Events

  • Condensed Matter Seminar: "Topological protection of photons"

    David Rittenhouse Laboratory, A4

    Mikael Rechtsman (Penn State University)

    Topological insulators are solid-state materials whose transport properties are immune to defects and disorder due to underlying topological order.  Perhaps the first such phenomenon was the quantum Hall effect, wherein the Hall conductivity is quantized and hence extremely robust.  In this talk, I will present the experimental observation of the topological protection of the transport of photons (rather than electrons in the solid state) in complex dielectric structures.  I will then present the obser

    view more..

  • Condensed Matter Seminar: "Mechanical Cell Biology of Microbes"

    David Rittenhouse Laboratory, A4

    Enrique Rojas (Stanford University)

    Research in microbial physiology has traditionally focused on understanding biochemical pathways and, more recently, on elucidating the surprisingly complex structure of microbial cytoplasm.  On the other hand, the whether mechanical forces also play a role in controlling sub-cellular processes in microbes has been overlooked. I will highlight several novel paradigms by which microbes use mechanical (and electrical) factors as signals to control cell growth, division, and survival, and highlight how the remarkable mechanical properties of the cells are critical for these p

    view more..

  • High Energy Theory Seminar: (TBA)

    David Rittenhouse Laboratory, 2N36

    Devin Walker (Dartmouth College)

  • Condensed Matter Seminar: "Soft matter physics in the gut"

    David Rittenhouse Laboratory, A4

    Sujit S. Datta (Princeton University)

    The gut governs digestion and nutrient absorption, is a promising target for drug delivery, and teems with micro-organisms that can have remarkably strong effects on host health. Despite its importance, however, little is known about how the structure and function of the gut are influenced by many of the soft materials that transit through it regularly.

    view more..

  • Condensed Matter Seminar: "Controlling Strong Light Matter Coupling with Photonic Crystals"

    David Rittenhouse Laboratory, A4

    Hui Deng (University of Michigan)

    Microcavity exciton-polaritons provide a unique photonic platform that manifests non-equilibrium quantum orders. It combines strong nonlinearity and rich many-body physics of matter with robust coherence and ready accessibility of light, allowing diverse quantum phenomena at high temperature, on a photonic chip. To go beyond 2D condensation physics, it becomes important to control the fundamental properties of polaritons without destroying the quantum orders.

    view more..

  • Condensed Matter Seminar: "Enhanced optical and magnetic microscopy by orientation-dependent modulation of single-molecule and nitrogen-vacancy-center emission"

    David Rittenhouse Laboratory, A4

    Mikael Backlund (Harvard University)

    Selection rules impose geometrical constraints on the interactions of light and matter. In
    particular, an emitter with a well-defined orientation will emit photons of a characteristic
    polarization and wavevector distribution, even as viewed in the far field. Knowledge of these
    distributions can be leveraged to enhance a number of state-of-the-art microscopy techniques. In
    the first part of the talk I will discuss such an approach to single-molecule localization
    microscopy, relevant for single-molecule tracking and super-resolution imaging. It is known that

    view more..

  • Condensed Matter Seminar: "TBA"

    David Rittenhouse Laboratory, A4

    Elizabeth Villa (University of California, San Diego)

  • Condensed Matter Seminar: "Geometry and mechanics of feet and fins"

    David Rittenhouse Laboratory, A4

    Mahesh M. Bandi (Okinawa Institute of Science and Technology Graduate University)

    The stiffness of propulsive appendages, such as feet and fins, is important in locomotory function. In this talk, I show that curvature-induced stiffness is the common principle underlying the stiffness of both primate feet and rayed fish fins. We use mathematical models, physical models, and biological experiments to arrive at this conclusion. The principle is evident in a drooping dollar bill that significantly stiffens upon slightly curling it in the transverse direction.

    view more..

  • Condensed Matter Seminar: "Rheology of magma and why it is interesting from a first-principles perspective"

    David Rittenhouse Laboratory, A4

    Mousoumi Roy (University of New Mexico)

  • Condensed Matter Seminar: "Programming shape"

    David Rittenhouse Laboratory, A4

    Lakshminarayanan Mahadevan (Harvard University)

    I will describe a few inverse problems in physical geometry, along with some (partial) solutions. These include  using kirigami to morph planar domains, using cylinders and spherical caps to create mechanical memories, using smooth growth patterns to create flowers and faces, and using origami to fold flat sheets into curved surfaces.

    view more..