- Associate Professor at Penn (2020 - )
- Assistant Professor at Penn (2017 - 2020)
- Assistant Professor at UNC Chapel Hill (2014 - 2017)

- Ph.D. Harvard 2009
- A.M. Harvard 2005
- A.B. Princeton 2004

My research centers on theoretical high energy physics. The broad questions my work aims to address are:

**What is quantum field theory, and what are its limitations as a tool in describing Nature? **

**What are the building blocks of matter and spacetime?**

String theory provides a promising way to address these issues since it is the only known viable approach to unifying quantum theory with gravity.

Currently, my efforts are concentrated in three directions:

1) The study of quantum field theory using the extra dimensions of string theory.

2) The study of formal and phenomenological aspects of string compactification, and in particular F-theory.

3) Conceptual questions connected with the embedding of field theoretic UV cutoffs in string theory.

Physics 601 (University of Pennsylvania); Introduction to Field Theory, Fall 2018, Fall 2019

Physics 140 / 150 (University of Pennsylvania); Principles I (Calculus Based Mechanics), Spring 2018, Spring 2019

J.J. Heckman, C. Lawrie, L. Lin, J. Sakstein, and G. Zoccarato, "Pixelated Dark Energy," Fortsch. Phys. 67, No. 11 1900071 (2019) hep-th/1901.10489.

J.J. Heckman, C. Lawrie, L. Lin, and G. Zoccarato, "F-theory and Dark Energy," Fortsch. Phys. 67, No. 10 1900057 (2019) hep-th/1811.01959.

J.J. Heckman and L. Tizzano, "6D Fractional Quantum Hall Effect," JHEP 05 120 (2018) hep-th/1708.02250.

F. Apruzzi, F. Hassler, J.J. Heckman, and I.V. Melnikov, "From 6D SCFTs to Dynamic GLSMs," Phys. Rev. D96 066015 (2017) hep-th/1610.00718.

M. Del Zotto, J.J. Heckman, P. Kumar, A. Malekian, and B. Wecht, "Kinetic Mixing at Strong Coupling,'' Phys. Rev. D95 016007 (2017) hep-ph/1608.06635.

F. Apruzzi, F. Hassler, J.J. Heckman, and I.V. Melnikov, "UV Completions for Non-Critical Strings,'' JHEP 07 045 (2016) hep-th/1602.04221.

J.J. Heckman, "750 GeV Diphotons from a D3-brane,'' Nucl. Phys. B906 231-240 (2016) hep-th/1512.06773.

J.J. Heckman, D.R. Morrison, T. Rudelius, and C. Vafa, "Atomic Classification of 6D SCFTs,'' Fortsch. Phys. 63 468-530 (2015) hep-th/1502.05405.

J.J. Heckman, D.R. Morrison, and C. Vafa, "On the Classification of 6D SCFTs and Generalized ADE Orbifolds,'' JHEP 05 028 (2014) hep-th/1312.5746.

J.J. Heckman, "Particle Physics Implications of F-Theory,'' Ann. Rev. Nuc. Part. Sci. 60 237 (2010) hep-th/1001.0577.

C. Beasley, J.J. Heckman, and C. Vafa, "GUTs and Exceptional Branes in F-theory - II: Experimental Predictions,'' JHEP 01 059 (2009) hep-th/0806.0102.

C. Beasley, J.J. Heckman, and C. Vafa, "GUTs and Exceptional Branes in F-theory - I,'' JHEP 01 058 (2009) hep-th/0802.3391.