Events

  • Math-Bio seminar: "Fast, scalable prediction of deleterious noncoding variants from genomic data"

    318 Carolyn Lynch Laboratory

    Adam Siepel, Cold Spring Harbor Laboratory

    Across many species, a large fraction of genetic variants that influence phenotypes of interest is located outside of protein-coding genes, yet existing methods for identifying such variants have poor predictive power. Here, we introduce a new computational method, called LINSIGHT, that substantially improves the prediction of noncoding nucleotide sites at which mutations are likely to have deleterious fitness consequences, and which therefore are likely to be phenotypically important.

    view more..

  • Astro Seminar: "Quenching and Bulge Growth Over Cosmic Time in Massive Galaxies"

    David Rittenhouse Laboratory, A4

    Marc Huertas-Company (Paris Observatory)

    The life of a galaxy is a balance between processes that trigger star formation by accelerating gas cooling and others which tend to prevent stars to form by expelling or heating gas.  Over the past years, the picture is emerging that, during most of its life, a galaxy seems to live a rather quiet life, gradually growing in stellar mass through the formation of new stars which are formed at a rate remarkably proportional to its stellar mass, This is interpreted as an indirect evidence that fuel in the form of cold gas is somehow continuously being fed into the galaxies to susta

    view more..

  • Special Condensed Matter Seminar: "Probing Topological Valley Physics in Bilayer Graphene"

    David Rittenhouse Laboratory, A4

    Long Ju, Cornell University

    Graphene has been a model solid state system where novel quantum phenomena emerge from the interplay between symmetry, band topology and reduced dimensionality. In particular, AB-stacked bilayer graphene has a unique bandstructure with an electrically tunable bandgap and a valley-dependent Berry phase. These features result in unusual electrical and optical properties, for which optical spectroscopy/microscopy are powerful characterization tools.

    view more..

  • Special Condensed Matter Seminar: "Shining light on topological insulators and Weyl semimetals"

    David Rittenhouse Laboratory, A4

    Liang Wu, University of California, Berkeley

    The last decade has witnessed an explosion of research investigating the role of topology in band-structure, as exemplified by the wealth of recent works on topological insulators (TIs) and Weyl semimetals (WSMs). In this talk I hope to convince you that optical probes of solids give unique insight into these topological states of matter.

    view more..

  • Astro Seminar: "TBA"

    David Rittenhouse Laboratory, A4

    Francisco Villaescusa-Navarro (Simons CCA)

  • Special Condensed Matter Seminar: "A Berry Phase Switch in Circular Graphene Resonators"

    David Rittenhouse Laboratory, A4

    Fereshte Ghahari Kermani, National Institute of Standards and Technology

    Berry phase is an example of anholonomy, where the phase of a quantum state may not return to its original value after its parameters cycle around a closed path; instead the quantum system’s wave function may acquire a real, measurable phase difference, known as Berry phase. Berry phase is connected with the geometry of the quantum system having intriguing physical consequences in systems with topological singularities, such as graphene.

    view more..

  • Special Condensed Matter Seminar: "Manipulating Charge Carriers for Quantum Transport in Van der Waals Materials Nanostructures"

    David Rittenhouse Laboratory, A4

    Ke Wang, Harvard University

    Since the discovery of graphene via mechanical exfoliation, it has been shown that the electronic properties of solids can undergo dramatic change when the material thickness is reduced to the atomic limit. Recently, the quality of these 2-dimensional (2D) electronic systems has been significantly improved by hexagonal boron nitrides encapsulation, enabling the electron mean free path only limited by the size of the samples. However, mesoscopic transport studies in these systems are relatively unexplored due to the challenges in the device fabrication processes.

    view more..

  • Department Colloquium: "Results from the New Horizons Flyby of Pluto"

    David Rittenhouse Laboratory, A8

    Marc Bluie (Southwest Research Institute) hosted by Mariangela Bernardi

    July 2015 saw the culmination of decades of work to get a detailed look at a distant and intriguing world.  As of late 2016, the transmission of all data from the encounter was completed and the project is now turning its attention to the upcoming extended mission flyby of 2014MU69 on 2019 Jan 1.  The encounter was crucial for pinning down seemingly simple quantities such as size and albedo but opened the door to much more in-depth studies of the origin and evolution of Pluto and its constraints on the history of our solar system.

    view more..

  • Special Condensed Matter Seminar: "Nano-electrodynamics with graphene plasmons"

    David Rittenhouse Laboratory, A4

    Mark Lundeberg, Institute of Photonic Sciences (Castelldefels, Spain).

    I will review my recent work on plasmons in graphene, a naturally appropriate material for studying electron motion at terahertz and mid-infrared frequencies. Graphene plasmons are extremely confined propagating waves (with wavelengths 100 times smaller than light) which have lifetimes up to 500 fs at room temperature, and which can be probed by near field microscopy. Various aspects of these plasmons will be discussed: in-situ tuning and guiding with gate voltages, electrical detection of plasmons, and tuning by the dielectric environment around the graphene.

    view more..

  • Astro Seminar: "TBA"

    David Rittenhouse Laboratory, A4

    TBA