liquid
with dimensionless conductance g [8]. The constriction,
which causes interedge backscattering, plays the role of
a defect in the 1D Luttinger liquid [10,11]. “Bosoniz-
ing” the Luttinger liquid yields an effective Lagrangian,
L = (1/2g)(8,6)?, which can be used to describe the
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nonequilibrium transport through the constriction. Upon
integrating out those fluctuations away from the con-
striction, at z = 0, we arrive at an effective Euclidean
Lagrangian in terms of § = 6(z = 0) [12]:

Sp =< 3 Lun |1 8wn) [P —v [ dr cosf2ymo(r)]. (12)

Here v is the amplitude for tunneling of a Laughlin quasi-
particle between edges, and the electron current through
the constriction is I = §/,/7. Since we are interested
in nonequilibrium fluctuations, however, we need a real
time formulation. Fortunately, Eq. (12) is identical to a
Caldeira-Leggett model of a damped Josephson junction
[13], so we can adopt directly the Feynman-Vernon or
Keldysh approach used so successfully in this context
[14]. We introduce a generating functional expressed
as an integral over forward and backwards paths, 64 (t),
with ¢t running between +oo:

Z = /D9+ Do_ S (13)
The real-time effective action can then be expressed in
terms of new fields 4 = 6 = (1/2)5, as S =S50+ 51+ 52
with

So = —é/dwcoth(%> | 6(w) |2 +%/dt§(t)9(t},

(14)

Sy = -iv/dt(cos 2/l — cos2+/TH_), (15)
Sy = - [ atlat)it £)0(¢)] 16
s = —= [ dtla®i(®) + n®(e), (16)

where 7(t) is a source field and the source drain voltage
is given by Vg = a.

Functional differentiation with respect to the source
field 7(t) generates an expectation value of the current
operator, (I) = —ié In(Z)/6én, whereas correlation and
response functions are given as

1 827

A 2T e

(17)

82z

1 5%z
’Wmmmem>'“&

Ri(w) = "z (6a(w)5n(~w)

In order to identify the voltage operator it is useful to
perform a shift in 8 and 6 to eliminate terms linear in the
source fields a(t) and n(t) which appear in (16). Then S;
and S, become

S, = —iv Z(:}:) /dt cos[2v/T0+ + ga(t) — gP%n),
+
(19)
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-9 fw_ 2 39 [ s
Sy = 47r/dwwcoth<2k39)|n(w)| +27r/dtna,

(20)

where we have defined

PEn = / dw =t [:t% +coth(2—k%>]n(w). (21)

Then differentiating Z with respect to 7 to obtain (I) and
comparing with (8) implies that as expected the voltage
operator is proportional to the quasiparticle tunneling
term:

V = (h/e)vsin(2y/70 + ga). (22)

It is now straightforward to establish the central re-
sults described above. The general expression (3) relat-
ing current and voltage noise can be obtained by formally
evaluating the current correlation and response functions
using (17) and (18) and the action in (19) and (20), and
then noting the form of the voltage operator given in
(22). Equation (7) can be established by evaluating both
the voltage noise and (V') perturbatively in v to second
order, and comparing. On resonance the amplitude for
tunneling a single quasiparticle vanishes [11], v = 0, and
we must include a pair tunneling term v cos(4/76) in
the action (12). Then following the steps just outlined
leads directly to the expression for the voltage shot noise
on resonance, given in Eq. (10). Finally, in order to
obtain the current shot noise expression in the strong
backscattering limit, Eq. (6), it is convenient to employ
a representation “dual” to that in Egs. (12)-(16) [12,14)].
Following the steps which lead to Eq. (7) in this dual
representation immediately gives Eq. (6).

In summary, we have described a general framework
for treating nonequilibrium transport phenomena in Lut-
tinger liquids and applied it to extract current and volt-

age fluctuations in the fractional quantum Hall effect.
This approach, which can be readily extended to incor-
porate electron spin, might also be useful in modeling
nonequilibrium transport in narrow quantum wires.
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FIG. 1. Schematic of quantum Hall bar with gated con-
striction (G) separating source from drain. Of interest are

nonequilibrium fluctuations in the current, I, and voltage, V',
in the presence of an applied source-to-drain voltage, Viq.




